

Splunk Operational
Intelligence Cookbook

Over 70 practical recipes to gain operational data
intelligence with Splunk Enterprise

Josh Diakun

Paul R Johnson

Derek Mock

BIRMINGHAM - MUMBAI

FM-2

Splunk Operational Intelligence Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1241014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-784-2

www.packtpub.com

Cover image by Paul R Johnson (paul@discoveredintelligence.ca)

www.packtpub.com

FM-3

Credits

Authors
Josh Diakun

Paul R Johnson

Derek Mock

Reviewers
Mika Borner

Amit Mund

Jon Webster

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Rebecca Youé

Content Development Editor
Anila Vincent

Technical Editor
Veronica Fernandes

Copy Editors
Janbal Dharmaraj

Sayanee Mukherjee

Karuna Narayanan

Project Coordinator
Neha Bhatnagar

Proofreaders
Simran Bhogal

Mario Cecere

Bernadette Watkins

Indexer
Monica Ajmera Mehta

Production Coordinators
Kyle Albuquerque

Arvindkumar Gupta

Conidon Miranda

Alwin Roy

Cover Work
Conidon Miranda

FM-4

About the Authors

Josh Diakun is an IT operations and security specialist with a focus on creating data-driven
operational processes. He has over 10 years of experience in managing and architecting
enterprise grade IT environments. For the past 5 years, he was managing a Splunk
deployment that saw Splunk used as the platform for security and operational intelligence.
Most recently, Josh has partnered in setting up a business venture, Discovered Intelligence,
which provides data intelligence solutions and services to the marketplace. He is also a
cofounder of the Splunk Toronto User Group.

I would first like to thank my co-authors, Derek Mock and Paul R Johnson,
for their support, endless efforts, and those many late nights that led to this
book becoming a reality. To my partner, Rachel—an endless thank you for
being my biggest supporter and making sure I always remembered to take
a break. To my mother, Denyce, and sister, Jessika—thank you for being the
two most amazing people in my life and cheering me on as I wrote this book.
Finally, to my late father, John, who was always an inspiration and brought
the best out of me; without him, I would not be where I am today.

Paul R Johnson has over 10 years of data intelligence experience in the areas
of information security, operations, and compliance. He is a partner at Discovered
Intelligence—a company that specializes in data intelligence services and solutions.
He previously worked for a Fortune 10 company, leading IT risk intelligence initiatives
and managing a global Splunk deployment. Paul cofounded the Splunk Toronto User
Group and lives and works in Toronto, Canada.

I would like to thank my fellow authors, Josh Diakun and Derek Mock, for
their support and collaborative efforts in writing this book. Thanks guys for
giving up nights, days, and weekends to get it completed! I would also like to
thank my wife, Stacey, for her continuous support, for keeping me focused,
and for her great feedback and patience.

FM-5

Derek Mock is a software developer and architect, specializing in unified communications
and cloud technologies. Derek has over 15 years of experience in developing and operating
large enterprise-grade deployments and SaaS applications. For the past 4 years, he has been
leveraging Splunk as the core tool to deliver key operational intelligence. Derek is a cofounder
of the Splunk Toronto User Group and lives and works in Toronto, Canada.

I could not have asked for better co-authors than Josh Diakun and Paul R
Johnson, whose tireless efforts over many late nights brought this book into
being. I would also like to thank my mentor, Dave Penny, for all his support
in my professional life. Finally, thanks to my partner, Alison, and my children,
Sarah and James, for cheering me on as I wrote this book and for always
making sure I had enough coffee.

FM-6

About the Reviewers

Mika Borner is a management consultant for data analytics at LC Systems based in
Switzerland, Germany, and Austria.

Drawing on his years of experience, he provides Splunk consulting in the telecommunications/
ISP, financial, retail, and other industries. During the course of his career, he has held
numerous positions in systems engineering in IT, with service providers, telecommunications/
ISP companies, and financial institutions.

Mika was one of the first Splunk users in Europe and was later running one of the largest
Splunk environments worldwide. He is also a regular speaker at the Splunk User Conference.

Amit Mund has been working on Linux and other technologies on automation and
infrastructure monitoring since 2004. He is currently associated with Akamai Technologies
and has previously worked for the website-hosting teams at Amazon and Yahoo!.

I would like to thank my wife, Rajashree, for always supporting me and my
colleagues for helping me in my learning and development throughout my
professional career.

FM-7

Jon Webster has been fascinated with computers since he met his first mainframe at
Hewlett-Packard at the age of 11 and played chess and Qubic on it.

In his roles from an ERP Developer through APM Product Manager and Splunk Architect,
Jon has always sought to apply the maximum leverage that technology offers for his
customers' benefit.

I'd like to thank my parents for encouraging me to explore these strange
things they didn't understand, David Kleber and Kennon Ward for helping
me learn how to optimize my code and my career, PeopleSoft for the
amazing playgrounds and opportunities, Alan Habib for dragging me into
APM (just attend one meeting!), and finally, Splunk for the most amazing
people, tools, and opportunities I've ever had the pleasure of working with.
The "Aha!" moments keep coming!

FM-8

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Play Time – Getting Data In 7

Introduction 7
Indexing files and directories 8
Getting data through network ports 15
Using scripted inputs 19
Using modular inputs 22
Using the Universal Forwarder to gather data 26
Loading the sample data for this book 30
Defining field extractions 33
Defining event types and tags 36
Summary 40

Chapter 2: Diving into Data – Search and Report 41
Introduction 41
Making raw event data readable 45
Finding the most accessed web pages 49
Finding the most used web browsers 52
Identifying the top-referring websites 55
Charting web page response codes 58
Displaying web page response time statistics 60
Listing the top viewed products 64
Charting the application's functional performance 67
Charting the application's memory usage 70
Counting the total number of database connections 72
Summary 74

ii

Table of Contents

Chapter 3: Dashboards and Visualizations – Make Data Shine 75
Introduction 76
Creating an Operational Intelligence dashboard 79
Using a pie chart to show the most accessed web pages 82
Displaying the unique number of visitors 87
Using a gauge to display the number of errors 92
Charting the number of method requests by type and host 96
Creating a timechart of method requests, views, and response times 98
Using a scatter chart to identify discrete requests by size and
response time 102
Creating an area chart of the application's functional statistics 105
Using a bar chart to show the average amount spent by category 108
Creating a line chart of item views and purchases over time 111
Summary 113

Chapter 4: Building an Operational Intelligence Application 115
Introduction 115
Creating an Operational Intelligence application 117
Adding dashboards and reports 121
Organizing the dashboards more efficiently 127
Dynamically drilling down on activity reports 132
Creating a form to search web activities 137
Linking web page activity reports to the form 143
Displaying a geographical map of visitors 148
Scheduling the PDF delivery of a dashboard 152
Summary 156

Chapter 5: Extending Intelligence – Data Models and Pivoting 157
Introduction 157
Creating a data model for web access logs 160
Creating a data model for application logs 168
Accelerating data models 173
Pivoting total sales transactions 178
Pivoting purchases by geographical location 184
Pivoting slowest responding web pages 189
Pivot charting top error codes 194
Summary 196

iii

Table of Contents

Chapter 6: Diving Deeper – Advanced Searching 197
Introduction 197
Calculating the average session time on a website 199
Calculating the average execution time for multi-tier web requests 205
Displaying the maximum concurrent checkouts 212
Analyzing the relationship of web requests 217
Predicting website-traffic volumes 222
Finding abnormally sized web requests 227
Identifying potential session spoofing 233
Summary 238

Chapter 7: Enriching Data – Lookups and Workflows 239
Introduction 239
Looking up product code descriptions 241
Flagging suspicious IP addresses 248
Creating a session state table 252
Adding hostnames to IP addresses 257
Searching ARIN for a given IP address 259
Triggering a Google search for a given error 264
Creating a ticket for application errors 269
Looking up inventory from an external database 274
Summary 283

Chapter 8: Being Proactive – Creating Alerts 285
Introduction 285
Alerting on abnormal web page response times 289
Alerting on errors during checkout in real time 294
Alerting on abnormal user behavior 303
Alerting on failure and triggering a scripted response 308
Alerting when predicted sales exceed inventory 312
Summary 319

Chapter 9: Speed Up Intelligence – Data Summarization 321
Introduction 321
Calculating an hourly count of sessions versus completed transactions 325
Backfilling the number of purchases by city 332
Displaying the maximum number of concurrent sessions over time 342
Summary 349

iv

Table of Contents

Chapter 10: Above and Beyond – Customization, Web Framework,
REST API, and SDKs 351

Introduction 351
Customizing the application's navigation 353
Adding a force-directed graph of web hits 358
Adding a calendar heatmap of product purchases 368
Remotely querying Splunk's REST API for unique page views 374
Creating a Python application to return unique IP addresses 377
Creating a custom search command to format product names 382
Summary 388

Index 389

Preface
In a technology-centric world, where machines generate a vast amount of data at an
incredibly high volume, Splunk has come up with its industry-leading big data intelligence
platform—Splunk Enterprise. This powerful platform enables anyone to turn machine data
into actionable and very valuable intelligence.

Splunk Operational Intelligence Cookbook is a collection of recipes that aim to provide you,
the reader, with the guidance and practical knowledge to harness the endless features of
Splunk Enterprise 6 for the purpose of deriving extremely powerful and valuable operational
intelligence from your data.

Using easy-to-follow, step-by-step recipes, this book will teach you how to effectively gather,
analyze, and create a report on the operational data available in your environment. The
recipes provided will demonstrate methods to expedite the delivery of intelligent reports and
empower you to present data in a meaningful way through dashboards and by applying many
of the visualizations available in Splunk Enterprise. By the end of this book, you will have built
a powerful Operational Intelligence application and applied many of the key features found in
the Splunk Enterprise platform.

This book and its easy-to-follow recipes can also be extended to act as a teaching tool for you
as you introduce others to the Splunk Enterprise platform and to your new found ability to
provide promotion-worthy operational intelligence.

What this book covers
Chapter 1, Play Time – Getting Data In, introduces you to the many ways in which data can
be put into Splunk, whether it is by collecting data locally from files and directories, through
TCP/UDP port inputs, directly from a Universal Forwarder, or by simply utilizing scripted and
modular inputs. You will also be introduced to the datasets that will be referenced throughout
this book and learn how to generate samples that can be used to follow each of the recipes
as they are written.

Preface

2

Chapter 2, Diving into Data – Search and Report, will provide an introduction to the first set
of recipes in this book. Leveraging data now available as a result of the previous chapter, the
information and recipes provided here will act as a guide, walking you through searching event
data using Splunk's SPL (Search Processing Language); applying field extractions; grouping
common events based on field values; and then building basic reports using the table, top,
chart, and stats commands.

Chapter 3, Dashboards and Visualizations – Make Data Shine, acts as a guide to building
visualizations based on reports that can now be created as a result of the information and
recipes provided in the previous chapter. This chapter will empower you to take your data and
reports and bring them to life through the powerful visualizations provided by Splunk. The
visualizations that are introduced will include single values, charts (bar, pie, line, and area),
scatter charts, and gauges.

Chapter 4, Building an Operational Intelligence Application, builds on the understanding of
visualizations that you have gained as a result of the previous chapter and introduces the
concept of dashboards. The information and recipes provided in this chapter will outline the
purpose of dashboards and teach you how to properly utilize dashboards, use the dashboard
editor to build a dashboard, build a form to search event data, and much more.

Chapter 5, Extending Intelligence – Data Models and Pivoting, will take you deeper into
the data by introducing transactions, subsearching, concurrency, associations, and more
advanced search commands. Through the information and recipes provided in this chapter,
you will harness the ability to converge data from different sources and understand how to
build relationships between differing event data.

Chapter 6, Diving Deeper – Advanced Searching, will introduce the concept of lookups and
workflow actions for the purpose of augmenting the data being analyzed. The recipes provided
will enable you to apply this core functionality to further enhance your understanding of the
data being analyzed.

Chapter 7, Enriching Data – Lookups and Workflows, explains how scheduled or real-time
alerts are a key asset to complete operational intelligence and awareness. This chapter will
introduce you to the concepts and benefits of proactive alerts, and provide context for when
these alerts are best applied. The recipes provided will guide you through creating alerts
based on the knowledge gained from previous chapters.

Chapter 8, Being Proactive – Creating Alerts, explains the concept of summary indexing for
the purposes of accelerating reports and speeding up the time it takes to unlock business
insight. The recipes in this chapter will provide you with a short introduction to common
situations where summary indexing can be leveraged to speed up reports or preserve
focused statistics over long periods of time.

Preface

3

Chapter 9, Speed Up Intelligence – Data Summarization, introduces two of the newest and
most powerful features released as part of Splunk Enterprise Version 6: data models and the
Pivot tool. The recipes provided in this chapter will guide you through the concept of building
data models and using the Pivot tool to quickly design intelligent reports based on the
constructed models.

Chapter 10, Above and Beyond – Customization, Web Framework, REST API, and SDKs, is
the final chapter of the book and will introduce you to four very powerful features of Splunk.
These features provide the ability to create a very rich and powerful interactive experience
with Splunk. The recipes provided will open you up to the possibilities beyond core Splunk
Enterprise and a method to make your own Operational Intelligence application that includes
powerful D3 visualizations. Beyond this, it will also provide a recipe to query Splunk's REST API
and a basic Python application to leverage Splunk's SDK to execute a search.

What you need for this book
To follow along with the recipes provided in this book, you will need an installation of Splunk
Enterprise 6 and the sample data that is made available with this book. The recipes are
intended to be portable to all Splunk Enterprise environments, but for best results, we suggest
that you use the samples provided with this book.

Splunk Enterprise 6 can be downloaded for free for most major platforms from http://www.
splunk.com/download.

The samples provided with this book will also be packaged with the Splunk Event Generator
tool so that the event data can be refreshed or events can be replayed as new as you work
through the recipes.

Who this book is for
This book is intended for all users, beginner or advanced, who are looking to leverage the
Splunk Enterprise platform as a valuable Operational Intelligence tool. The recipes provided
in this book will appeal to individuals from all facets of a business—IT, security, product,
marketing, and many more!

Although the book and its recipes are written so that anyone can follow along, it does
progress at a steady pace into concepts or features that might not be common knowledge
to a beginner. If there exists the necessity to understand more about a feature, Splunk has
produced a vast amount of documentation on all Splunk Enterprise features available at
http://docs.splunk.com/Documentation/Splunk.

There might also be sections that utilize regular expressions and introduce recipes that take
advantage of the Python and XML languages. Experience with these concepts is not required
but beneficial.

http://www.splunk.com/download
http://www.splunk.com/download
http://docs.splunk.com/Documentation/Splunk

Preface

4

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The field
values are displayed in a table using the table command."

A block of code is set as follows:

<table>
 <searchString>
 index=opintel status=404 | stats count by src_ip
 </searchString>
 <title>Report – 404 Errors by Source IP</title>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<table>
 <searchString>
 index=opintel status=404 | stats count by src_ip
 </searchString>
 <title>Report – 404 Errors by Source IP</title>

Any command-line input or output is written as follows:

./splunk add monitor /var/log/messages –sourcetype linux_messages

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Quickly create a report by
navigating to Save As | Report above the search bar."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

Preface

5

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

1
Play Time – Getting

Data In

In this chapter, we will cover the basic ways to get data into Splunk. You will learn about:

 f Indexing files and directories

 f Getting data through network ports

 f Using scripted inputs

 f Using modular inputs

 f Using the Universal Forwarder to gather data

 f Loading the sample data for this book

 f Defining field extractions

 f Defining event types and tags

Introduction
The machine data that facilitates operational intelligence comes in many different forms and
from many different sources. Splunk is able to collect and index data from many different
sources, including logfiles written by web servers or business applications, syslog data
streaming in from network devices, or the output of custom developed scripts. Even data that
looks complex at first can be easily collected, indexed, transformed, and presented back to
you in real time.

Play Time – Getting Data In

8

This chapter will walk you through the basic recipes that will act as the building blocks to get
the data you want into Splunk. The chapter will further serve as an introduction to the sample
datasets that we will use to build our own Operational Intelligence Splunk app. The datasets
will be coming from a hypothetical, three-tier, e-commerce web application and will contain
web server logs, application logs, and database logs.

Splunk Enterprise can index any type of data; however, it works best with time-series data
(data with timestamps). When Splunk Enterprise indexes data, it breaks it into events, based
on timestamps and/or event size, and puts them into indexes. Indexes are data stores that
Splunk has engineered to be very fast, searchable, and scalable across a distributed server
environment; they are commonly referred to as indexers. This is also why we refer to the data
being put into Splunk as being indexed.

All data indexed into Splunk is assigned a source type. The source type helps identify
the data format type of the event and where it has come from. Splunk has a number of
preconfigured source types, but you can also specify your own. The example sourcetypes
include access_combined, cisco_syslog, and linux_secure. The source type is
added to the data when the indexer indexes it into Splunk. It is a key field that is used
when performing field extractions and in many searches to filter the data being searched.

The Splunk community plays a big part in making it easy to get data into Splunk. The ability
to extend Splunk has provided the opportunity for the development of inputs, commands,
and applications that can be easily shared. If there is a particular system or application
you are looking to index data from, there is most likely someone who has developed and
published relevant configurations and tools that can be easily leveraged by your own Splunk
Enterprise deployment.

Splunk Enterprise is designed to make the collection of data very easy, and it will not take long
before you are being asked or you yourself try to get as much data into Splunk as possible—at
least as much as your license will allow for!

Indexing files and directories
File- and directory-based inputs are the most commonly used ways of getting data into Splunk.
The primary need for these types of inputs will be to index logfiles. Almost every application or
system will produce a logfile, and it is generally full of data that you would want to be able to
search and report on.

Splunk is able to continuously monitor for new data being written to existing files or new files
added to a directory, and it is able to index this data in real time. Depending on the type of
application that creates the logfiles, you would set up Splunk to either monitor an individual
file based on its location or scan an entire directory and monitor all the files that exist within it.
The later configuration is more commonly used when the logfiles being produced have unique
filenames, for example, the name they have contains a timestamp.

Chapter 1

9

This recipe will show you how to configure Splunk to continuously monitor and index the
contents of a rolling logfile located on the Splunk server. The recipe specifically shows how to
monitor and index the Linux system's messages logfile (/var/log/messages). However, the
same principle can be applied to a logfile on a Windows system, and a sample file is provided.
Do not attempt to index the Windows event logs this way, as Splunk has specific Windows
event inputs for this.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server and access to
read the /var/log/messages file on Linux. There are no other prerequisites. If you are
not using Linux and/or do not have access to the /var/log/messages location on your
Splunk server, please use the cp01_messages.log file that is provided and upload it to an
accessible directory on your Splunk server.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

How to do it...
Follow the steps in the recipe to monitor and index the contents of a file:

1. Log in to your Splunk server.

2. From the home launcher in the top-right corner, click on the Add Data button.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Play Time – Getting Data In

10

3. In the Choose a Data Type list, click on A file or directory of files.

4. Click on Next in the Consume any file on this Splunk server option.

5. Select Preview data before indexing and enter the path to the logfile (/var/log/
messages or the location of the cp01_messages.log file) and click on Continue.

Chapter 1

11

6. Select Start a new source type and click on Continue.

7. Assuming that you are using the provided file or the native /var/log/messages
file, the data preview will show the correct line breaking of events and timestamp
recognition. Click on the Continue button.

8. A Review settings box will pop up. Enter linux_messages as the source type and
then, click on Save source type.

Play Time – Getting Data In

12

9. A Sourcetype saved box will appear. Select Create input.

10. In the Source section, select Continuously index data from a file or directory this
Splunk instance can access and fill in the path to your data.

If you are just looking to do a one-time upload of a file, you can select Upload
and Index a file instead. This can be useful to index a set of data that you
would like to put into Splunk, either to backfill some missing or incomplete
data or just to take advantage of its searching and reporting tools.

11. Ignore the other settings for now and simply click on Save. Then, on the next screen,
click on Start searching. In the search bar, enter the following search over a time
range of All time:
 sourcetype=linux_messages

In this recipe, we could have simply used the common syslog source type;
however, starting a new source type is often a better choice. The syslog
format can look completely different depending on the data source. As
knowledge objects, such as field extractions, are built on top of source types,
using a single syslog source type for everything can make it challenging to
search for the data you need.

Chapter 1

13

How it works...
When you add a new file or directory data input, you are basically adding a new configuration
stanza into an inputs.conf file behind the scenes. The Splunk server can contain one
or more inputs.conf files, and these files are either located in $SPLUNK_HOME/etc/
system/local or in the local directory of a Splunk app.

Splunk uses the monitor input type and is set to point to either a file or a directory. If you
set the monitor to a directory, all files within that directory will be monitored. When Splunk
monitors files, it initially starts by indexing all of the data that it can read from the beginning.
Once complete, Splunk will maintain a record of where it last read data from, and if any new
data comes into the file, it will read this data and advance the record. The process is nearly
identical to using the tail command in Unix-based operating systems. If you are monitoring
a directory, Splunk also provides many additional configuration options such as blacklisting
files you don't want Splunk to index.

For more information on Splunk's configuration files, visit http://
docs.splunk.com/Documentation/Splunk/latest/Admin/
Aboutconfigurationfiles.

There's more...
While adding inputs to monitor files and directories can be done through the web interface
of Splunk as outlined in this recipe, there are other approaches to add multiple inputs quickly.
These allow for customization of the many configuration options that Splunk provides.

Adding a file or directory data input via the CLI
Instead of going via the GUI, you could add a file or directory input via the Splunk CLI
(command-line interface). Navigate to your $SPLUNK_HOME/bin directory and execute
the following command (replacing the file or directory to be monitored with your own):

For Unix:

./splunk add monitor /var/log/messages –sourcetype linux_messages

For Windows:

splunk add monitor c:\filelocation\cp01_messages.log –sourcetype
linux_messages

There are a number of different parameters that can be passed along with the file
location to monitor. See the Splunk documentation for more on data inputs using
the CLI (http://docs.splunk.com/Documentation/Splunk/latest/Data/
MonitorfilesanddirectoriesusingtheCLI).

http://docs.splunk.com/Documentation/Splunk/latest/Admin/Aboutconfigurationfiles
http://docs.splunk.com/Documentation/Splunk/latest/Admin/Aboutconfigurationfiles
http://docs.splunk.com/Documentation/Splunk/latest/Admin/Aboutconfigurationfiles
http://docs.splunk.com/Documentation/Splunk/latest/Data/MonitorfilesanddirectoriesusingtheCLI
http://docs.splunk.com/Documentation/Splunk/latest/Data/MonitorfilesanddirectoriesusingtheCLI

Play Time – Getting Data In

14

Adding a file or directory input via inputs.conf
Another common method of adding file and directory inputs is to manually add them to the
inputs.conf configuration file directly. This approach is often used for large environments
or when configuring Splunk forwarders to monitor for files or directories on endpoints.

Edit $SPLUNK_HOME/etc/system/local/inputs.conf and add your input. After your
inputs are added, Splunk will need to be restarted to recognize these changes:

For Unix:

[monitor:///var/log/messages]

sourcetype = linux_messages

For Windows:

[monitor://c:\filelocation\cp01_messages.log]

sourcetype = linux_messages

Editing inputs.conf directly is often a much faster way of adding new
files or directories to monitor when several inputs are needed. When editing
inputs.conf, ensure that the correct syntax is used and remember
that Splunk will need a restart for modifications to take effect. Additionally,
specifying the source type in the inputs.conf file is the best practice to
assign source types.

One-time indexing of data files via the Splunk CLI
Although you can select Upload and Index a file from the Splunk GUI to upload and index
a file, there are a couple of CLI functions that can be used to perform one-time bulk loads
of data.

Use the oneshot command to tell Splunk where the file is located and which parameters
to use, such as the source type:

./splunk add oneshot XXXXXXX

Another way is to place the file you wish to index into the Splunk spool directory, $SPLUNK_
HOME/var/spool/splunk, and then add the file using the spool command:

./splunk spool XXXXXXX

If using Windows, omit ./ that is in front of the Splunk commands,
mentioned earlier.

Chapter 1

15

Indexing the Windows event logs
Splunk comes with special inputs.conf configurations for some source types, including
monitoring the Windows event logs. Typically, the Splunk Universal Forwarder (UF) would be
installed on a Windows server and configured to forward the Windows events to the Splunk
indexer(s). The configurations for inputs.conf to monitor Windows security, application,
and system event logs in real time are as follows:

[WinEventLog://Application]
disabled = 0
[WinEventLog://Security]
disabled = 0
[WinEventLog://System]
disabled = 0

By default, the event data will go into the main index, unless another index is specified.

See also
 f The Getting data through network ports recipe

 f The Using scripted inputs recipe

 f The Using modular inputs recipe

Getting data through network ports
Not every machine has the luxury of being able to write logfiles. Sending data over network
ports and protocols is still very common. For instance, sending logs via syslog is still the
primary method to capture network device data such as firewalls, routers, and switches.

Sending data to Splunk over network ports doesn't need to be limited to network devices.
Applications and scripts can use socket communication to the network ports that Splunk is
listening on. This can be a very useful tool in your back pocket, as there can be scenarios
where you need to get data into Splunk but don't necessarily have the ability to write to a file.

This recipe will show you how to configure Splunk to receive syslog data on a UDP network
port, but it is also applicable to the TCP port configuration.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server. There are no
other prerequisites.

Play Time – Getting Data In

16

How to do it...
Follow the steps in the recipe to configure Splunk to receive network UDP data:

1. Log in to your Splunk server.

2. From the home launcher in the top-right corner, click on the Add Data button.

3. In the Or Choose a Data Source list, click on the From a UDP port link.

4. In the Source section, enter 514 in the UDP port field. On Unix/Linux, Splunk must
be running as root to access privileged ports such as 514. An alternative would be to
specify a higher port such as port 1514 or route data from 514 to another port using
routing rules in iptables.

Chapter 1

17

5. In the Source type section, select From list from the Set sourcetype drop-down list,
and then, select syslog from the Select source type from list drop-down list.

6. Click on Save, and on the next screen, click on Start searching. Splunk is
now configured to listen on UDP port 514. Any data sent to this port now will
be assigned the syslog source type. To search for the syslog source type, you
can run the following search:
sourcetype=syslog

Understandably, you will not see any data unless you happen to be sending data
to your Splunk server IP on UDP port 514.

How it works...
When you add a new network port input, you are basically adding a new configuration stanza
into an inputs.conf file behind the scenes. The Splunk server can contain one or more
inputs.conf files, and these files are either located in the $SPLUNK_HOME/etc/system/
local or local directory of a Splunk app.

To collect data on a network port, Splunk will set up a socket to listen on the specified TCP
or UDP port and will index any data it receives on that port. For example, in this recipe, you
configured Splunk to listen on port 514 for UDP data. If data was received on that port, then
Splunk would index it and assign a syslog source type to it.

Splunk also provides many configuration options that can be used with network inputs,
such as how to resolve the host value to use on the collected data.

For more information on Splunk's configuration files, visit http://
docs.splunk.com/Documentation/Splunk/latest/Admin/
Aboutconfigurationfiles.

http://docs.splunk.com/Documentation/Splunk/latest/Admin/Aboutconfigurationfiles
http://docs.splunk.com/Documentation/Splunk/latest/Admin/Aboutconfigurationfiles
http://docs.splunk.com/Documentation/Splunk/latest/Admin/Aboutconfigurationfiles

Play Time – Getting Data In

18

There's more...
While adding inputs to receive data from network ports can be done through the web interface
of Splunk as outlined in this recipe, there are other approaches to add multiple inputs quickly;
these inputs allow for customization of the many configuration options that Splunk provides.

Adding a network input via the CLI
You can also add a file or directory input via the Splunk CLI. Navigate to your $SPLUNK_HOME/
bin directory and execute the following command (just replace the protocol, port, and source
type you wish to use):

For Unix:

./splunk add udp 514 –sourcetype syslog

For Windows:

splunk add udp 514 –sourcetype syslog

There are a number of different parameters that can be passed along with
the port. See the Splunk documentation for more on data inputs using the CLI
(http://docs.splunk.com/Documentation/Splunk/latest/Data/
MonitorfilesanddirectoriesusingtheCLI).

Adding a network input via inputs.conf
Network inputs can be manually added to the inputs.conf configuration files. Edit
$SPLUNK_HOME/etc/system/local/inputs.conf and add your input. You will need
to restart Splunk after modifying the file.

[udp://514]

sourcetype = syslog

It is best practice to not send syslog data directly to an indexer. Instead,
always place a forwarder between the network device and the indexer.
The Splunk forwarder would be set up to receive the incoming syslog
data (inputs.conf) and will load balance the data across your Splunk
indexers (outputs.conf). The forwarder can also be configured to cache
the syslog data in the event that communication to the indexers is lost.

http://docs.splunk.com/Documentation/Splunk/latest/Data/MonitorfilesanddirectoriesusingtheCLI
http://docs.splunk.com/Documentation/Splunk/latest/Data/MonitorfilesanddirectoriesusingtheCLI

Chapter 1

19

See also
 f The Indexing files and directories recipe

 f The Using scripted inputs recipe

 f The Using modular inputs recipe

Using scripted inputs
Not all data that is useful for operational intelligence comes from logfiles or network ports.
Splunk will happily take the output of a command or script and index it along with all of
your other data.

Scripted inputs are a very helpful way to get that hard-to-reach data. For example, if you have
third-party-supplied command-line programs that can output data you would like to collect,
Splunk can run the command periodically and index the results. Typically scripted inputs are
often used to pull data from a source, whereas network inputs await a push of data from
a source.

This recipe will show you how to configure Splunk on an interval to execute your command
and direct the output into Splunk.

Getting ready
To step through this recipe, you will need a running Splunk server and the provided scripted
input script suited to the environment you are using. For example, if you are using Windows,
use the cp01_scripted_input.bat file. This script should be placed in the $SPLUNK_
HOME/bin/scripts directory. There are no other prerequisites.

How to do it...
Follow the steps in the recipe to configure a scripted input:

1. Log in to your Splunk server.

2. From the home launcher in the top-right corner, click on the Add Data button.

Play Time – Getting Data In

20

3. In the Or Choose a Data Source list, click on the Run and collect the output of a
script link.

4. An Add new screen will be displayed, with a number of input fields. In the Source
section, enter the full path for the command to be run, including any command-line
arguments. All scripts must be located in a Splunk bin directory, either in $SPLUNK_
HOME/bin/scripts or an appropriate bin directory in a Splunk app.

5. Enter the value in the Interval field (in seconds) in which the script is to be run;
the default value is 60.0 seconds.

6. In the Source type section, you have the option to select a predefined source type,
or select Manual and enter your desired value. For the purposes of this recipe,
select Manual as the sourcetype and enter cp01_scripted_input as the value
for the sourcetype.

Chapter 1

21

Data will be indexed into Splunk's default index, which is main. To change the
destination index, you can check the box labeled More Settings and select the
desired index from the drop-down list.

7. Click on Save, and on the next screen, click on Start searching. Splunk is now
configured to execute the scripted input you provided every 60 seconds in accordance
with the specified interval. You can search for the data returned by the scripted input
using the following search over All time:
sourcetype=cp01_scripted_input

How it works...
When adding a new scripted input, you are directing Splunk to add a new configuration stanza
into an inputs.conf file behind the scenes. The Splunk server can contain one or more
inputs.conf files and these are located either in $SPLUNK_HOME/etc/system/local
or the local directory of a Splunk app.

After creating a scripted input, Splunk sets up an internal timer and will execute the command
that you have specified in accordance with the defined interval. It is important to note that
Splunk will only run one instance of the script at a time, so if the script gets blocked for any
reason, it will cause the script to not be executed again, until after it has been unblocked.

Since Splunk 4.2, any output of the scripted inputs that are directed to stderr (causing an
error) will be captured in the splunkd.log file, which can be useful when attempting to
debug the execution of a script. As Splunk indexes its own data by default, you can search
for scripted input errors and alert on them if necessary.

For security reasons, Splunk will not execute scripts located outside of the bin directories
mentioned earlier. In order to overcome this limitation, you can use a wrapper script
(such as a shell script in Linux or batch file in Windows) to call any other script located
on your machine.

See also
 f The Indexing files and directories recipe

 f The Getting data through network ports recipe

 f The Using modular inputs recipe

Play Time – Getting Data In

22

Using modular inputs
Since Splunk 5.0, the ability to extend data input functionality has existed such that custom
input types can be created and shared while still allowing minor customizations.

Modular inputs build further upon the scripted input model. Originally, any additional
functionality required by the user had to be contained within a script. However, this presented
a challenge, as no customization of this script could occur from within Splunk itself. For
example, pulling data from a source for two different usernames might have needed two
copies of a script or might have meant playing around with command-line arguments within
your scripted input configuration.

By leveraging the modular input capabilities, developers are now able to encapsulate their
code into a reusable app that exposes parameters in Splunk and allows for configuration
through the processes familiar to Splunk administrators.

This recipe will walk you through how to install the Command Modular Input, which allows for
periodic execution of commands and subsequent indexing of the command output. You will
configure the input to collect the data outputted by the vmstat command in Linux and the
systeminfo command in Windows.

Getting ready
To step through this recipe, you will need a running Splunk server with a connection to the
Internet. There are no other prerequisites.

How to do it...
Follow the steps in this recipe to configure a modular input:

1. Log in to your Splunk server.

2. From the Apps menu in the upper left-hand corner of the home screen, click on
Find More Apps.

Chapter 1

23

3. In the search field, enter command modular input and click on the magnifying
glass icon.

4. In the search results, click on the Install free button for Command Modular Input.

5. Enter your Splunk.com credentials and click on Login. Splunk should return with a
message saying that the app was installed successfully.

6. From the home launcher in the top-rightd corner, click on the Settings menu and
then click on the Data inputs link.

Play Time – Getting Data In

24

7. On the Data inputs page, click on the Command link under Type.

8. Then, click on New.

9. In the Mod Input Name field, enter SystemInfo.

If you are using Linux, enter /usr/bin/vmstat in the Command Name field.

If you are using Windows, enter C:\Windows\System32\systeminfo.exe
in the Command Name field.

Use a full path if the command to be executed cannot be found on the
system PATH.

10. In the Command Arguments field, enter any argument that needs to be passed
to the command listed in the Command Name field. In the Command Execution
Interval field, enter a value in seconds for how often the command should
be executed (in this case, we will use 60 seconds). If the output is streamed,
then leave this field empty and check the Streaming Output field.

Chapter 1

25

11. In the Source type section, you have the option to select a predefined source type or
select Manual and enter a value. For the purposes of this recipe, select Manual as
the sourcetype and enter cp01_modular_input as the value for the sourcetype.

12. Click on Save to save the input. Splunk is now configured to execute the modular
input you provided, every 60 seconds, in accordance with the specified interval. You
can search for the data returned by the scripted input using the following search over
All time:
sourcetype=cp01_modular_input

How it works...
Modular inputs are bundled as Splunk apps and, once installed, contain all the necessary
configuration and code to display them in the Data inputs section of Splunk. In this recipe,
you installed a modular input application that allows for periodic execution of commands.
You configured the command to execute every minute and index the results of the command
each time, giving the results a source type of cp01_modular_input.

Modular inputs can be written in a number of languages and need to follow only a set of
interfaces that expose the configuration options and runtime behaviors. Depending on the
design of the input, they will either run persistently or run on an interval and will send data
to Splunk as they receive it.

You can find several other modular inputs, including REST API, SNMP, and
PowerShell, on the Splunk Apps site (http://apps.splunk.com).

http://apps.splunk.com

Play Time – Getting Data In

26

There's more...
To learn how to create your own modular input, refer to the Modular Inputs section of the
Developing Views and Apps for Splunk Web manual located at http://docs.splunk.com/
Documentation/Splunk/latest/AdvancedDev.

See also
 f The Indexing files and directories recipe

 f The Getting data through network ports recipe

 f The Using scripted inputs recipe

Using the Universal Forwarder to gather
data

Most IT environments today range from multiple servers in the closet of your office to
hundreds of endpoint servers located in multiple geographically distributed data centers.

When the data we want to collect is not located directly on the server where Splunk is
installed, the Splunk Universal Forwarder (UF) can be installed on your remote endpoint
servers and used to forward data back to Splunk to be indexed.

The Universal Forwarder is similar to the Splunk server in that it has many of the same
features, but it does not contain Splunk web and doesn't come bundled with the Python
executable and libraries. Additionally, the Universal Forwarder cannot process data in
advance, such as performing line breaking and timestamp extraction.

This recipe will guide you through configuring the Splunk Universal Forwarder to forward
data to a Splunk indexer and will show you how to set up the indexer to receive the data.

Getting ready
To step through this recipe, you will need a server with the Splunk Universal Forwarder
installed but not configured. You will also need a running Splunk server. There are no
other prerequisites.

To obtain the Universal Forwarder software, you will need to go to www.
splunk.com/download and register for an account if you do not
already have one. Then, either download the software directly to your
server or download it to your laptop or workstation and upload it to your
server via a file-transfer process such as SFTP.

http://docs.splunk.com/Documentation/Splunk/latest/AdvancedDev
http://docs.splunk.com/Documentation/Splunk/latest/AdvancedDev
www.splunk.com/download
www.splunk.com/download

Chapter 1

27

How to do it...
Follow the steps in the recipe to configure the Splunk Forwarder to forward data and the
Splunk indexer to receive data:

1. On the server with the Universal Forwarder installed, open a command prompt
if you are a Windows user or a terminal window if you are a Unix user.

2. Change to the $SPLUNK_HOME/bin directory, where $SPLUNK_HOME is the
directory in which the Splunk forwarder was installed.

For Unix, the default installation directory will be /opt/splunkforwarder/bin.
For Windows, it will be C:\Program Files\SplunkUniversalForwarder\bin.

If using Windows, omit ./ in front of the Splunk command in the
upcoming steps.

3. Start the Splunk forwarder if not already started, using the following command:
./splunk start

4. Accept the license agreement.

5. Enable the Universal Forwarder to autostart, using the following command:
./splunk enable boot-start

6. Set the indexer that this Universal Forwarder will send its data to. Replace the host
value with the value of the indexer as well as the username and password for the
Universal Forwarder.
./splunk add forward-server <host>:9997 -auth
<username>:<password>

The username and password to log in to the forwarder (default is admin:changeme)
is <username>:<password>.

Additional receiving indexers can be added in the same way by
repeating the command in the previous step with a different indexer
host or IP. Splunk will automatically load balance the forwarded data
if more than one receiving indexer is specified in this manner. Port
9997 is the default Splunk TCP port and should only be changed if it
cannot be used for some reason.

Play Time – Getting Data In

28

On the receiving Splunk indexer server(s):

1. Log in to your receiving Splunk indexer server. From the home launcher, in the
top-right corner click on the Settings menu item and then select the Forwarding
and receiving link.

2. Click on the Configure receiving link.

3. Click on New.

4. Enter 9997 in the Listen on this port field.

5. Click on Save and restart Splunk. The Universal Forwarder is installed and configured
to send data to your Splunk server, and the Splunk server is configured to receive
data on the default Splunk TCP port 9997.

Chapter 1

29

How it works...
When you tell the forwarder which server to send data to, you are basically adding a new
configuration stanza into an outputs.conf file behind the scenes. On the Splunk server, an
inputs.conf file will contain a [splunktcp] stanza to enable receiving. The outputs.
conf file on the Splunk forwarder will be located in $SPLUNK_HOME/etc/system/local,
and the inputs.conf file on the Splunk server will be located in the local directory of the
app you were in (the launcher app in this case) when configuring receiving.

Using forwarders to collect and forward data has many advantages. The forwarders
communicate with the indexers on TCP port 9997 by default, which makes for a very simple
set of firewall rules that need to be opened. Forwarders can also be configured to load
balance their data across multiple indexers, increasing search speeds and availability.
Additionally, forwarders can be configured to queue the data they collect if communication
with the indexers is lost. This can be extremely important when collecting data that is not read
from logfiles, such as performance counters or syslog streams, as the data cannot be re-read.

There's more...
While configuring the settings of the Universal Forwarder can be performed via the
command-line interface of Splunk as outlined in this recipe, there are several other
methods to update settings quickly and allow for customization of the many configuration
options that Splunk provides.

Add the receiving indexer via outputs.conf
The receiving indexers can be directly added to the outputs.conf configuration file on the
Universal Forwarder. Edit $SPLUNK_HOME/etc/system/local/outputs.conf, add your
input, and then restart the UF. The following example configuration is provided, where two
receiving indexers are specified. The [tcpout-server] stanza can be leveraged to add
output configurations specific to an individual receiving indexer.

[tcpout]
defaultGroup = default-autolb-group

[tcpout:default-autolb-group]
disabled = false
server = mysplunkindexer1:9997,mysplunkindexer2:9997

[tcpout-server://mysplunkindexer1:9997]
[tcpout-server://mysplunkindexer2:9997]

Play Time – Getting Data In

30

If nothing has been configured in inputs.conf on the Universal Forwarder,
but outputs.conf is configured with at least one valid receiving indexer,
the Splunk forwarder will only send internal log data to the indexer. It is,
therefore, possible to configure a forwarder correctly and be detected by the
Splunk indexer(s), but not actually send any real data.

Loading the sample data for this book
While most of the data you will index with Splunk will be collected in real time, there might be
instances where you have a set of data that you would like to put into Splunk, either to backfill
some missing or incomplete data, or just to take advantage of its searching and reporting tools.

This recipe will show you how to perform one-time bulk loads of data from files located on
the Splunk server. We will also use this recipe to load the data samples that will be used
throughout subsequent chapters as we build our Operational Intelligence app in Splunk.

There are two files that make up our sample data. The first is access_log, which represents
data from our web layer and is modeled on an Apache web server. The second file is
app_log, which represents data from our application layer and is modeled on the log4j
application log data.

Getting ready
To step through this recipe, you will need a running Splunk server and should have a copy
of the sample data generation app (OpsDataGen.spl) for this book.

How to do it...
Follow the given steps to load the sample data generator on your system:

1. Log in to your Splunk server using your credentials.

2. From the home launcher, select the Apps menu in the top-left corner and click on
Manage Apps.

Chapter 1

31

3. Select Install App from file.

4. Select the location of the OpsDataGen.spl file on your computer, and then click on
the Upload button to install the application.

5. After installation, a message should appear in a blue bar at the top of the screen,
letting you know that the app has installed successfully. You should also now see the
OpsDataGen app in the list of apps.

6. By default, the app installs with the data-generation scripts disabled. In order to
generate data, you will need to enable either a Windows or Linux script, depending
on your Splunk operating system. To enable the script, select the Settings menu from
the top-right corner of the screen, and then select Data inputs.

Play Time – Getting Data In

32

7. From the Data inputs screen that follows, select Scripts.

8. On the Scripts screen, locate the OpsDataGen script for your operating system
and click on Enable.

 � For Linux, it will be $SPLUNK_HOME/etc/apps/OpsDataGen/bin/
AppGen.path

 � For Windows, it will be $SPLUNK_HOME\etc\apps\OpsDataGen\bin\
AppGen-win.path

The following screenshot displays both the Windows and Linux inputs that are
available after installing the OpsDataGen app. It also displays where to click to
enable the correct one based on the operating system Splunk is installed on.

9. Select the Settings menu from the top-right corner of the screen, select Data inputs,
and then select Files & directories.

10. On the Files & directories screen, locate the two OpsDataGen inputs for your
operating system and for each click on Enable.

 � For Linux, it will be:
$SPLUNK_HOME/etc/apps/OpsDataGen/data/access_log

$SPLUNK_HOME/etc/apps/OpsDataGen/data/app_log

 � For Windows, it will be:

$SPLUNK_HOME\etc\apps\OpsDataGen\data\access_log

$SPLUNK_HOME\etc\apps\OpsDataGen\data\app_log

The following screenshot displays both the Windows and Linux inputs that are
available after installing the OpsDataGen app. It also displays where to click to
enable the correct one based on the operating system Splunk is installed on.

11. The data will now be generated in real time. You can test this by navigating to the
Splunk search screen and running the following search over an All time (real-time)
time range:
index=main sourcetype=log4j OR sourcetype=access_combined

Chapter 1

33

After a short while, you should see data from both source types flowing into Splunk, and the
data generation is now working as displayed in the following screenshot:

How it works...
In this case, you installed a Splunk application that leverages a scripted input. The script we
wrote generates data for two source types. The access_combined source type contains
sample web access logs, and the log4j source type contains application logs. These data
sources will be used throughout the recipes in the book. Applications will also be discussed
in more detail later on.

See also
 f The Indexing files and directories recipe

 f The Getting data through network ports recipe

 f The Using scripted inputs recipe

Defining field extractions
Splunk has many built-in features, including knowledge on several common source types,
which lets it automatically know what fields exist within your data. Splunk will, by default, also
extract any key-value pairs present within the log data and all fields within JSON-formatted
logs. However, often, fields within raw log data cannot be interpreted out of the box, and this
knowledge must be provided to Splunk in order to make these fields easily searchable.

The sample data that we will be using in subsequent chapters contains data we wish to
present as fields to Splunk. Much of the raw log data contains key-value fields that Splunk
will extract automatically, but we need to tell Splunk how to extract one particular field that
represents the page response time. To do this, we will be adding a custom field extraction,
which will tell Splunk how to extract the field for us.

Play Time – Getting Data In

34

Getting ready
To step through this recipe, you will need a running Splunk server with the operational
intelligence sample data loaded. There are no other prerequisites.

How to do it...
Follow the given steps to add a custom field extraction for response:

1. Log in to your Splunk server.

2. In the top-right corner, click on the Settings menu, and then click on
the Fields link.

3. Click on the Field extractions link.

4. Click on New.

5. In the Destination app field, select the search app, and in the Name field, enter
response. Set the Apply to dropdown to sourcetype and the named field to access_
combined. Set the Type dropdown to Inline, and for the Extraction/Transform field,
carefully enter the (?i)^(?:[^"]*"){8}\s+(?P<response>.+) regex.

Chapter 1

35

6. Click on Save.

7. On the Field Extractions listing page, find the recently added extraction, and in
the Sharing column, click on the Permissions link.

8. Update the Object should appear in setting to All apps. In the Permissions section,
for the Read column, check Everyone, and in the Write column, check admin. Then,
click on Save.

Play Time – Getting Data In

36

9. Navigate to the Splunk search screen and enter the following search over the
Last 60 minutes time range:
index=main sourcetype=access_combined

You should now see a field called response extracted on the left-hand side of the search
screen under the Interesting Fields section.

How it works...
All field extractions are maintained in the props.conf and transforms.conf
configuration files. The stanzas in props.conf include an extraction class that leverages
regular expressions to extract field names and/or values to be used at search time. The
transforms.conf file goes further and can be leveraged for more advanced extractions
such as reusing or sharing extractions over multiple sources, source types, or hosts.

See also
 f The Loading the sample data for this book recipe

 f The Defining event types and tags recipe

Defining event types and tags
Event types in Splunk are a way of categorizing common types of events in your data in order
to make them easier to search and report on. One advantage of using event types is that they
can assist in applying a common classification to similar events. Event types essentially turn
chunks of search criteria into field/value pairs. Tags help you search groups of event data
more efficiently and can be assigned to any field/value combination, including event types.

For example, Windows logon events could be given an event type of windows_logon, Unix
logon events could be given an event type of unix_logon, and VPN logon events can be
given an event type of vpn_logon. We could then tag these three event types with a tag of
logon_event. A simple search for tag="logon_event" would then search across the
Windows, Unix, and VPN source types and return all the logon events. Alternatively, if we want
to search only for Windows logon events, we will search for eventtype=windows_logon.

This recipe will show how to define event types and tags for use with the sample data.
Specifically, you will define an event type for successful web server events.

Chapter 1

37

For more information on event types and tags in Splunk, please
check out:

 f http://docs.splunk.com/Documentation/Splunk/
latest/Knowledge/Abouteventtypes

 f http://docs.splunk.com/Documentation/Splunk/
latest/Knowledge/Abouttagsandaliases

Getting ready
To step through this recipe, you will need a running Splunk server with the operational
intelligence sample data loaded. There are no other prerequisites.

How to do it...
Follow the given steps to define an event type and associated tag:

1. Log in to your Splunk server.

2. From the home launcher in the top-right corner, click on the Settings menu item,
and then click on the Event types link.

3. Click on the New button.

http://docs.splunk.com/Documentation/Splunk/latest/Knowledge/Abouteventtypes
http://docs.splunk.com/Documentation/Splunk/latest/Knowledge/Abouteventtypes
http://docs.splunk.com/Documentation/Splunk/latest/Knowledge/Abouttagsandaliases
http://docs.splunk.com/Documentation/Splunk/latest/Knowledge/Abouttagsandaliases

Play Time – Getting Data In

38

4. In the Destination App dropdown, select search. Enter HttpRequest-Success in the
Name field. In the Search string text area, enter sourcetype=access_combined
status=2*. In the Tag(s) field, enter webserver, and then click on Save.

5. The event type is now created. To verify that this worked, you should now be able to
search by both the event type and the tag that you created. Navigate to the Splunk
search screen in the Search & Reporting app and enter the following search over
the Last 60 minutes time range to verify that the eventtype is working:
eventtype="HttpRequest-Success"

6. Enter the following search over the Last 60 minutes time range to verify that the
tag is working:
tag="webserver"

How it works...
Event types are applied to events at search time and introduce an eventtype field with user-
defined values that can be used to quickly sift through large amounts of data. An event type is
essentially a Splunk search string that is applied against each event to see if there is a match.
If the event type search matches the event, the eventtype field is added with the value of the
field being the user-defined name for that event type.

The common tag value allows for a grouping of event types. If multiple event types had the
same tag, then your Splunk search could just search for that particular tag value, instead
of needing to list out each individual event type value.

Chapter 1

39

Event types can be added, modified, and deleted at any time without the need to change
or reindex your data, as they are applied at search time.

Event types are stored in eventtypes.conf in either $SPLUNK_HOME/etc/system/
local/ or a custom app directory.

There's more...
While adding event types and tags can be done through the web interface of Splunk as
outlined in this recipe, there are other approaches to add them in bulk quickly and allow
for customization of the many configuration options that Splunk provides.

Adding event types and tags via eventtypes.conf and tags.conf
Event types in Splunk can be manually added to the eventtypes.conf configuration files.
Edit (or create) $SPLUNK_HOME/etc/system/local/eventtypes.conf and add your
event type. You will need to restart Splunk after this.

[HttpRequest-Success]
search = status=2*

Tags in Splunk can be manually added to the tags.conf configuration files. Edit (or create)
$SPLUNK_HOME/etc/system/local/tags.conf and add your tag. You will need to
restart Splunk after this.

[eventtype=HttpRequest-Success]
webserver = enabled

In this recipe, you tagged an event type. However, tags do not always
need to be associated with event types. You can tag any field/value
combination found in an event. To create new tags independently, click
on the Settings menu and select Tags.

See also
 f The Loading the sample data for this book recipe

 f The Defining field extractions recipe

Play Time – Getting Data In

40

Summary
The key takeaways from this chapter are:

 f Splunk can easily monitor individual files or whole directories to collect the many
logfiles you have access to

 f Network ports can be used to collect data that is socket based, such as syslog

 f The Splunk Universal Forwarder can be used to collect data that is not accessible
from your Splunk server but is located remotely

 f Leverage the Splunk community to get modular inputs for additional sources of data

 f Use event types and field transforms to normalize your data to make searching easier

2
Diving into

Data – Search
and Report

In this chapter, we will cover the basic ways to search the data in Splunk. We will learn about:

 f Making raw event data readable

 f Finding the most accessed web pages

 f Finding the most used web browsers

 f Identifying the top-referring websites

 f Charting web page response codes

 f Displaying web page response time statistics

 f Listing the top viewed products

 f Charting the application's functional performance

 f Charting the application's memory usage

 f Counting the total number of database connections

Introduction
In the previous chapter, we learned about the various ways to get data into Splunk. In this
chapter, we will dive right into the data and get our hands dirty.

Diving into Data – Search and Report

42

The ability to search machine data is one of Splunk's core functions, and it should come as
no surprise that many other features and functions of Splunk are heavily driven-off searches.
Everything from basic reports and dashboards through to data models and fully featured
Splunk applications are powered by Splunk searches behind the scenes.

The Search Processing Language (SPL)

Splunk has its own search language known as the Search Processing Language (SPL).
This SPL contains hundreds of search commands, most of which also have several functions,
arguments, and clauses. While a basic understanding of SPL is required in order to effectively
search your data in Splunk, you are not expected to know all of the commands! Even the most
seasoned ninjas do not know all the commands and regularly refer to the Splunk manuals,
website, or Splunk Answers (http://answers.splunk.com).

To get you on your way with SPL, be sure to check out the search command
cheat sheet and download the handy quick reference guide available at
http://docs.splunk.com/Documentation/Splunk/latest/
SearchReference/SearchCheatsheet.

Searching

Searches in Splunk usually start with a base search, followed by a number of commands that
are delimited by one or more pipe (|) characters. The result of a command or search to the
left of the pipe is used as the input for the next command to the right of the pipe. Multiple
pipes are often found in a Splunk search to continually refine data results as needed. As we
go through this chapter, this concept will become very familiar to you.

Splunk allows you to search for anything that might be found in your log data. For example, the
most basic search in Splunk might be a search for a keyword such as error or an IP address
such as 10.10.12.150. However, searching for a single word or IP over the terabytes of data
that might potentially be in Splunk is not very efficient. Therefore, we can use the SPL and a
number of Splunk commands to really refine our searches. The more refined and granular the
search, the faster the time to run and the quicker you get to the data you are looking for!

http://answers.splunk.com
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/SearchCheatsheet
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/SearchCheatsheet

Chapter 2

43

When searching in Splunk, try to filter as much as possible before the first
pipe (|) character, as this will save CPU and disk I/O. Also, pick your time
range wisely. Often, it helps to run the search over a small time range
when testing it and then extend the range once the search is providing
what you need.

Boolean operators

There are three different types of Boolean operators available in Splunk. These are AND, OR,
and NOT. Case sensitivity is important here, and these operators must be in uppercase to be
recognized by Splunk. The AND operator is implied by default and is not needed, but does no
harm if used.

For example, searching for error OR success would return all events that contain either
the word error or the word success. Searching for error success would return all events
that contain the words error and success. Another way to write this would be error AND
success. Searching web access logs for error OR success NOT mozilla would return
all events that contain either the word error or success, but not those events that might also
contain the word mozilla.

Common commands

There are many commands in Splunk that you will likely use on a daily basis when searching
data within Splunk. These common commands are outlined in the following table:

Command Description
chart /
timechart

This command outputs results in a tabular and/or time-based output for
use by Splunk charts.

dedup This command de-duplicates results based upon specified fields, keeping
the most recent match.

eval This command evaluates new or existing fields and values. There are
many different functions available for eval.

fields This command specifies the fields to keep or remove in search results.
head This command keeps the first X (as specified) rows of results.
lookup This command looks up fields against an external source or list, to return

additional field values.
rare This command identifies the least common values of a field.
rename This command renames fields.
replace This command replaces the values of fields with another value.
search This command permits subsequent searching and filtering of results.
sort This command sorts results in either ascending or descending order.

Diving into Data – Search and Report

44

Command Description
stats This command performs statistical operations on results. There are many

different functions available for stats.
table This command formats results into a tabular output.
tail This command keeps only the last X (as specified) rows of results.
top This command identifies the most common values of a field.
transaction This command merges events into a single event based upon a common

transaction identifier.

Time modifiers

The drop-down time range picker in the graphical user interface (GUI) to the right of the
Splunk search bar allows users to select from a number of different preset and custom time
ranges. However, in addition to using the GUI, you can also specify time ranges directly in
your search string using the earliest and latest time modifiers. When a time modifier
is used in this way, it will automatically override any time range that might be set in the GUI
time range picker.

The earliest and latest time modifiers can accept a number of different time units:
seconds (s), minutes (m), hours (h), days (d), weeks (w), months (mon), quarters (q), and
years (y). Time modifiers can also make use of the @ symbol to round down and snap to
a specified time.

For example, searching for sourcetype=access_combined earliest=-1d@d
latest=-1h will search all access_combined events from midnight, a day ago until an
hour ago from now. Note that the snap (@) will round down such that if it were 12 p.m. now,
we would be searching from midnight a day and a half ago until 11 a.m. today.

Working with fields

Fields in Splunk can be thought of as keywords that have one or more values. These fields
are fully searchable by Splunk. At a minimum, every data source that comes into Splunk will
have source, host, index, and sourcetype fields, but some sources might have hundreds of
additional fields. If the raw log data contains key-value pairs or is in a structured format such
as JSON or XML, then Splunk will automatically extract the fields and make them searchable.
Splunk can also be told how to extract fields from the raw log data in the backend props.
conf and transforms.conf configuration files.

Searching for specific field values is simple. For example, sourcetype=access_combined
status!=200 will search for events with a sourcetype field value of access_combined that
has a status field with a value other than 200.

Chapter 2

45

Splunk has a number of built-in pretrained sourcetypes that
ship with Splunk Enterprise that might work with out-of-the-box,
common data sources. These are available at http://docs.
splunk.com/Documentation/Splunk/latest/Data/
Listofpretrainedsourcetypes.
In addition, Technical Add-Ons (TAs), which contain event types and field
extractions for many other common data sources such as Windows events,
are available from the Splunk app store at http://apps.splunk.com.

Saving searches

Once you have written a nice search in Splunk, you might wish to save the search such that
you can use it again at a later date or use it for a dashboard. Saved searches in Splunk are
known as Reports. To save a search in Splunk, you simply click on the Save As button on the
top-right corner of the main search bar and select Report.

Making raw event data readable
When a basic search is executed in Splunk from the search bar, the search results are
displayed in a raw event format by default. To many users, this raw event information is not
particularly readable, and valuable information is often clouded by other less valuable data
within the event. Additionally, if events span several lines, only a few events can be seen on
screen at any one time.

In this recipe, we will write a Splunk search to demonstrate how we can leverage Splunk
commands to make raw event data readable, tabulating events and displaying only the
fields we are interested in.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with the
Splunk search bar and search results area.

http://docs.splunk.com/Documentation/Splunk/latest/Data/Listofpretrainedsourcetypes
http://docs.splunk.com/Documentation/Splunk/latest/Data/Listofpretrainedsourcetypes
http://docs.splunk.com/Documentation/Splunk/latest/Data/Listofpretrainedsourcetypes
http://apps.splunk.com

Diving into Data – Search and Report

46

How to do it...
Follow the given steps to search and tabulate the selected event data:

1. Log in to your Splunk server.

2. Select the Search & Reporting application from the drop-down menu located in
the top-left corner of the screen.

3. Set the time range picker to Last 24 hours, and type the following search into the
Splunk search bar. Then, click on the magnifying glass icon or hit Enter.
index=main sourcetype=access_combined

4. Splunk will return the results of the search and display the raw search events under
the search bar.

5. Let's rerun the search, but this time, we will add the table command as follows:
index=main sourcetype=access_combined | table _time,
referer_domain, method, uri_path, status, JSESSIONID,
useragent

Chapter 2

47

6. Splunk will now return the same number of events, but instead of presenting the raw
events to you, the data will be in a nicely formatted table, displaying only the fields we
specified. This is much easier to read!

7. Save this search by clicking on Save As and then on Report. Give the report a name
of cp02_tabulated_webaccess_logs and click on Save. On the next screen,
click on Continue Editing to return to the search.

Diving into Data – Search and Report

48

How it works...
Let's break down the search piece by piece.

Search fragment Description
index=main All data in Splunk is held in one or more

indexes. While not strictly necessary, it is
a good practice to specify the index (es) to
search, as this will ensure a more precise
search.

sourcetype=access_combined This tells Splunk to search only the data
associated with the access_combined
sourcetype, which, in our case, is the web
access logs.

| table _time,
referer_domain, method,
uri_path, action,
JSESSIONID, useragent

Using the table command, we take the
result of our search to the left of the pipe
and tell Splunk to return the data in a tabular
format. Splunk will only display the fields
specified after the table command in the
table of results.

In this recipe, you used the table command. The table command can have a noticeable
performance impact on large searches. It should be used towards the end of a search, once
all other processing on the data by other Splunk commands has been performed.

The stats command is more efficient than the table command and
should be used in place of table where possible. However, be aware that
stats and table are two very different commands.

There's more...
The table command is very useful in situations where we wish to present data in a readable
format. Additionally, tabulated data in Splunk can be downloaded as a CSV file, which many
users find useful for offline processing in spreadsheet software or sending to others. There are
some other ways we can leverage the table command to make our raw event data readable.

Chapter 2

49

Tabulating every field
Often, there are situations where we might want to present every event within the data in a
tabular format, without having to specify each field one by one. To do this, we simply use a
wildcard (*) character as follows:

index=main sourcetype=access_combined | table *

Removing fields, then tabulating everything else
While tabulating every field using the wildcard (*) character is useful, you will notice that there
are a number of Splunk internal fields, such as _raw, that appear in the table. We can use the
fields command before the table command to remove fields as follows:

index=main sourcetype=access_combined | fields - sourcetype,
index, _raw, source date* linecount punct host time* eventtype |
table *

If we do not include the minus (-) character after the fields command, Splunk will keep the
specified fields and remove all other fields.

If you regularly need to remove a number of fields in your searches, you
can write a macro to do this and then simply call the macro from your
search. Macros are covered later in this book.

Finding the most accessed web pages
One of the data samples we loaded in Chapter 1, Play Time – Getting Data In, contained
access logs from our web server. These have a Splunk sourcetype of access_combined
and detail all pages accessed by users of our web application. We are particularly interested
in knowing which pages are being accessed the most, as this information provides great
insight into how our e-commerce web application is being used. It could also help influence
changes to our web application such that rarely visited pages are removed, or our application
is redesigned to be more efficient.

In this recipe, we will write a Splunk search to find the most accessed web pages over a
given period of time.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with the
Splunk search bar and the time range picker to the right of it.

Diving into Data – Search and Report

50

How to do it...
Follow the given steps to search for the most accessed web pages:

1. Log in to your Splunk server.

2. Select the Search & Reporting application.

3. Set the range picker to Last 24 hours and type the following search into the Splunk
search bar. Then, click on the magnifying glass icon or hit Enter.
index=main sourcetype=access_combined | stats count by
uri_path | sort - count

4. Splunk will return a list of pages, and a new field named count displays the total
number of times the page has been accessed.

5. Save this search by clicking on Save As and then on Report. Give the report a name
of cp02_most_accessed_webpages and click on Save. On the next screen, click
on Continue Editing to return to the search.

Chapter 2

51

How it works...
Let's break down the search piece by piece.

Search fragment Description
index=main All data in Splunk is held in one or more

indexes. While not strictly necessary, it is
a good practice to specify the index (es) to
search, as this will ensure a more precise
search.

sourcetype=access_combined This tells Splunk to search only the data
associated with the access_combined
sourcetype, which, in our case, is the web
access logs.

| stats count by uri_path Using the stats command, we take
the result of our search to the left-hand
side of the pipe and tell Splunk to count
the instances of each uri_path. The
uri_path field is the name of the field
associated with the website page.

| sort – count Using the sort command, we take the
count field generated by stats and tell
Splunk to sort the results of the previous
command in descending (-) order such
that the most visited web page appears at
the top of the results.

There's more...
We can further build upon the base search to provide different variations of the results.

Searching for the top 10 accessed web pages
We can modify the search from this recipe and replace the stats command with the top
command. By default, this will display the top 10 web pages:

sourcetype=access_combined index=main | top uri_path

Here, we modified the search and replaced the stats command with the top command.
By default, this will display the top 10 web pages. If we wanted to get the top 20 web pages,
we can specify a limit value as follows:

sourcetype=access_combined index=main | top limit=20 uri_path

Diving into Data – Search and Report

52

Searching for the most accessed pages by user
We can modify the search from this recipe and can use the distinct count (dc) function of the
stats command to display a list of users and the unique pages they visited:

sourcetype=access_combined index=main | stats dc(uri_path) by user |
sort - user

The distinct count function ensures that if a user visits the same page multiple times, it is only
counted as one visit. The user who visited the most number of unique pages will be at the top
of the list, as we used a descending sort.

For more information on the various functions that can be used with
the stats command, please check out http://docs.splunk.
com/Documentation/Splunk/latest/SearchReference/
CommonStatsFunctions.

See also
 f The Finding the most used web browsers recipe

 f The Identifying the top-referring websites recipe

 f The Charting web page response codes recipe

Finding the most used web browsers
Users visiting our website use a variety of devices and web browsers. By analyzing the web
access logs, we can understand which browsers are the most popular and, therefore, which
browsers our site must support as a minimum. We can also use this same information to help
identify the types of devices that people are using.

In this recipe, we will write a Splunk search to find the most used web browsers over a given
period of time. We will then make use of both the eval and replace commands to clean
up the data a bit.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with the
Splunk search bar and the time range picker to the right of it.

http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/CommonStatsFunctions
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/CommonStatsFunctions
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/CommonStatsFunctions

Chapter 2

53

How to do it...
Follow the given steps to search for the most used web browsers:

1. Log in to your Splunk server.

2. Select the Search & Reporting application.

3. Ensure that the time range picker is set to Last 24 hours and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter.
index=main sourcetype=access_combined | eval
browser=useragent | replace *Firefox* with Firefox,
Chrome with Chrome, *MSIE* with "Internet Explorer",
*Version*Safari* with Safari, *Opera* with Opera in browser
| top limit=5 useother=t browser

4. Splunk will return a tabulated list of the top five most used web browsers on our site,
by count and percent.

5. Save this search by clicking on Save As and then on Report. Give the report a name
of cp02_most_used_webbrowsers and click on Save. On the next screen, click on
Continue Editing to return to the search.

How it works...
Let's break down the search piece by piece.

Search fragment Description
index=main
sourcetype=access_combined

You should now be familiar with this
search from the earlier recipes in this
chapter.

Diving into Data – Search and Report

54

Search fragment Description
| eval browser=useragent Using the eval command, we evaluate a

new field called browser and populate
it with the contents of the useragent
field.

| replace *Firefox* with
Firefox, *Chrome* with
Chrome, *MSIE* with
"Internet Explorer",
*Version*Safari* with
Safari, *Opera* with Opera
in browser

Using the replace command, we use
wildcards (*) within the content of the
browser field to replace the values with
shortened browser names. Note that
values that contain spaces require quotes
around them, for example, "Internet
Explorer".

| top limit=5 useother=t
browser

Using the top command, we tell Splunk
to find the top five web browsers and
classify everything else under the value of
OTHER.

In this recipe, we used both the eval and replace commands for illustrative purposes.
This approach absolutely works, but a better approach might be to use Splunk's lookup
functionality to lookup the useragent value and return the browser name and version.
Lookups are covered later in this book.

There's more…
Often, the same field values can be used in different ways to provide additional insight. In this
case, the useragent field can be used to inform the types of devices that access our site.

Searching the web browser data for the most used OS types
Let's modify the search to display the types of user operating systems (OSes) that access
our website:

index=main sourcetype=access_combined | eval os=useragent |
replace *Windows* with Windows, *Macintosh* with Apple,
Linux with Linux in os | top limit=3 useother=t os

Chapter 2

55

When the search is run you should see results similar to the following screenshot:

The search is similar, but this time we decided to pull the OS-related information from the
useragent field and are using it to compare access between major OS types.

See also
 f The Finding the most accessed web pages recipe

 f The Identifying the top-referring websites recipe

 f The Charting web page response codes recipe

Identifying the top-referring websites
Our web access logs continue to give us great information about our website and the users
visiting the site. Understanding where our users are coming from provides insight into
potential sales leads and/or which marketing activities might be working better than others.
For this information, we look for the referer_domain field value within the log data.

In this recipe, we will write a Splunk search to find the top-referring websites.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with the
Splunk search bar and the time range picker.

Diving into Data – Search and Report

56

How to do it...
Follow the given steps to search for the top-referring websites:

1. Log in to your Splunk server.

2. Select the Search & Reporting application.

3. Ensure that the time range picker is set to Last 24 hours and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter.
index=main sourcetype=access_combined | stats dc(clientip)
AS Referals by referer_domain | sort – Referals

4. Splunk will return a tabulated list ordered by the amount of unique referrals each
website has provided.

5. Save this search by clicking on Save As and then on Report. Give the report a name
of cp02_top_referring_websites and click on Save. On the next screen, click
on Continue Editing to return to the search.

How it works...
Let's break down the search piece by piece.

Search fragment Description
index=main sourcetype=access_
combined

You should now be familiar with this search
from earlier recipes in this chapter.

Chapter 2

57

Search fragment Description
| stats dc(clientip) AS
Referals by referer_domain

Using the stats command, we apply the
distinct count (dc) function to clientip
to count the unique IP addresses by
referer_domain and rename the
generated count field to Referals.

| sort – Referals Using the sort command, we sort by the
number of referrals in descending order.

There's more…
In this recipe, we did not use the top command, as this command only provides limited
functionality. The stats command is far more powerful and has many available functions,
including distinct count.

Searching for the top 10 referring websites using stats instead
of top
Using the stats command in this recipe, we brought back all of the websites present in our
web access logs and then sorted them by the number of unique referrals. Should we have
wanted to only show the top 10, we can simply add the head command at the end of our
search as follows:

index=main sourcetype=access_combined | stats dc(clientip) AS
Referals by referer_domain | sort -Referals | head 10

The head command keeps the first specified number of rows. In this case, as we have
a descending sort, by keeping the first 10 rows, we are essentially keeping the top 10.

There is a great guide in the Splunk documentation to understanding all
of the different functions for stats, chart and timechart, which are
available at http://docs.splunk.com/Documentation/Splunk/
latest/SearchReference/CommonStatsFunctions.

See also
 f The Finding the most used web browsers recipe

 f The Charting web page response codes recipe

 f The Displaying web page response time statistics recipe

http://docs.splunk.com/Documentation/Splunk/latest/Searc hReference/CommonStatsFunctions
http://docs.splunk.com/Documentation/Splunk/latest/Searc hReference/CommonStatsFunctions

Diving into Data – Search and Report

58

Charting web page response codes
Log data often contains seemingly cryptic codes that have all sorts of meanings. This is true
of our web access logs, where there is a status code that represents a web page response.
This code is very useful, as it can tell us whether certain events were successful or not. For
example, error codes found in purchase events are less than ideal, and if our website was
at fault, then we might have lost a sale.

In this recipe, we will write a Splunk search to chart web page responses against the various
web pages on the site.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with the
Splunk search bar and the time range picker.

How to do it...
Follow the given steps to chart web page response codes over time:

1. Log in to your Splunk server.

2. Select the Search & Reporting application.

3. Ensure that the time range picker is set to Last 24 hours and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter.
index=main sourcetype=access_combined | chart
count(eval(like(status,"2%"))) AS Success,
count(eval(like(status,"4%") OR like(status,"5%"))) AS
Error by uri_path

4. Splunk will return a tabulated list of web pages, detailing for each page how
many events were successful and how many generated errors.

Chapter 2

59

5. Click on the Visualization tab, and you will see this data represented in a column
chart (by default).

6. Save this search by clicking on Save As and then on Report. Give the report a name
of cp02_webpage_response_codes and click on Save. On the next screen, click
on Continue Editing to return to the search.

How it works...
In this recipe, we selected to search by the uri_path field. This field represents the various
web pages on the site. Let's break down the search piece by piece.

Search fragment Description
index=main
sourcetype=access_combined

You should now be familiar with this
search from earlier recipes in this
chapter.

| chart count(eval
(like(status,"2%"))) AS Success,
count(eval(like(status,"4%")
OR like(status,"5%"))) AS
Error by uri_path

Stripping away the complexity for
a moment, this is very similar to
performing a stats count by
uri_path. However, in this case, we
are using the chart command and only
counting success and error status codes.

As the status field is essentially just
a code, we are evaluating whether the
code represents success or error. We
do this using an inline eval command
with like function. The like function
allows us to specify the start of the
status field value and then wildcard it
with a % sign. Any status codes beginning
with 2 represent success events, and
any status codes beginning with either a
4 or a 5 represent an error.

There's more...
Hopefully, you can start to see the power of the Search Processing Language (SPL), as we
start to ramp up the complexity a bit. We can now take this search a little further to provide
a bit more insight.

Diving into Data – Search and Report

60

Totaling success and error web page response codes
We can further amend the search to show only the addItem and checkout web pages
events, which seem a little more relevant to sales intelligence. Additionally, using the
addcoltotals command, we can add up the total success and error events.

index=main sourcetype=access_combined uri_path="/addItem" OR
uri_path="/checkout" | chart count(eval(like(status,"2%"))) AS
Success, count(eval(like(status,"4%") OR like(status,"5%"))) AS
Error by uri_path | addcoltotals label=Total labelfield=uri_path

When this updated search is run you should see results similar to the following screenshot:

We use labelfield=uri_path and label=Total to tell Splunk to place a value of Total
in the uri_path field column.

See also
 f The Identifying the top-referring websites recipe

 f The Displaying web page response time statistics recipe

 f The Listing the top viewed products recipe

Displaying web page response time
statistics

No one likes to wait for a web page to load, and we certainly do not want users of our web
application waiting either! Within our web access logs, there is a field named response that
tracks the total time the page has taken to load in milliseconds.

In this recipe, we will track the average page load time over the past week at different times
of the day.

Chapter 2

61

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with the
Splunk search bar and the time range picker.

How to do it...
Follow the given steps to search and calculate web page response time statistics over
the past week:

1. Log in to your Splunk server.

2. Select the Search & Reporting application.

3. Ensure that the time range picker is set to Last 7 Days and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter.
sourcetype=access_combined | timechart span=6h
avg(response) AS avg_response | eval
avg_response=round(avg_response/1000,2)

4. Splunk will return a tabulated list, detailing the average response times for every
6-hour period, going back a week.

5. This is great, but hard to visualize in tabular form. Click on the Visualization tab,
and you will see this data represented in a column chart (by default).

Diving into Data – Search and Report

62

6. Click on the Column link above the chart and select Line. Splunk now presents this
data in a nice line chart, and we can now see the average response times at different
times of the day much more clearly.

7. Save this search by clicking on Save As and then on Report. Give the report a name
of cp02_webpage_response_times and click on Save. On the next screen, click
on Continue Editing to return to the search.

How it works...
Let's break down the search piece by piece.

Search fragment Description
index=main
sourcetype=access_combined

You should now be familiar with this search
from earlier recipes in this chapter.

| timechart span=6h
avg(response) AS
avg_response

Using the timechart command, we
specify a span of 6 hours. We then use
the avg function on the response field.
Splunk will add up all the response times
in the 6-hour period and then calculate the
average response time during that period.

| eval
avg_response=round(avg_resp
onse/1000,2)

Using the eval command, we calculate
the average response time in seconds
by dividing the average time (which is in
milliseconds) by 1000, to give us the time
in seconds. The number 2 at the end is
part of the round function and tells Splunk
to round to 2 decimal places.

Chapter 2

63

There's more...
The timechart command offers some great functionality. Searches like this can be extended
further to graphically compare several weeks against one another to spot anomalies and
other issues.

Displaying web page response time by action
We can further amend the search to offer granular information on average response times by
the type of action being performed. This might pinpoint some actions that are less responsive
than others. For example, we might want to ensure that the checkout page remains at an
optimal load time. For the following search to work, you must complete the Defining field
extractions recipe in Chapter 1, Play Time – Getting Data In, to extract the response field:

sourcetype=access_combined uri_path=* | timechart span=6h
avg(response) by uri_path | foreach *
[eval <<FIELD>>=round(<<FIELD>>/1000,2)]

We are now searching for web page events and then we will calculate the average time by
page (uri_field). This results in a table of multiple columns, where each column represents
a different web page. When we visualize this on a line graph, we now see many different lines
on the same chart—pretty cool! You will notice that we used a pretty advanced Splunk search
command earlier named foreach. This is essentially a for type loop that cycles through
each of the column fields in the table and applies a calculation to convert the average time by
page from milliseconds to seconds while rounding the value to two decimal places.

See also
 f The Charting web page response codes recipe

 f The Listing the top viewed products recipe

 f The Identifying the top-referring websites recipe

Diving into Data – Search and Report

64

Listing the top viewed products
Our web access logs capture the product IDs (the item field in the logs) that users are viewing
and adding to their shopping carts. Understanding the top products that people view can
help influence our sales and marketing strategy and even product direction. Additionally,
products viewed on an e-commerce website might not always necessarily translate into
sales of that product.

In this next recipe, we will write a Splunk search to chart the top 10 products that users
successfully view and compare against the number of successful shopping cart additions
for each product. For example, if a product has a high number of views, but the product is
not being added to carts, this could indicate that something is not right—perhaps, the pricing
of the product is too high.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with the
Splunk search bar and the time range picker.

How to do it...
Follow the given steps to search for the top products being searched over the past week:

1. Log in to your Splunk server.

2. Select the Search & Reporting application.

3. Ensure that the time range picker is set to Last 7 days and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter.
index=main sourcetype=access_combined uri_path="/viewItem"
OR uri_path="/addItem" status=200 | dedup JSESSIONID
uri_path item | chart count(eval(uri_path="/viewItem")) AS
view, count(eval(uri_path="/addItem")) AS add by item |
sort – view | head 10

4. Splunk will return a tabulated list of items (products), detailing the number of times
a product was successfully viewed versus the number of times a product was actually
added to the shopping cart.

Chapter 2

65

5. Save this search by clicking on Save As and then on Report. Give the report a name
of cp02_top_products_viewed and click on Save. On the next screen, click on
Continue Editing to return to the search.

How it works...
In this recipe, our search returned a count by item of how many items were viewed versus
how many were added to the cart. In this case, the item field represents a unique item ID
that pertains to a specific product. Let's break down the search piece by piece.

Search fragment Description
index=main
sourcetype=access_combined

You should now be familiar with this search
from earlier recipes in this chapter.

uri_path="/viewItem" OR
uri_path="/addItem"
status=200

Following the best practice of making our
search as granular as possible, we are only
searching for events that contain uri_
paths related to viewing items and adding
items and have a successful status code of
200. This type of granularity will greatly limit
the amount of records we search, making
our search a lot faster.

| dedup JSESSIONID uri_path
item

Using the dedup command, we are de-
duplicating our data by the JSESSIONID,
the uri_path, and the item values. Why?
Well, because a user in a given session
could view a product many times in that
session before adding it, so we want to
ensure that we only count one view and one
addition per user session of a product.

Diving into Data – Search and Report

66

Search fragment Description
| chart count
(eval(uri_path="/viewItem")
) AS view, count
(eval(uri_path="/addItem"))
AS add by item

Using the chart and eval commands,
we count the number of views and adds by
item.

| sort - view | head 10. Using the sort command, we sort in
descending order on the view field such that
the items with the most views are at the top.
We then leverage the head command to
keep only the first 10 rows of data, leaving
us with the top 10 searched products.

There's more...
This recipe provides us with some insight into product views and subsequent shopping cart
additions that might then lead on to a sale. However, we can keep adding to the search to
make it even easier to understand the relationship between the two.

Searching for the percentage of cart additions from product
views
We can further amend the search from this recipe to evaluate a new column that calculates
the percentage of product views being added to the cart. We do this using the eval command
and some basic math as follows:

index=main sourcetype=access_combined uri_path="/viewItem" OR
uri_path="/addItem" status=200 | dedup JSESSIONID uri_path item |
chart count(eval(uri_path="/viewItem")) AS view,
count(eval(uri_path="/addItem")) AS add by item | sort – view |
head 10 | eval cart_conversion=round(add/view*100)."%"

We firstly evaluate a new field called cart_conversion and then calculate the percentage,
dividing purchase by view and multiplying by 100. We use the round function of eval to
eliminate decimal places, and then we tack on the % character at the end. Now, we can
easily see what percentage of views lead to cart additions.

See also
 f The Displaying web page response time statistics recipe

 f The Identifying the top-referring websites recipe

 f The Finding the most used web browsers recipe

Chapter 2

67

Charting the application's functional
performance

Another of the data samples we loaded in Chapter 1, Play Time – Getting Data In, contained
application logs from our application server. These have a Splunk sourcetype of log4j and
detail the various calls that our application makes to the backend database in response
to user web requests, in addition to providing insight into memory utilization and other
health-related information. We are particularly interested in tracking how our application
is performing in relation to the time taken to process user-driven requests for information.

In this recipe, we will write a Splunk search to find out how our application is performing.
To do this, we will analyze database call transactions and chart the maximum, mean, and
minimum transaction durations over the past week.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with the
Splunk search bar and the time range picker.

How to do it...
Follow the given steps to chart the application's functional performance over the past week:

1. Log in to your Splunk server.

2. Select the Search & Reporting application.

3. Ensure that the time range picker is set to Last 24 hours and type the following
search into the Splunk search bar. Then, click on the magnifying glass icon or
hit Enter.
index=main sourcetype=log4j | transaction maxspan=4h
threadId | timechart span=6h max(duration) AS max,
mean(duration) AS mean, min(duration) AS min

Diving into Data – Search and Report

68

4. Splunk will return a tabulated list, detailing the maximum, mean, and minimum
database transaction durations for every 6-hour period, going back over the last
24 hours.

5. This is great, but hard to visualize in tabular form. Click on the Visualization tab,
and you will see this data represented in a column chart (by default).

6. Click on the chart type link in the upper-left of the chart (next to the Format link)
and select Line if not already selected. Splunk now presents this data in a nice
line chart, and we can now see the maximum, mean, and minimum levels much
more clearly.

7. Save this search by clicking on Save As and then on Report. Give the report a name
of cp02_application_performance and click on Save. On the next screen, click
on Continue Editing to return to the search.

Chapter 2

69

How it works...
Let's break down the search piece by piece.

Search fragment Description
index=main
sourcetype=log4j

In this example, we are searching for our
application logs, which have the log4j
sourcetype.

| transaction maxspan=4h
threadId

Using the transaction command, we
essentially consolidate multiple events with
a common threadId into single event,
multiline transactions. The maxspan
function tells Splunk to only look at events
with the same threadId that are within
4 hours of each other. The transaction
command also calculates a new field called
duration. This is the duration in seconds
from the first event in the transaction to the
last event in the transaction.

| timechart span=6h
max(duration) AS max,
mean(duration) AS mean,
min(duration) AS min

Using the timechart command, we specify
a span of 6 hours. We then use the max,
mean, and min functions on the duration
field. Splunk will analyze the durations in the
6-hour period and then calculate the max,
mean, and min durations during this period.

The transaction command is an extremely thirsty search command.
When using this command, be sure to use the maxspan function where
possible, as this helps focus on transactions grouped only within the
specified maxspan timeframe.

There's more...
In this recipe, we leveraged the transaction command. This is a very useful and powerful
function, and we will revisit it in more depth and complexity later in the book.

See also
 f The Charting the application's memory usage recipe

 f The Counting the total number of database connections recipe

Diving into Data – Search and Report

70

Charting the application's memory usage
In addition to measuring functional performance of database transactions, we are also
interested in understanding how our application is performing from a memory usage
perspective. Analyzing this type of information can help identify memory leaks in our
application or high-memory utilization that might be affecting the user experience and
causing our application to slow down.

In this next recipe, we will analyze the memory usage of our application over time.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar
with the Splunk search bar and the time range picker.

How to do it...
Follow the given steps to chart the application memory usage over the past day:

1. Log in to your Splunk server.

2. Select the Search & Reporting application.

3. Ensure that the time range picker is set to Last 24 hours and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter.
index=main sourcetype=log4j perfType="MEMORY" | eval
mem_used_pc=round((mem_used/mem_total)*100) | eval
mem_remain_pc=(100-mem_used_pc) | timechart span=15m
avg(mem_remain_pc) avg(mem_used_pc)

4. Splunk will return a tabulated list, detailing all the events that meet our search criteria.

Chapter 2

71

5. This is great, but hard to visualize in tabular form. Click on the Visualization tab,
and you will see this data represented in a column chart (by default).

6. Click on the column link above the chart and select Area. Then, click on the Format
link and change the Stack Mode to stacked and click on Apply. Splunk now presents
this data in an area chart, allowing us to easily see if there are times during the day
when our application might be getting low on memory. In this case, our sample data
looks to be using very little memory.

7. Save this search by clicking on Save As and then on Report. Give the report a name
of cp02_application_memory and click on Save. On the next screen, click on
Continue Editing to return to the search.

How it works...
Let's break down the search piece by piece.

Search fragment Description
index=main
sourcetype=log4j
perfType="MEMORY"

In this example, we are searching for our
application logs, which have the log4j
sourcetype. We also select to view only the
memory-related events.

| eval
mem_used_pc=round
((mem_used/mem_total)*1
00)

Using the eval command, we calculate the
percentage of memory used from the mem_
used and mem_total fields in our application
log.

| eval
mem_remain_pc=(100-
mem_used_pc)

Using the eval command again, we calculate
the remaining percentage of memory from
the used percentage of memory that we just
calculated in the previous step.

| timechart span=15m
avg(mem_remain_pc)
avg(mem_used_pc)

Using the timechart command, we calculate
the average remaining percentage of memory
and used percentage of memory for every
15-minute interval over the past day.

Diving into Data – Search and Report

72

See also
 f The Charting the application's functional performance recipe

 f The Counting the total number of database connections recipe

Counting the total number of database
connections

Our application currently only allows for a limited amount of concurrent database connections.
As our application user base grows, we need to proactively monitor these connections to
ensure that we do not hit our concurrency limit or to know when we need to further scale
out the database infrastructure.

In the last recipe of this chapter, we will monitor database transactions over the past week to
identify if there are certain times or days when we might be close to our concurrency limit.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with the
Splunk search bar and the time range picker.

How to do it...
Follow the given steps to search for the total number of database connections over the
past 30 days:

1. Log in to your Splunk server.

2. Select the Search & Reporting application.

3. Ensure that the time range picker is set to Last 7 days and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter.
index=main sourcetype=log4j perfType="DB" | eval
threshold=con_total/100*70 | where con_used>=threshold |
timechart span=4h count(con_used) AS CountOverThreshold

Chapter 2

73

4. Splunk will return a tabulated list, detailing all the events that meet our search criteria.

5. This is great, but hard to visualize in a tabular form. Click on the Visualization tab,
and you will see this data represented by a chart.

6. Click on the chart type link in the upper-left of the chart (next to the Format link)
and select Line if not already selected. Splunk now presents this data in a line chart,
allowing us to easily see any spikes during certain times of the week.

7. Save this search by clicking on Save As and then on Report. Give the report a name
of cp02_application_db_connections and click on Save. On the next screen,
click on Continue Editing to return to the search.

Diving into Data – Search and Report

74

How it works...
Let's break down the search piece by piece:

Search fragment Description
index=main
sourcetype=log4j
perfType="DB"

In this example, we are searching for our
application logs, which have the log4j
sourcetype. We also select to view only the
events related to database (DB).

| eval
threshold=con_total/100

*70

Using the eval command, we calculate a new
field called threshold, which is 70 percent of
the total connections permitted.

| where
con_used>=threshold

Using the where command, we search for only
events that are greater than or equal to the 70
percent threshold we just defined.

| timechart span=4h
count(con_used) AS
CountOverThreshold

Finally, we count the number of times over a
4-hour period in which the connection limit is
greater than or equal to our threshold.

See also
 f The Charting the application's functional performance recipe

 f The Charting the application's memory usage recipe

Summary
The key takeaways from this chapter are as follows:

 f Splunk has a very powerful Search Processing Language (SPL)

 f The SPL contains many commands and functions to transform raw data into
meaningful insight

 f The same data can be manipulated to produce operational intelligence and
business insights by just varying the SPL commands used

3
Dashboards and

Visualizations – Make
Data Shine

In this chapter, we will learn how to build dashboards and create visualizations of your data.
We will learn about:

 f Creating an Operational Intelligence dashboard

 f Using a pie chart to show the most accessed web pages

 f Displaying the unique number of visitors

 f Using a gauge to display the number of errors

 f Charting the number of method requests by type and host

 f Creating a timechart of method requests, views, and response times

 f Using a scatter chart to identify discrete requests by size and response time

 f Creating an area chart of the application's functional statistics

 f Using a bar chart to show the average amount spent by category

 f Creating a line chart of item views and purchases over time

Dashboards and Visualizations – Make Data Shine

76

Introduction
In the previous chapter, we learned all about Splunk's Search Processing Language (SPL)
and how it can be leveraged to search and report your data. In this chapter, we're going to
build on this knowledge and use some of Splunk's visualization capabilities to make our data
shine! You will learn how to create a dashboard through the Splunk UI and proceed to add the
reports that were built in the previous chapter to it. Two more dashboards will then be created
as a result of the remaining recipes.

Visualizations are a cornerstone for proper data presentation. By visualizing data in a
manner that we as humans are accustomed to, you enable the user to better relate to what
is being presented and have a proper understanding of how to react. When using Splunk for
operational intelligence, you will be hard pressed to find a report that is not being visually
represented in some fashion. Everyone from the front-line staff to C-level executives looks to
Splunk's visualizations to make better sense of the data that their systems and applications
are producing. Through the creation and use of dashboards, these visualizations can then be
arranged and centralized to meet the needs of your organization.

About Splunk dashboards

A dashboard represents the most common type of view within Splunk and provides the means
to bring together one or more reports and display them on a single page. Each report is placed
on a dashboard as a panel and powered by the search you created. Typically, the panels will
be populated with data once the dashboard is loaded. A report within a panel can display
tabular data or one of the number of visualizations we will cover in this chapter.

Using dashboards for operational intelligence

In the world of operational intelligence, dashboards are one of the key tools to unlock pivotal
information and provide a holistic view of systems and applications through a single pane.
Dashboards are built to collectively display information to key audiences such as operators,
administrators, or executives. They act as a window to how your environment is performing
and allow you to obtain the right information at the right time in one place, in order to make
timely and actionable decisions.

Enriching data with visualizations

Data on its own can be hard for us, as humans, to make sense of easily and can be extremely
tedious to analyze. Visualizations provide a powerful way to bring data to life. Presenting data
in a visual context enables those viewing it to better understand the relationship one value
has to another, identify patterns, build correlations between datasets, and plot out trends.
Colors that we easily relate to can be applied to visualizations in order to direct attention and
highlight specific data points. For example, a value being within an acceptable range might be
colored green, but when this value increases, it might change to yellow and eventually to red
when it's within an unacceptable range. Humans associate red with bad and green with good;
therefore, a red value nicely conveys the need to draw attention to itself.

Chapter 3

77

Let's now apply this to an Operational Intelligence example. Imagine that you have a
distributed environment of web servers that are generating large amounts of erratic data.
Inside each of these events is a field that represents the response time of when that event
occurred. If you were left having to analyze these events row by row in a table, it could take
a very long time to find the events with values outside of the norm. Using visualizations such
as a scatter chart, you could plot your event data and easily be able to identify these discrete
events that lie outside of the primary cluster of events.

Available visualizations

One of the great benefits of Splunk is that there are numerous out-of-the-box visualizations
that can be easily overlaid on your data. The type of visualization and common usage is
outlined in the following table:

Visualization Common usage
Line chart This is commonly used to display data over time. If more than one data

series is specified, each line on the chart will have a different color. Line
charts can be stacked to help understand the relation of a given series of
data to the rest of the plotted series.

Area chart This works in the same way as a line chart, but the area below the line is
shaded in color to emphasize quantities.

Column chart This displays data values as vertical columns and is most commonly used
when the frequency of values needs to be compared. Column charts can
also be stacked to highlight the importance of different data types within
the chart.

Bar chart This displays data values as horizontal bars and works in the same way
as column charts, but with its axis reversed.

Pie chart This is one-dimensional and displays data values as segments of a pie.
It is most commonly used to highlight or compare the proportion of
numerical values.

Scatter chart This displays data values as a series of plotted squares. It is commonly
used when trying to identify discrete values in data that fall within the
confines of regular events.

Single value This displays data as a single value and is mostly used to display a sum or
total, for example, the total number of errors in the last hour.

Radial gauge This resembles a speedometer with a needle to signify the current value
across an arced range. It is most commonly used on real-time dashboards
to draw attention to the current state of a given metric. Thresholds can be
defined to signify what values are acceptable (green), escalating (yellow),
and severe (red).

Filler gauge This resembles a thermometer with a liquid-like indicator. As the value
changes, the volume of liquid rises and falls as well as changes color. As
with the radial gauge, it is most commonly found on real-time dashboards
and can have custom thresholds defined.

Dashboards and Visualizations – Make Data Shine

78

Visualization Common usage
Marker gauge Similar to the filler gauge, a marker gauge is already filled with values as

defined by the thresholds, and it has a sliding marker to signify what the
current value is. It is found most commonly on real-time dashboards.

Map This is commonly used to illustrate geographic distributions of data. Data
points on the map can be charted to highlight distinct counts of values
within the same geographic region.

Heat map Tabular values can have a heat map overlay applied to them so that the
highest values are shaded red, while the lowest values are shaded blue.
It is most commonly used when trying to draw attention visually to the
variation of values in a table.

Sparkline Sparkline visualizations are like mini line charts and are applied within a
table to each row. They provide insight into the identification of patterns
that might not have otherwise been properly represented by the resulting
data in the table.

For more information on the available visualizations, visit http://
docs.splunk.com/Documentation/Splunk/latest/Viz/
Visualizationreference.

Best practices for visualizations

Here are some best practices to consider when adding visualizations to your dashboards:

 f Use visualizations to provide insight in a way that cannot be easily represented by
tabular data.

 f It can sometimes be useful to have a chart supported with a table, as a table can
make finding absolute numbers easier.

 f Provide enough information, but not too much. Do not overload charts with data that
is not pertinent to achieving the goal of the visualization.

 f Do not overload dashboards with visualizations. Spread visualizations out among a
few dashboards rather than overloading one specific dashboard.

 f Stacked charts are your friend, especially with area charts. If not stacked, area charts
can have instances where large values dominate the chart, obscuring other values.

 f Scale visualizations properly. Know when it is best to use linear versus log.

 f Label your visualizations clearly so that the audience can understand what they are
looking at and do not have to assume.

http://docs.splunk.com/Documentation/Splunk/latest/Viz/Visualizationreference
http://docs.splunk.com/Documentation/Splunk/latest/Viz/Visualizationreference
http://docs.splunk.com/Documentation/Splunk/latest/Viz/Visualizationreference

Chapter 3

79

 f Use appropriate visualizations for the task at hand. Here is some guidance:

 � Comparisons over time: Use line and column charts

 � Comparisons among items: Use bar and column charts

 � Relationships: Use scatter charts

 � Distribution: Use column or bar charts sorted or a scatter chart

 � Static composition: Use column charts stacked at 100 percent or a pie
chart

 � Changing composition: Use column or area charts stacked, or column or
area charts stacked at 100 percent

 f Make proper use of colors and thresholds when leveraging single value visualizations
and gauge charts.

 f You can change the orientation of most visualizations; make use of your best
judgment as required.

Creating an Operational Intelligence
dashboard

Before this chapter gets into everything that is great about visualizations, it is best to first
cover the process of creating a dashboard. In this recipe, you will create a dashboard from
scratch using the Splunk Web UI that we will then use for other recipes in this chapter.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In, and the completed recipes from
Chapter 2, Diving into Data – Search and Report. You should be familiar with navigating the
Splunk user interface.

How to do it...
Follow the given steps to create an Operational Intelligence dashboard:

1. Log in to your Splunk server.

2. Select the default Search & Reporting application.

Dashboards and Visualizations – Make Data Shine

80

3. From the menu bar, click on the Dashboards link.

4. On the Dashboards screen, click on the Create New Dashboard button.

5. The Create New Dashboard screen will pop up. Enter Website Monitoring
in the Title field. The ID field will be automatically populated; leave it as it is. The
Description field can be left blank for now, but ensure that the Shared in App
permission is selected. Finally, click on Create Dashboard.

Chapter 3

81

6. The newly created Website Monitoring dashboard will appear in the edit mode.
We will add panels to the dashboard in the next few recipes. For now, just click on
the Done button.

You have now created a blank dashboard ready to be populated with reports and visualizations.

How it works...
When creating a dashboard through the user interface, Splunk builds the underlying
dashboard object code in simple XML for you behind the scenes. Following this, the
dashboard object will then be used as a container for the reports you add to it. You can
always view the source code of the dashboard by clicking on the Edit button and then,
from the drop-down menu, you can click on Edit Source. The simple XML source code for
the dashboard will be displayed in the editor. Dashboards and simple XML will be covered
in more detail in the next chapter.

There are several ways in which dashboards can be created in the
Splunk user interface. In this recipe, we essentially created an empty
dashboard, which is ready to be filled with visualized reports. Splunk
also allows dashboards to be created at the time of adding reports as
you will see later in this chapter.

There's more...
When creating a dashboard, the default permission is for it to be private (only accessible by
the user who created it). You might wish to share this or other dashboards with other users
or groups who have an interest in these reports.

Dashboards and Visualizations – Make Data Shine

82

Changing dashboard permissions
To change the permissions on a dashboard you must first return to the Dashboards screen.
This can be accomplished by clicking on the Dashboards menu, as outlined in step 3 of
this recipe. Within the Dashboards screen, you will see the Website Monitoring dashboard
that you created during the course of this recipe. Under the Actions column, you will see a
clickable link labeled Edit; click on this link. A drop-down panel will appear; click on the item
labeled Edit Permissions. The resulting pop-up window that appears will allow you to define
permissions on a role-by-role basis and limit these permissions to be restrictive within the
working application or globally for all applications.

When creating dashboards through the GUI in Splunk, the default permission
level should be private. However, in this recipe, you selected the Shared in
App permissions button when creating the dashboard. This ensures that the
new dashboard is automatically shared with everyone who has permissions to
the application and saves you from having to edit permissions after creating
it. On the backend, dashboards with application permissions are stored
in the respective application directory structure. Dashboards with private
permissions are stored in the respective user directory.

Using a pie chart to show the most
accessed web pages

The sample data loaded in Chapter 1, Play Time – Getting Data In, provides a wealth of
information on how customers are interacting with our online shopping website. In the Finding
the most accessed web pages recipe in Chapter 2, Diving into Data – Search and Report, we
saw how to find the most accessed web pages. The output of that recipe was displayed in a
tabular format that could be hard for the viewer to grasp the proportional differences between
web page access amounts. We will now take a look at how to use pie charts. By taking the
same data and visually presenting it using a pie chart, we will enable the viewer to more easily
identify the proportion of requests between different web pages. Visual representation of
data, even if the data is very simple, can lead to better decision making in times of need.

In this recipe, you will use the report named cp02_most_accessed_webpages, which you
created in Chapter 2, Diving into Data – Search and Report. You will graphically display the
output of the report using a pie chart and add it to the Website Monitoring dashboard that
we just created.

Chapter 3

83

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar
with the Splunk search bar, the time range picker, and the search tabs (Events, Statistics,
and Visualization).

How to do it...
Follow the given steps to use a pie chart to show the most accessed web pages:

1. Log in to your Splunk server.

2. Select the default Search & Reporting application.

3. From the menu bar, click on the Reports link. This will display a list of all the reports
we created and saved in Chapter 2, Diving into Data – Search and Report.

4. Locate the report line item named cp02_most_accessed_webpages and click on
Open in Search.

5. Splunk will run the saved report with the search outlined in the following code. This
will return a list of pages together with a count field that totals the number of times
each page has been accessed.
index=main sourcetype=access_combined | stats count by
uri_path | sort - count

6. On completion of the search, the results will be displayed within the Statistics tab. As
we will be creating a pie chart, click on the Visualization tab.

Dashboards and Visualizations – Make Data Shine

84

7. As there are a number of visualizations within Splunk, the Pie visualization may not
be displayed by default within the Visualization tab. Click on the dropdown to list the
visualization types and then select Pie.

8. Now, the data will be visualized as a pie chart, as shown in the following screenshot:

Chapter 3

85

9. Let's add it to the Website Monitoring dashboard you created in the first recipe.
Click on Save As, and then, from the drop-down menu, click on Dashboard Panel.

10. The Save As Dashboard Panel screen will pop up. Select Existing to use an existing
dashboard, and select the Website Monitoring dashboard from the list. For Panel
Title, enter Most Accessed Webpages and select for the panel to be powered by a
report. Then, click on Save, as shown in the following screenshot:

11. The next screen will confirm that the dashboard has been created and the panel has
been added. Click on View Dashboard to see for yourself.

Dashboards and Visualizations – Make Data Shine

86

How it works...
To review how the search works in detail, refer to the Finding the most accessed web pages
recipe in Chapter 2, Diving into Data – Search and Report.

The Visualization tab simply takes the tabular output, which is essentially a value split
by another value, and overlays the given visualization. In this case, it was a total count of
events split by the web page name, which you overlaid with the pie chart visualization.

There's more...
We can further build on the base search to provide different variations of the results and
make use of other visualizations.

Searching for the top 10 accessed web pages
If we modify the report search and replace the stats command with the top command,
by default it will display the top 10 web pages:

index=main sourcetype=access_combined | top uri_path

Here, we modified the report search and replaced the stats command with the top
command. By default, this will display the top 10 web pages. You can then select the
Visualization tab, and choose Column to see the results displayed as a column chart. Then,
by clicking on Format, you can access a menu that allows you to extend the control over the
chart by applying specific values such as customizing the x and y axes, placement or removal
of the legend, and more.

Chapter 3

87

See also
 f The Creating an Operational Intelligence dashboard recipe

 f The Displaying the unique number of visitors recipe

 f The Using a gauge to display the number of errors recipe

Displaying the unique number of visitors
It is always good to understand the number of page views and those that are accessed most,
but sometimes, it is even better to understand how many of these page views are from unique
visitors. Through the web access logs, we can get an understanding of how many unique
visitors we have had to our website. For example, it could be helpful to understand whether
times of high load are due to the true number of sessions on the website.

In this recipe, you will write a Splunk search to find the unique number of visitors to the
website over a given period of time. You will then graphically display this value on a dashboard
using the single value visualization.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with the
Splunk search bar, the time range picker, and the Visualization tab. It is not required but is
advisable that you complete all the recipes up until this point.

How to do it...
Follow the given steps to display the unique number of website visitors:

1. Log in to your Splunk server.

2. Select the default Search & Reporting application.

3. Ensure that the time range picker is set to Last 24 hours, and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter.
index=main sourcetype=access_combined | stats
dc(JSESSIONID)

4. Splunk will return a single value that represents the distinct count (unique) of values
in the field named JSESSIONID.

5. Click on the Visualization tab.

Dashboards and Visualizations – Make Data Shine

88

6. As there are a number of visualizations within Splunk, the Single Value visualization
might not be displayed by default within the Visualization tab. Click on the dropdown
that lists the visualization types, and select Single Value.

7. Your data should now be visualized as a single value.

8. Save this search by clicking on Save As and then on Report. Name the report
cp03_unique_visitors and click on Save. On the next screen, click on Add
to Dashboard.

Chapter 3

89

9. You will now add this to the Website Monitoring dashboard. Select the button
labeled Existing, and from the drop-down menu that appears, select the Website
Monitoring dashboard. For the Panel Title field value, enter Unique Visitors and
select for the panel to be powered by Report. Then, click on Save.

10. The next screen will confirm that the dashboard has been created and the panel
has been added. Click on View Dashboard to see for yourself. The single value
visualization should be placed below the pie chart you created in the previous recipe.

11. You will now arrange the dashboard such that the pie chart panel and single value
panel are side by side. Click on the Edit button, and from the drop-down menu,
select Edit Panels.

Dashboards and Visualizations – Make Data Shine

90

12. A gray bar will now appear at the top of your panel. Using this bar, click-and-drag the
panel to now be aligned on the same row as the pie chart panel, as shown in the
following screenshot:

13. Finally, click on Done to save the changes to your dashboard.

You will learn more about the functions and features of the Dashboard
Editor in the next chapter. For the purposes of this chapter, you will be
simply moving panels around on a dashboard.

How it works...
Let's break down the search piece by piece.

Search fragment Description
index=main
sourcetype=access_combined

You should now be familiar with this search
from the earlier recipes in this book.

| stats dc(JSESSIONID) Using the stats command, you call the
distinct count (dc) function to count the total
number of unique values for the field named
JSESSIONID. The JSESSIONID field is
chosen as each visitor to the website will be
given a random session identifier whose value
is stored in this field. The clientip field,
for example, was not chosen here, as you can
have multiple users coming to a website from
the same IP address through the use of NAT
(short for Network Address Translation).

Chapter 3

91

The Visualization tab simply takes the numeric output of the stats command and overlays
the given visualization. In this case, you overlaid single value visualization on a distinct count
of visitor sessions.

There's more…
A single value on the dashboard is very useful, but providing some visual colors and context
to the value can prove even more useful.

Adding labels to a single value panel
Run the same search from this recipe, and when the search completes, click on the
Visualization tab and choose the Single Value visualization type. Next, click on the Format
button, and in the drop-down menu that appears, you have the option to enter text values
for Before Label, After Label, and Under Label.

After entering your desired values, click on Apply. The changes will appear immediately,
as shown in the following screenshot:

Dashboards and Visualizations – Make Data Shine

92

You can now save this single value report as a panel on a dashboard, as you did before,
but can leave the Panel Title field empty as the description of the value is now part of the
data itself.

Coloring the value based on ranges
After adding labels, it can be useful to provide some visual color to the numeric value displayed,
based on a given range within which the number might be. Modify the search as follows:

index=main sourcetype=access_combined | stats dc(JSESSIONID) AS
count | rangemap field=count low=0-1 elevated=2-5 default=severe

This search renames the dc(JSESSIONID) field to count. The rangemap command is
then used to assign a range value (low, elevated, or severe) based on the value of the
count field. The single value visualization uses the given range value to apply a color to the
visualization. If it is within the low range, the color will be green; if it is elevated, the color
will be yellow; and if severe, it will be red.

For more information on the rangemap command, visit http://
docs.splunk.com/Documentation/Splunk/latest/Searc
hReference/Rangemap.

See also
 f The Using a pie chart to show the most accessed web pages recipe

 f The Using a gauge to display the number of errors recipe

 f The Charting the number of method requests by type and host recipe

Using a gauge to display the number of
errors

Not every user interaction with a website will go smoothly. There are times when accessed
pages will report an unsuccessful status code. Understanding this number and being able
to apply acceptable low, medium, and high thresholds enables a better understanding of
the current user experience when there are a higher number of errors than acceptable.

In this recipe, you will write a Splunk search to find the total number of errors over a given
period of time. You will then graphically represent this value on the dashboard using a
radial gauge.

http://docs.splunk.com/Documentation/Splunk/latest/Searc hReference/Rangemap
http://docs.splunk.com/Documentation/Splunk/latest/Searc hReference/Rangemap
http://docs.splunk.com/Documentation/Splunk/latest/Searc hReference/Rangemap

Chapter 3

93

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with the
Splunk search bar, the time range picker, and the Visualization tab. It is not required but is
advisable that you complete all the recipes up until this point.

How to do it...
Follow the given steps to use a gauge visualization to display the number of web access errors:

1. Log in to your Splunk server.

2. Select the default Search & Reporting application.

3. Ensure that the time range picker is set to Last 24 hours, and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter.
index=main sourcetype=access_combined NOT status="200" |
stats count

4. Splunk will return the total count of events where the status was anything
but successful.

5. Click on the Visualization tab.

6. As there are a number of visualizations within Splunk, the single value visualization
might not be displayed by default within the Visualization tab. Click on the dropdown
that lists the visualization types, and select Radial Gauge.

7. Your data should now be visualized as a gauge, and the needle on the gauge is
likely all the way into the red—this is because the thresholds need to be adjusted.

Dashboards and Visualizations – Make Data Shine

94

8. To adjust the thresholds on the radial gauge, click on the Format button. Then,
from the drop-down menu, click on the Color Ranges tab, and finally, click on
the Manual button.

9. From within the Manual Color Ranges screen, you can now adjust the values to
acceptable amounts such that the needle sits in the middle of the yellow range;
then, click on Apply.

10. Save this report by clicking on Save As and then on Report. Name the report
cp03_webaccess_errors and click on Save. On the next screen, click on
Add to Dashboard.

11. You will now add this report to the Website Monitoring dashboard. Select the button
labeled Existing, and from the drop-down menu that appears, select the Website
Monitoring dashboard. For the Panel Title field value, enter Total Number of
Errors and select for the panel to be powered by a Report; then, click on Save.

12. The next screen will confirm that the dashboard has been created and the panel
has been added. Click on View Dashboard to see for yourself. The radial gauge
visualization should be now positioned on the dashboard below the previous
two panels.

13. Arrange the dashboard so that the radial gauge panel is to the right of the single
value panel. Click on the Edit button, and from the drop-down menu, select Edit
Panels. Move the radial gauge panel accordingly.

14. Finally, click on Done to save the changes to your dashboard. The dashboard
should now look like the following screenshot:

Chapter 3

95

How it works...
Let's break down the search piece by piece.

Search fragment Description
index=main
sourcetype=access_combined
NOT status="200"

You should be familiar with this search from
the earlier recipes in this chapter. However,
we added the search criteria to not return
any event where the status field is equal
to 200 (success).

| stats count Using the stats command, we count the
total number of events that are returned.

The Visualization tab simply takes the numeric output of the stats command and overlays
the given visualization. In this case, you overlaid a radial gauge visualization on the total count
of events that was not successful.

There's more…
In this recipe, we did not use the other two types of gauges: the filler gauge and marker
gauge. It is advisable to try out the other gauges, as they might be the preferred single
value visualization for your intended audience.

For more information on the available single value visualizations,
visit http://docs.splunk.com/Documentation/Splunk/
latest/Viz/Visualizationreference#Single-value_
visualizations.

http://docs.splunk.com/Documentation/Splunk/latest/Viz/Visualizationreference#Single-value_visualizations
http://docs.splunk.com/Documentation/Splunk/latest/Viz/Visualizationreference#Single-value_visualizations
http://docs.splunk.com/Documentation/Splunk/latest/Viz/Visualizationreference#Single-value_visualizations

Dashboards and Visualizations – Make Data Shine

96

See also
 f The Displaying the unique number of visitors recipe

 f The Charting the number of method requests by type and host recipe

 f The Creating a timechart of method requests, views, and response times recipe

Charting the number of method requests by
type and host

In our environment where multiple hosts are responding to web requests for customers who
browse the website, it is good to get an idea of the current number of each method request
split by the host. Methods relate to request/response actions between a customer's web
client and our web hosts. Having this type of information can enable you to understand if
these requests are being balanced properly across the hosts or if one host is receiving the
majority of the load.

In this recipe, you will write a Splunk search to chart the number of method requests split
by type and host. You will then graphically represent these values on a dashboard using a
column chart.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with the
Splunk search bar, the time range picker, and the Visualization tab. It is not required but
is advisable that you also complete all the recipes up until this point.

How to do it...
Follow the given steps to chart the number of method requests by type and host:

1. Log in to your Splunk server.

2. Select the default Search & Reporting application.

3. Ensure that the time range picker is set to Last 24 hours, and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter.
index=main sourcetype=access_combined | chart count by
host,method

4. Splunk will return a tabulated list of total counts for each method request split
by host.

5. Click on the Visualization tab.

Chapter 3

97

6. Click on the dropdown that lists the visualization types, and select Column.

7. Your data should now be visualized as shown in the following screenshot:

8. Save this report by clicking on Save As and then on Report. Name the report cp03_
methods_by_host, and click on Save. On the next screen, click on Add to Dashboard.

9. You will now add this to the Website Monitoring dashboard. Select the button labeled
Existing, and from the drop-down menu that appears, select the Website Monitoring
dashboard. For the Panel Title field value, enter Method Requests by Type and
Host, and select for the panel to be powered by a Report; then, click on Save.

10. The next screen will confirm that the dashboard has been created and the panel has
been added. Click on View Dashboard to see for yourself.

11. Edit the dashboard to position the column chart visualization below the previously
added panels.

How it works...
Let's break down the search piece by piece.

Search fragment Description
index=main
sourcetype=access_combined

You should now be familiar with this search
from the earlier recipes.

| chart count by
host,method

The chart command is simply performing
a count of events split by host and method.
This produces the total count of each
method for a given host.

The Visualization tab simply takes the tabulated output of the stats command and overlays
the given visualization. In this case, you overlaid a column chart visualization on the total
count for each method split by host.

Dashboards and Visualizations – Make Data Shine

98

See also
 f The Using a gauge to display the number of errors recipe

 f The Creating a timechart of method requests, views, and response times recipe

 f The Using a scatter chart to identify discrete requests by size and response
time recipe

Creating a timechart of method requests,
views, and response times

Having the right single values displayed on a dashboard can be beneficial to understanding
key metrics, but can also be limiting in providing true operational intelligence on how different
metrics of our website affect one another. By plotting values such as the number of method
requests, number of total views, and average response times over a given time range, you
can begin to understand if there is any correlation between these numbers. This can be very
beneficial in understanding things such as if the average response time of pages is growing
due to the number of active POST requests to the website or if one type of request is making
up for the majority of the total number of requests at that given time.

In this recipe, you will create a Splunk search using the timechart command to plot values
over a given time period. You will then graphically represent these values using a line chart.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with the
Splunk search bar, the time range picker, and the Visualization tab. It is not required but
is advisable that you also complete all the recipes up until this point.

How to do it...
Follow the given steps to create a timechart of method requests, views, and response times:

1. Log in to your Splunk server.

2. Select the default Search & Reporting application.

3. Ensure that the time range picker is set to Last 7 days, and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter.

Chapter 3

99

index=main sourcetype=access_combined | eval
GET_response=if(method=="GET",response,0) | eval
POST_response=if(method=="POST",response,0) | timechart
span=5m avg(GET_response) AS Avg_GET_Response,
avg(POST_response) AS Avg_POST_Response,
count(eval(method=="GET")) AS GET_Total,
count(eval(method=="POST")) AS POST_Total, count AS
Total_Visits

4. Splunk will return a time series chart of values for the average response time of GET
and POST requests, the count of GET and POST requests, and the total count of web
page visits.

5. Click on the Visualization tab, and select Line from the drop-down listing of
visualization types to visualize the data represented as a line chart.

6. Save this report by clicking on Save As and then on Report. Name the report
cp03_method_view_reponse, and click on Save. On the next screen, click
on Add to Dashboard.

Dashboards and Visualizations – Make Data Shine

100

7. You will now add this report to the Website Monitoring dashboard. Select the button
labeled Existing, and from the drop-down menu that appears, select the Website
Monitoring dashboard. For the Panel Title field value, enter Website Response
Performance and select for the panel to be powered by Report; then, click Save.

8. The next screen will confirm that the dashboard has been created and the panel has
been added. Click on View Dashboard to see for yourself. The line chart visualization
should be now positioned on the dashboard below the previously added panels.

9. Arrange the dashboard so that the line chart panel is on the right-hand side of the
column chart panel created in the previous recipe. Click on the Edit button, and from
the drop-down menu, select Edit Panels. Move the line chart panel accordingly.

10. Finally, click on Done to save the changes to your dashboard.

How it works...
Let's break down the search piece by piece.

Search fragment Description
index=main
sourcetype=access_
combined

You should now be familiar with this search from the
earlier recipes in this book.

| eval
GET_response=if(method
=="GET",response,0)

Using the eval command, we create a new field called
GET_response, whose value is based on the return
value of the if function. In this case, if the method
is GET, then the value returned is the value of the
response field; otherwise, the value returned is 0.

| eval
POST_response=if
(method=="POST",
response,0)

Using the eval command, we create a new field called
POST_response, whose value is based on the return
value of the if function. In this case, if the method
is POST, then the value returned is the value of the
response field; otherwise, the value returned is 0.

timechart span=5m

avg(GET_response) AS
Avg_GET_Response,

avg(POST_response) AS
Avg_POST_Response,

count(eval(method=="
GET")) AS GET_Total,

count(eval(method=="
POST")) AS POST_Total,

count AS Total_Visits

Using the timechart command, we first specify a span
of 5 minutes. Next, we calculate the average value for the
given span of GET_response and POST_response.
Next, we count the total number of GET and POST events.
Finally, the total number of events, both GET and POST,
are counted. Note that we make use of the AS operator to
rename the fields so that they are meaningful and easy to
understand when displayed on our chart.

Chapter 3

101

The Visualization tab takes the time series output of the timechart command and overlays
the given visualization. In this case, you are overlaying the line chart visualization.

There's more...
In this recipe, we looked at the values represented as a whole across our web server
environment. However, in instances like ours where web traffic is balanced across multiple
servers, it is a good idea to split the values based on their respective hosts.

Method requests, views, and response times by host
It is very easy to obtain a more granular view of events split by the host where the events are
occurring. All we need to do is add the by clause to the end of our previous Splunk search
as follows:

index=main sourcetype=access_combined | eval
GET_response=if(method=="GET",response,0) | eval
POST_response=if(method=="POST",response,0) | timechart span=5m
avg(GET_response) AS Avg_GET_Response, avg(POST_response) AS
Avg_POST_Response, count(eval(method=="GET")) AS GET_Total,
count(eval(method=="POST")) AS POST_Total, count AS Total_Visits
by host

As simple as this is, we can now visualize values broken down by the host on which these
values originated. In a distributed environment, this can be most crucial to understanding
where latency or irregular volumes exist.

See also
 f The Charting the number of method requests by type and host recipe

 f The Using a scatter chart to identify discrete requests by size and response
time recipe

 f The Creating an area chart of the application's functional statistics recipe

Dashboards and Visualizations – Make Data Shine

102

Using a scatter chart to identify discrete
requests by size and response time

As shown by the recipes up until this point, there is vast intelligence that can be attained by
building visualizations that summarize the current application state, analyze performance
data over time, or compare values to one another. However, what about those discrete
events that appear off in the distance at odd or random times? These events might not be
correctly reflected when looking at a column chart, single value gauge, or pie chart, as to most
calculations, they are just a blip in the radar somewhere off in the distance. However, there
could be times where these discrete events are indicative of an issue or simply the start of one.

In this recipe, you will write a very simple Splunk search to plot a few elements of web request
data in the tabular format. The real power comes next where you will graphically represent
these values using a scatter chart.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with the
Splunk search bar, the time range picker, and the Visualization tab. It is not required but
is advisable that you complete the recipes up until this point.

How to do it...
Follow the given steps to use a scatter chart to identify discrete requests by size and
response time:

1. Log in to your Splunk server.

2. Select the default Search & Reporting application.

3. Ensure that the time range picker is set to Last 24 hours, and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter.
index=main sourcetype=access_combined | eval kb=bytes/1024
| table method kb response

4. Splunk will return a tabulated list of the method, kb, and response fields for
each event.

5. Click on the Visualization tab and select Scatter from the drop-down list of
visualization types to see the data represented as a scatter plot chart. You should see
the cluster of normal activity and then some discrete values that are off on their own.

Chapter 3

103

6. Save this report by clicking on Save As and then on Report. Name the report
cp03_discrete_requests_size_response, and click on Save. On the
next screen, click on Add to Dashboard.

7. You will now add this to the Website Monitoring dashboard. Select the button labeled
Existing, and from the drop-down menu that appears, select the Website Monitoring
dashboard. For the Panel Title field value, enter Discrete Requests by Size and
Response and select for the panel to be powered by a Report; then, click on Save.

8. The next screen will confirm that the dashboard has been created and the panel has
been added. Click on View Dashboard to see for yourself. The scatter chart visualization
should be now positioned on the dashboard below the previously added panels.

Dashboards and Visualizations – Make Data Shine

104

How it works...
Let's break down the search piece by piece.

Search fragment Description
index=main
sourcetype=access_combined

You should now be familiar with this search
from the earlier recipes in this book.

| eval kb=bytes/1024 Using the eval command, we convert the
size of the request from bytes to kilobytes.
For presentation purposes, this makes it
easier to read and relate.

| table method kb response Using the table command, we plot our
data points that will be represented on the
scatter chart. The first field, method, will
present the data that appears in the legend.
The second field, kb, represents the x-axis
value. Finally, the third field, response,
represents the y-axis value.

There's more...
Aside from simply plotting data points for a scatter chart in the tabular form, you can leverage
the timechart command and its available functions to better identify and provide more
context to these discrete values.

Using time series data points with a scatter chart
The Splunk search you ran in this recipe can be modified to make use of the timechart
command and all of the functions it has to offer. Using the Visualization tab and scatter chart,
run the following Splunk search over Last 24 hours:

index=main sourcetype=access_combined | eval kb=bytes/1024 |
timechart span=5m mean(kb) min(kb) max(kb)

As you can see, with the timechart command, you are first bucketing the events into
5-minute intervals as specified by the span parameter. Next, the mean, min, and max values
of the kb field for that given time span are calculated. This way, if there is an identified
discrete value, you can see more clearly what drove that span of events to be discrete.
An example of this can be found in the following screenshot. In this scatter chart, we have
highlighted one discrete value that is far outside the normal cluster of events. You can see
why this might have stood out using the min and max values from this event series.

Chapter 3

105

See also
 f The Creating a timechart of method requests, views, and response times recipe

 f The Creating an area chart of the application's functional statistics recipe

 f The Using a bar chart to show the average amount spent by category recipe

Creating an area chart of the application's
functional statistics

Understanding not only how your web page is performing and responding to requests but
also underlying applications that you rely on is critical to the success of any website. You
need to have a constant pulse on how the application is behaving and if any trends are
emerging or correlations are being observed between interdependent pieces of data. The
experience a customer has with your website is reliant on the constant high performance
of all of its components.

In this recipe, you will write a Splunk search using the timechart command to plot web
application memory and response time statistics over a given time period. You will then
graphically present these values using an area chart.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with the
Splunk search bar, the time range picker, and the Visualization tab. It is not required but
is advisable that you complete all the recipes up until this point.

Dashboards and Visualizations – Make Data Shine

106

How to do it...
Follow the given steps to create an area chart of the application's functional statistics:

1. Log in to your Splunk server.

2. Select the default Search & Reporting application.

3. Ensure that the time range picker is set to Last 24 hours, and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter.
index=main sourcetype=log4j | eval
mem_used_MB=(mem_used/1024)/1024 | eval
mem_total_MB=(mem_total/1024)/1024 | timechart span=1m
values(mem_total_MB) AS Total_Mem_Avail_MB, count AS
Total_Calls, avg(mem_used_MB) AS Avg_Mem_Used_MB,
avg(response_time) AS Avg_Response_Time

4. Splunk will return a time series chart of values for the average response time of GET
and POST requests, the count of GET and POST requests, and the total count of web
page visits.

5. Click on the Visualization tab and select Area from the drop-down list of visualization
types to see the data represented as an area chart. Note how the data is stacked for
better visual representation of the given data.

6. Save this report by clicking on Save As and then on Report. Name the report cp03_
webapp_functional_stats, and click on Save. On the next screen, click on Add
to Dashboard.

7. You will now add this to the Website Monitoring dashboard. Select the button
labeled Existing, and from the dropdown menu that appears, select the Website
Monitoring dashboard. For the Panel Title field value, enter Web Application
Functional Statistics and select for the panel to be powered by a Report;
then, click on Save.

Chapter 3

107

8. The next screen will confirm that the dashboard has been created and the panel has
been added. Click on View Dashboard to see for yourself.

How it works...
Let's break down the search piece by piece.

Search fragment Description
index=main
sourcetype=log4j

In this example, we are searching for our
application's logs that have the log4j sourcetype.

| eval mem_used_MB=
(mem_used/1024)/1024

Using the eval command, we calculate the amount
of memory currently being used, in megabytes.

| eval mem_total_MB=
(mem_total/1024)/102
4

Using the eval command again, we calculate the
total amount of memory that is available for use, in
megabytes.

| timechart span=1m
values(mem_total_MB)
AS
Total_Mem_Avail_MB,
count AS
Total_Calls,
avg(mem_used_MB) AS
Avg_Mem_Used_MB,
avg(response_time)
AS Avg_Response_Time

Using the timechart command, we first specify
a span of 1 minute for our events. Next, we use the
values function to retrieve the value stored in the
mem_total_MB field. The count function is then
used to calculate the total amount of function calls
during the given time span. The average function
is then called twice to calculate the average amount
of memory used and average response time for
the function call during the given time span. Note
that we make use of the AS operator to rename
the fields so that they are meaningful and easy to
understand when displayed on our chart.

The Visualization tab takes the time series output of the timechart command and overlays
the given visualization. In this case, you overlaid an area chart.

See also
 f The Using a scatter chart to identify discrete requests by size and response

time recipe

 f The Using a bar chart to show the average amount spent by category recipe

 f The Creating a line chart of item views and purchases over time recipe

Dashboards and Visualizations – Make Data Shine

108

Using a bar chart to show the average
amount spent by category

Throughout this chapter, you have been building visualizations to provide insight into the
operational performance of our e-commerce website. It can also be useful to understand the
customer's view and the factors that might drive them to the website. This type of information
is traditionally most useful for product or marketing folks. However, it can also be useful to
gain an understanding around whether an item is increasing in popularity and/or if this could
ultimately lead to additional customers and heavier load on the site.

In this recipe, you will write a Splunk search to calculate the average amount of money spent
split out by product category. You will then graphically present this data using a bar chart
on a new Product Monitoring dashboard.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with the
Splunk search bar, the time range picker, and the Visualization tab. It is not required but
is advisable that you complete all the recipes up until this point.

How to do it...
Follow the given steps to use a bar chart to show average amount spent by category:

1. Log in to your Splunk server.

2. Select the default Search & Reporting application.

3. Ensure that the time range picker is set to Last 24 hours, and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter.
index=main sourcetype=log4j | transaction sessionId
maxspan=30m | search requestType="checkout" | stats
avg(total) AS Avg_Spent by category

4. Splunk will return a tabulated list, detailing the category and the associated average
amount spent.

5. Click on the Visualization tab and select Bar from the drop-down list of visualization
types to see the data represented as a bar chart.

Chapter 3

109

6. Save this report by clicking on Save As and then on Report. Name the report cp03_
average_spent_category, and click on Save. On the next screen, click on Add
to Dashboard.

7. You will now add this to a new Product Monitoring dashboard. Select the button
labeled New and enter a dashboard title of Product Monitoring. For the Panel
Title field value, enter Average Spent by Category, and select for the panel to
be powered by a Report; then, click on Save.

8. The next screen will confirm that the dashboard has been created and the panel has
been added. Click on View Dashboard to see for yourself.

Dashboards and Visualizations – Make Data Shine

110

How it works...
Let's break down the search piece by piece.

Search fragment Description
index=main
sourcetype=log4j

In this example, we are searching for our
application's logs that have the log4j
sourcetype.

| transaction sessionId
maxspan=30m

Using the transaction command, we
group together all events that share the same
sessionId in a 30-minute span.

| search
requestType="checkout"
paymentReceived="Y"

Using the search command, we limit the
grouped results to those that have only a
checkout event and where the payment
was received. In this visualization, a purchase
does not qualify for consideration if it did not
successfully process.

| stats avg(total) AS
Avg_Spent by category

Using the stats command, we calculate the
average total amount spent by category. Note
that we make use of the AS operator to rename
the field so that it is meaningful and easy to
understand when displayed on our chart.

The Visualization tab simply takes the time series output of the stats command and
overlays the given visualization. In this case, you overlaid a bar chart visualization.

See also
 f The Creating an area chart of the application's functional statistics recipe

 f The Creating a line chart of item views and purchases over time recipe

 f The Using a scatter chart to identify discrete requests by size and response
time recipe

Chapter 3

111

Creating a line chart of item views and
purchases over time

Continuing on from the last recipe, you will look to further improve your understanding of
customer activities by now looking at a chart of item views and actual purchases over a given
time period. This will allow you to understand if customers who are viewing an item actually
follow through with purchasing the given item.

In the last recipe of this chapter, you will write a Splunk search to chart item views and
purchases over a given time period. You will then graphically present this data using a line chart.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with the
Splunk search bar, the time range picker, and the Visualization tab. It is not required but is
advisable that you complete all the recipes up until this point.

How to do it…
Follow the given steps to create a line chart of item views and purchases over time:

1. Log in to your Splunk server.

2. Select the default Search & Reporting application.

3. Ensure that the time range picker is set to Last 24 hours, and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter.
index=main sourcetype=access_combined | timechart span=5m
count(eval(uri_path="/viewItem")) AS Item_Views,
count(eval(uri_path="/checkout")) AS Purchases

4. Splunk will return a time series-based chart, listing the count of item views and
count of purchases over the given time period.

Dashboards and Visualizations – Make Data Shine

112

5. Click on the Visualization tab and select Line from the drop-down list of visualization
types to represent the data as a line chart.

6. Save this report by clicking on Save As and then on Report. Name the report
cp03_item_views_purchases, and click on Save. On the next screen, click
on Add to Dashboard.

7. You will now add this to the Product Monitoring dashboard. Select the button labeled
Existing, and from the drop-down menu that appears, select the Product Monitoring
dashboard. For the Panel Title field value, enter Item Views vs. Purchases,
and select for the panel to be powered by a Report; then, click on Save.

8. The next screen will confirm that the dashboard has been created and the panel has
been added. Click on View Dashboard to see for yourself.

9. Arrange the dashboard so that the line chart panel is to the right of the bar chart
panel created in the previous recipe. Click on the Edit button, and from the drop-
down menu, select Edit Panels. Move the line chart panel accordingly.

10. Finally, click on Done to save the changes to your dashboard.

Chapter 3

113

How it works...
Let's break down the search piece by piece.

Search fragment Description
index=main
sourcetype=access_combined

In this example, we are
searching for our application's
logs that have the log4j
sourcetype.

| timechart span=5m
count(eval(uri_path="/viewItem"))
AS Item_Views,
count(eval(uri_path="/checkout"))
AS Purchases

Using the timechart
command, we count the total
number of times an item is
viewed and the total number of
purchases that occurred.

See also
 f The Creating an area chart of the application's functional statistics recipe

 f The Using a bar chart to show the average amount spent by category recipe

Summary
The key takeaways from this chapter are as follows:

 f Dashboards provide a means to bring together multiple visualizations into
a central view

 f Visualizations bring data to life by placing it in a visual context, making it easy
for the viewer to distinguish patterns, trends, and relationships within their data

 f Review and make use of the best practices of visualization

 f Splunk comes loaded with meaningful and powerful visualizations that can
be overlaid on common search commands

4
Building an Operational
Intelligence Application

In this chapter, we will learn how to build and modify a Splunk application. You will learn about:

 f Creating an Operational Intelligence application

 f Adding dashboards and reports

 f Organizing the dashboards more efficiently

 f Dynamically drilling down on activity reports

 f Creating a form to search web activities

 f Linking web page activity reports to the form

 f Displaying a geographical map of visitors

 f Scheduling the PDF delivery of a dashboard

Introduction
In the previous chapter, we were introduced to Splunk's awesome dashboarding and
visualization capabilities. We created several basic dashboards and populated them with
various operational intelligence-driven visualizations. In this chapter, we will continue to
build on what we have learned in the previous chapters and further advance our Splunk
dashboarding knowledge. You will learn how to create a Splunk application and populate
it with several dashboards. You will also learn to use some of Splunk's more advanced
dashboarding capabilities such as forms, drill downs, and maps.

Building an Operational Intelligence Application

116

Splunk applications (or apps) are best thought of as workspaces designed specifically
around certain use cases. In this chapter, we will be building a new application that focuses
specifically on operational intelligence. Splunk apps can vary in complexity from a series of
saved reports and dashboards, through to complex, fully-featured standalone solutions. After
logging in to Splunk for the first time, you are actually interfacing with Splunk through the
launcher application, which displays a dashboard that lists other applications installed on the
system. The Search & Reporting application that we have been using throughout this book so
far is an example of another bundled Splunk application.

Several vendors, developers, and customers have developed applications
that can be used to get you started with your datasets. Most of these
applications are available for free download from the Splunk App store at
http://apps.splunk.com.

In this chapter, you will also start to get to grips with the dashboard forms functionality.
The best way to think about forms in Splunk is that they are essentially dashboards with an
interface, allowing users to easily supply values to the underlying dashboard searches. For
example, a basic form in Splunk would be a dashboard with a user-selectable time range at
the top. The user might then select to run the dashboard over the last 24 hours, and all the
searches that power the dashboard visualizations will run over this selected time range.

Forms, by their very nature, require inputs. Luckily, for us, Splunk has a number of common
form inputs out of the box that can be readily used using the dashboard editor or SimpleXML.
The available form inputs and an explanation of their common usage are detailed in the
following table:

Input Common usage
Dropdown This is used to display lists of user selectable values. Dropdowns can be

populated dynamically using Splunk searches and even filtered based on the
user selection of another dropdown. Users can also select single values or
multiple values.

Radio This is used for simple yes/no or single selection type values. You can only
select one value at a time with radio buttons, unlike dropdowns.

Text This is a simple textbox, allowing the user to type whatever value they want to
search for. The textbox is great for searching for wildcard type values, such as
field values of abc*.

Time This is a time range picker. This is exactly the same as the time range picker
found on the main Splunk search dashboard. You can add a time range for
the entire dashboard or for individual dashboard panels.

http://apps.splunk.com

Chapter 4

117

Dashboards in Splunk are coded behind the scenes in something known as SimpleXML. This
SimpleXML code can be edited directly or by use of Splunk's interactive, GUI-based dashboard
editor. For the most part, this chapter will focus on using the GUI-based dashboard editor,
which allows for dashboards to be edited without touching a line of code—nice! However, you
will be introduced to direct SimpleXML editing in order to take advantage of more advanced
capabilities and options.

Ok, enough of discussion; let's get started!

Creating an Operational Intelligence
application

This recipe will show you how to create an empty Splunk app that we will use as the starting
point in building our Operational Intelligence application.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should have also completed
the recipes from the earlier chapters. You should be familiar with navigating the Splunk
user interface.

How to do it...
Follow the given steps to create the Operational Intelligence application:

1. Log in to your Splunk server.

2. From the top menu, select Apps and then select Manage Apps.

Building an Operational Intelligence Application

118

3. Click on the Create app button.

4. Complete the fields in the box that follows. Name the app Operational
Intelligence and give it a folder name of operational_intelligence.
Add in a version number and provide an author name. Ensure that Visible is set
to Yes, and the barebones template is selected.

Chapter 4

119

5. When the form is completed, click on Save. This should be followed by a blue bar with
the message, Successfully saved operational_intelligence.

Congratulations, you just created a Splunk application!

How it works...
When an app is created through the Splunk GUI, as in this recipe, Splunk essentially creates
a new folder (or directory) named operational_intelligence within the $SPLUNK_
HOME/etc/apps directory. Within the $SPLUNK_HOME/etc/apps/operational_
intelligence directory, you will find four new subdirectories that contain all the
configuration files needed for our barebones Operational Intelligence app that we just created.

The eagle-eyed among you would have noticed that there were two templates, barebones
and sample_app, out of which any one could have been selected when creating the app.
The barebones template creates an application with nothing much inside of it, and the
sample_app template creates an application populated with sample dashboards, searches,
views, menus, and reports. If you wish to, you can also develop your own custom template if
you create lots of apps, which might enforce certain color schemes for example.

There's more...
As Splunk apps are just a collection of directories and files, there are other methods to add
apps to your Splunk Enterprise deployment.

Creating an application from another application
It is relatively simple to create a new app from an existing app without going through the
Splunk GUI, should you wish to do so. This approach can be very useful when we are
creating multiple apps with different inputs.conf files for deployment to Splunk
Universal Forwarders.

Taking the app we just created as an example, copy the entire directory structure of the
operational_intelligence app and name it copied_app.

cp -r $SPLUNK_HOME$/etc/apps/operational_intelligence/*
$SPLUNK_HOME$/etc/apps/copied_app

Building an Operational Intelligence Application

120

Within the directory structure of copied_app, we must now edit the app.conf file in the
default directory.

Open $SPLUNK_HOME$/etc/apps/copied_app/default/app.conf and change the
label field to My Copied App, provide a new description, and then save the conf file.

#
Splunk app configuration file
#
[install]
is_configured = 0

[ui]
is_visible = 1
label = My Copied App

[launcher]
author = John Smith
description = My Copied application
version = 1.0

If you are working on Windows and receive an "access denied"
error, go see your administrator.

Now, restart Splunk, and the new My Copied App application should now be seen in the
application menu.

$SPLUNK_HOME$/bin/splunk restart

Downloading and installing a Splunk app
Splunk has an entire application website with hundreds of applications, created by Splunk,
other vendors, and even users of Splunk. These are great ways to get started with a base
application, which you can then modify to meet your needs.

If the Splunk server that you are logged in to has access to the Internet, you can click on the
Apps menu as you did earlier and then select the Find More Apps button. From here, you can
search for apps and install them directly.

An alternative way to install a Splunk app is to visit http://apps.splunk.com and search
for the app. You will then need to download the application locally. From your Splunk server,
click on the Apps menu and then on the Manage Apps button. After that, click on the Install
App from File button and upload the app you just downloaded, in order to install it.

Once the app has been installed, go and look at the directory structure that the installed
application just created. Familiarize yourself with some of the key files and where they
are located.

http://apps.splunk.com

Chapter 4

121

When downloading applications from the Splunk apps site, it is best
practice to test and verify them in a nonproduction environment first. The
Splunk apps site is community driven and, as a result, quality checks
and/or technical support for some of the apps might be limited.

See also
 f The Adding dashboards and reports recipe

 f The Organizing the dashboards more efficiently recipe

 f The Dynamically drilling down on activity reports recipe

Adding dashboards and reports
As we saw in the previous chapter, dashboards are a great way to present many different
pieces of information. Rather than having lots of disparate dashboards across your Splunk
environment, it makes a lot of sense to group related dashboards into a common Splunk
application, for example, putting operational intelligence dashboards into a common
Operational Intelligence application.

In this recipe, you will learn how to move the dashboards and associated reports you created
in the last couple of chapters into our new Operational Intelligence application.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should have also completed
the recipes from the earlier chapters. You should be familiar with navigating the Splunk
user interface.

How to do it...
Follow these steps to move your dashboards into the new application:

1. Log in to your Splunk server.

2. Select the newly created Operational Intelligence application.

Building an Operational Intelligence Application

122

3. From the top menu, select Settings and then select the User interface menu item.

4. Click on the Views section.

5. In the App Context dropdown, select Searching & Reporting (search) or whatever
application you were in when creating the dashboards in the previous chapter:

Chapter 4

123

6. Locate the website_monitoring dashboard row in the list of views and click on the
Move link to the right of the row.

7. In the Move Object pop up, select the Operational Intelligence (operational_
intelligence) application that was created earlier and then click on the Move button.

8. A message bar will then be displayed at the top of the screen to confirm that the
dashboard was moved successfully.

9. Repeat from step 5 to move the product_monitoring dashboard as well.

10. After the Website Monitoring and Product Monitoring dashboards have been
moved, we now want to move all the reports you created in the previous recipes, as
these power the dashboards and provide operational intelligence insight. From the
top menu, select Settings and this time select Searches, reports, and alerts.

Building an Operational Intelligence Application

124

11. Select the Search & Reporting (search) context and filter by cp0* to view the
searches (reports) created in Chapter 2, Diving into Data – Search and Report, and
Chapter 3, Dashboards and Visualizations – Make Data Shine. Click on the Move link
of the first cp0* search in the list.

12. Select to move the object to the Operational Intelligence (operational_intelligence)
application and click on the Move button.

13. A message bar will then be displayed at the top of the screen to confirm that the
dashboard was moved successfully.

14. Select the Search & Reporting (search) context and repeat from step 11 to move all
the other searches over to the new Operational Intelligence application—this seems
like a lot but will not take you long!

All of the dashboards and reports are now moved over to your new Operational Intelligence
application.

How it works...
In the previous recipe, we revealed how Splunk apps are essentially just collections of
directories and files. Dashboards are XML files found within the $SPLUNK_HOME/etc/apps
directory structure. When moving a dashboard from one app to another, Splunk is essentially
just moving the underlying file from a directory inside one app to a directory in the other
app. In this recipe, you moved the dashboards from the Search & Reporting app to the
Operational Intelligence app, as represented in the following screenshot:

Chapter 4

125

As visualizations on the dashboards leverage the underlying saved searches (or reports), you
also moved these reports to the new app so that the dashboards maintain permissions to
access them. Rather than moving the saved searches, you could have changed the permissions
of each search to Global such that they could be seen from all the other apps in Splunk.
However, the other reason you moved the reports was to keep everything contained within a
single Operational Intelligence application, which you will continue to build on going forward.

It is best practice to avoid setting permissions to Global for reports and
dashboards, as this makes them available to all the other applications
when they most likely do not need to be. Additionally, setting global
permissions can make things a little messy from a housekeeping
perspective and crowd the lists of reports and views that belong to
specific applications. The exception to this rule might be for knowledge
objects such as tags, event types, macros, and lookups, which often have
advantages to being available across all applications.

There's more…
As you went through this recipe, you likely noticed that the dashboards had application-level
permissions, but the reports had private-level permissions. The reports are private as this is
the default setting in Splunk when they are created. This private-level permission restricts
access to only your user account and admin users. In order to make the reports available
to other users of your application, you will need to change the permissions of the reports to
Shared in App as we did when adjusting the permissions of reports.

Building an Operational Intelligence Application

126

Changing the permissions of saved reports
Changing the sharing permission levels of your reports from the default Private to App is
relatively straightforward:

1. Ensure that you are in your newly created Operational Intelligence application.

2. Select the Reports menu item to see the list of reports.

3. Click on Edit next to the report you wish to change the permissions for. Then, click on
Edit Permissions from the drop-down list.

4. An Edit Permissions pop-up box will appear. In the Display for section, change from
Owner to App, and then, click on Save.

5. The box will close, and you will see that the Sharing permissions in the table will now
display App for the specific report. This report will now be available to all the users of
your application.

See also
 f The Creating an Operational Intelligence application recipe

 f The Organizing the dashboards more efficiently recipe

 f The Dynamically drilling down on activity reports recipe

Chapter 4

127

Organizing the dashboards more efficiently
In this recipe, you will learn how to use Splunk's dashboard editor to use more efficient
visualizations and organize the dashboards more efficiently. This feature was introduced
in Splunk 6 and enhanced even further in Splunk 6.1.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In, and should have completed
the earlier recipes in this chapter. You should also be familiar with navigating the Splunk
user interface.

How to do it...
Follow these steps to organize the dashboards more efficiently:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Click on the Dashboards menu item.

4. You should see the Product Monitoring and Website Monitoring dashboards that
we moved into the Operational Intelligence app in the previous recipe. Select the
Website Monitoring dashboard, and it will be displayed.

Building an Operational Intelligence Application

128

5. You will notice that there are several visualizations on the dashboard; in Splunk,
they are known as panels. Select Edit Panels from the Edit menu.

6. In the Total Number of Errors panel, change Radial Gauge to Single Value
visualization, by clicking on the radial gauge icon and selecting Single Value.

7. Move the other panels around until your dashboard resembles the layout in the
following screenshot. Notice how we have our single value panels at the top, our
various charts in the middle, and then, our time series-based charts at the bottom.

Chapter 4

129

8. Click on the Done button when complete. I think you will agree that this dashboard
looks a lot better than the earlier one! Everything fits on the screen for the most part,
and it is much easier on the eye.

How it works...
In this recipe, we started to experience the power of Splunk's amazing dashboard editor. The
dashboard editor provides a nice usable interface that essentially shields the user from what
is happening underneath the covers. When we edit dashboard panels and visualizations in
this manner, Splunk is actually writing the required SimpleXML code into the respective view's
XML file on your behalf. When you click on Done, the file is essentially saved with the newly
written XML under the covers. If you are hungry for more, don't worry; we are just getting
started with the editor. There is plenty more to come later in this chapter!

Dashboards in Splunk are also called views. In the management interface
and in the backend, they are commonly known as views, but in the
application menu, they are called dashboards. We may use the terms
interchangeably in this book.

Building an Operational Intelligence Application

130

There's more…
Instead of using the dashboard editor, you can edit the SimpleXML directly.

Modifying the SimpleXML directly
Let's take a look at the SimpleXML that is behind the Website Monitoring dashboard. Ensure
that the dashboard is displayed on screen. Then, click on the Edit button as you did earlier,
but instead of clicking on Edit Panels, click on Edit Source. The underlying SimpleXML source
code will now be displayed.

Dashboards in SimpleXML consist of rows, panels, and visualization elements. Dashboards
can have many rows (<row></row>), but around three rows is advisable. Within each row,
you can have multiple panels (<panel></panel>), and within each panel, you can have
multiple visualization elements (for example, <chart></chart> for a chart). On the Website
Monitoring dashboard, you should see three row elements and multiple panels with a single
dashboard element on each panel.

We can edit the SimpleXML directly to swap the single elements around on the top row of the
dashboard. Simply select the first panel group as shown in the following screenshot:

Chapter 4

131

Move this panel group below the second panel group as shown in the following screenshot:

Then, once done, click on the Save button. This is an extremely simple example, but you
should start to see how we can edit the code directly rather than use the dashboard editor.

Note that there might be some <option> data within the panel groups that we have removed
in the screenshots to simplify things. However, ensure that you move everything within the
panel group.

Familiarizing yourself with SimpleXML and how to tweak it manually will provide more
functionality and likely make the process of creating a dashboard a lot more efficient.

A great way to learn SimpleXML can be to modify something using
the Splunk dashboard editor and then select to view the code to
see what has happened in the underlying SimpleXML code. Splunk
also has a great SimpleXML reference that allows for quick access
to many of the key SimpleXML elements. Visit http://docs.
splunk.com/Documentation/Splunk/latest/Viz/
PanelreferenceforSimplifiedXML for more information.

See also
 f The Adding dashboards and reports recipe

 f The Dynamically drilling down on activity reports recipe

 f The Creating a form to search web activities recipe

http://docs.splunk.com/Documentation/Splunk/latest/Viz/PanelreferenceforSimplifiedXML
http://docs.splunk.com/Documentation/Splunk/latest/Viz/PanelreferenceforSimplifiedXML
http://docs.splunk.com/Documentation/Splunk/latest/Viz/PanelreferenceforSimplifiedXML

Building an Operational Intelligence Application

132

Dynamically drilling down on activity reports
When viewing a dashboard in Splunk, there is usually a very high probability that you will look at
a chart or report and want to know more details about the information that you are looking at.

Splunk dashboards can be configured to let the user drill down into more details. By linking
results or data points to an underlying dashboard or report, information about what the user
clicked on can provide them with the next level of detail or the next step in the process they
are following.

This recipe will show you how you can configure reports to drill down into subsequent searches
and other dashboards so that you can link them together into a workflow that gets the user to
the data they are interested in seeing within your Operational Intelligence application.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In, and should have completed the earlier
recipes in this chapter. You should also be familiar with navigating the Splunk user interface.

How to do it...
Follow these steps to configure a dashboard report with row drilldown capabilities:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Click on the Dashboards menu.

4. Click on the Create New Dashboard button.

Chapter 4

133

5. Name the dashboard Visitor Monitoring and set the Permissions field to
Shared in App.

6. Click on Create Dashboard.

7. When the empty dashboard is displayed, click on the Add Panel button.

8. Set the Content Title panel to Session Listing.

Building an Operational Intelligence Application

134

9. Set the Search String field to the following search:
index=main sourcetype=access_combined | iplocation clientip |
fillnull value="Unknown" City, Country, Region| replace "" with
"Unknown" in City, Country, Region | stats count by JSESSIONID,
clientip, City, Country, Region | fields clientip, City, Region,
Country

10. Set the time range to Last 24 hours:

11. Click on the Add Panel button.

12. Click on the panel graph icon and ensure that the graph is a Statistics Table:

Chapter 4

135

13. Click on the panel edit icon, select the Row option for the Drilldown setting, and click
on the Apply button.

14. Click on the Done button to finish editing the dashboard.

15. Click on a row in the dashboard table, and Splunk will now drill down to the search
screen and execute a search that is filtered by the clientip value in the row you
selected to drill down on.

How it works...
The drilldown feature of dashboards can be utilized to get your users to the next set of data
they need. When they click on a table entry or a part of a chart, they set off a search that can
drill down into more details of the item they clicked. The behavior of the drilldown is controlled
by the configuration of the panel in the SimpleXML but also has a few options displayed by the
dashboard editor.

When displaying a table of results, there are three options that can be chosen from.

Option Description
Row When a row is clicked, the search that is launched by the drilldown is based on

the x-axis value, which is the first column in the row.
Cell When a particular cell is clicked, the search that is launched by the drilldown is

based on both the x-axis and y-axis values represented by that cell.
None The drilldown functionality is disabled. When a user clicks on the table, the page

will not change.

Building an Operational Intelligence Application

136

When displaying a chart, there are two options for the drilldown behavior that can be
chosen from.

Option Description
On When a row is clicked, the search that is launched by the drilldown is

based on the values of the portion of that chart.
Off The drilldown functionality is disabled. When a user clicks on the

table, the page will not change.

When the drilldown search is started after the table or chart is clicked on, it is generally
derived by taking the original search, backing off the final transforming commands, and then
adding the values that were selected depending on the drilldown setting.

When a new panel item is added, such as a chart, table, or map,
the default drilldown is always turned on by default.

There's more…
The drilldown options can be customized and provide many different options to control the
behavior when dashboards are clicked on.

Disabling the drilldown feature in tables and charts
To disable the drilldown feature, you can specify the None option in the Drilldown setting
of the edit panel form or add/modify the following SimpleXML option to the panel source:

<option name="drilldown">none</option>

A full reference of drilldown options can be found in the Splunk
documentation at http://docs.splunk.com/Documentation/
Splunk/latest/Viz/PanelreferenceforSimplifiedXML#Pa
nel_visualization_elements.

See also
 f The Organizing the dashboards more efficiently recipe

 f The Creating a form to search web activities recipe

 f The Linking web page activity reports to the form recipe

http://docs.splunk.com/Documentation/Splunk/latest/Viz/PanelreferenceforSimplifiedXML#Panel_visualization_elements
http://docs.splunk.com/Documentation/Splunk/latest/Viz/PanelreferenceforSimplifiedXML#Panel_visualization_elements
http://docs.splunk.com/Documentation/Splunk/latest/Viz/PanelreferenceforSimplifiedXML#Panel_visualization_elements

Chapter 4

137

Creating a form to search web activities
Presenting users with dashboards is a great way to visualize data, as we have seen.
However, often, people like to "slice n dice" data in many different ways, and to do this, we
need to make our dashboards more interactive. We can do this using the dashboard forms
functionality of Splunk, which allows users to filter dashboard visualizations and data based
upon the criteria that are important to them.

This recipe will build on the tabular Visitor Monitoring dashboard you created in the previous
recipe to allow for granular filtering of the tabulated results.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In, and should have completed
the earlier recipes in this chapter. You should also be familiar with navigating the Splunk
user interface.

How to do it...
Follow these steps to create a form to filter data on a dashboard:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Click on the Dashboards menu item.

4. Select to view the Visitor Monitoring dashboard we created in the previous recipe.

5. Once loaded, click on the Edit dropdown and then on Edit Panels.

6. Click on Add Input and then select Time.

Building an Operational Intelligence Application

138

7. Click on Add Input again, and this time, select Text.

8. A new text input named field2 will appear. Above the text input, you will see a little
pencil icon. Click on the pencil icon to edit the input. A pop up will be displayed.

9. Complete the box with the values in the following table:

Field Value
Label IP

Search on Change Should be checked
Token ip

Default *

Token Suffix *

Then, click on Apply.

10. The box will disappear, and you will see that the input is now titled IP.

Chapter 4

139

11. Repeat from step 7 to add and edit the three other textbox fields (one at a time) using
the following values for each:

Textbox field Field Value
field3 Label City

Search on Change Should be checked
Token city

Default *

Token Suffix *

field4 Label Region

Search on Change Should be checked
Token region

Default *

Token Suffix *

field5 Label Country

Search on Change Should be checked
Token country

Default *

Token Suffix *

12. Once complete, you should have a total of five fields. Let's now do a bit of
rearrangement. Move the Time input field on the far right-hand side so that it is the
last input field at the top. Additionally, check the Autorun dashboard checkbox on
the far right-hand side.

Building an Operational Intelligence Application

140

13. Click on the pencil icon above the time input and change the default time range from
All Time to Last 24 Hours. Then, click on Apply.

14. Next, click on Done in the top-right corner of the screen to finish editing the form. You
should see all your fields nicely labeled across the top with wildcard asterisks (*) in
each textbox.

15. Next, we need to link the new fields we just created with the table. Click on Edit and
then on Edit Panels.

16. Select Edit Search String in the panel with the table. A pop-up box will appear with
the current search string.

Chapter 4

141

17. Replace the existing search string with the following search string. The modifications
to the search have been highlighted.
index=main sourcetype=access_combined clientip="ip" |
iplocation clientip | fillnull value="Unknown" City,
Country, Region| replace "" with "Unknown" in City,
Country, Region | stats count by JSESSIONID, clientip,
City, Country, Region | fields clientip, City, Region,
Country | search City="$city$" Region="$region$"
Country="$country$"

18. Change Time Range Scope to Shared Time Picker (field1).

19. Click on Save and then on Done.

20. Refresh/reload the dashboard in your browser.

21. That's it! You now have a nice form-driven table. Try testing it out. For example,
if you want to filter by all IP addresses that begin with 134, simply enter 134 into
the IP textbox and press Enter.

Building an Operational Intelligence Application

142

How it works...
In this recipe, we only used the GUI editor, which means that Splunk was changing the
underlying SimpleXML for us. As soon as we added the first input field, Splunk changed the
opening SimpleXML <dashboard> element to a form <form> element behind the scenes.
Each of the five inputs we added are contained within a <fieldset> element. For each of
the inputs, Splunk creates an <input> element, and each input type can have a number of
fields: some optional some required. One of the key fields for each type is the Token field, the
values of which are then used by searches on the dashboard. We assigned a token name to
each input, such as ip, city, and country. Other fields that we populated for the text inputs
were the Default and Suffix field values of *. This tells Splunk to search for everything (*)
by default if nothing is entered into the textbox and to add a wildcard (*) suffix to everything
entered into the textbox. This means that if we were to search for a city using a value of
Tor, Splunk will search for all the cities that begin with Tor (Tor*), such as Toronto. We also
checked the Search on Change box, which forces a rerun of any searches in the dashboard
should we change a value of the input. After completing the editing of the inputs, we selected
to autorun the dashboard, which adds autoRun="true" in the <fieldset> element of
the SimpleXML and ensures that the dashboard runs as soon as it is loaded with the default
values rather than waiting for something to be submitted in the form.

Once we built the form inputs and configured them appropriately, we needed to tell the
searches that power the dashboard visualizations to use the tokens from each of the form
inputs. The Token field for each input will contain the value for that input. We edited the
search for the table on the dashboard and added additional search criteria to force Splunk to
search, based upon these tokens. Token names must be encapsulated by $ signs, so our ip
token is entered into the search as ip, and our country token is entered as $country$.
We also told our search to use the Shared Time Picker input rather than its own time
range. This allows us to then search using the time picker input we added to the form.

The end result is that anything entered into the form inputs is encapsulated into the
respective tokens, and the values of these tokens are then passed to the search that powers
the table in the dashboard. If we change the value of an input, then the value of the input's
token in the search changes, the search immediately reruns, and the search results in the
table change accordingly.

There's more...
In this recipe, we began to scratch the surface of form building, using only textbox inputs and
the time picker. Later in this book, we will leverage the drop-down input, and you will learn
how to prepopulate drop-down values as a result of a search and learn how to filter drop-down
values as a result of other drop-down selections.

Chapter 4

143

Adding a Submit button to your form
In this recipe, you probably will have noticed that there was no Submit button. The reason
for this was primarily because no Submit button was needed. We selected to autorun the
dashboard and selected Search on Change for each input. However, there are times when
you might not want the form to run as soon as something is changed; perhaps, you want to
modify multiple inputs and then search. Additionally, many users like the reassurance of a
Submit button, as it is commonly used on forms across websites and applications.

Adding a Submit button is extremely simple. When the dashboard is in the editing mode,
simply click on the Add Input dropdown and select Submit. You will notice that a green
Submit button now appears on the form. If you now edit the text inputs and uncheck the
Search on Change checkbox for each of them, the form will only be submitted when
someone clicks on the Submit button.

See also
 f The Dynamically drilling down on activity reports recipe

 f The Linking web page activity reports to the form recipe

 f The Displaying a geographical map of visitors recipe

Linking web page activity reports to the
form

Form searches in Splunk do not need to be limited to displaying events and table-driven data.
Rich visualizations can also be linked to forms and be updated when the forms are submitted.

This recipe will show you how you can extend a form to include charts and other visualizations
that can be driven by the form created to show visitor traffic and location data.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In, and should have completed
the earlier recipes in this chapter. You should also be familiar with navigating the Splunk
user interface.

Building an Operational Intelligence Application

144

How to do it...
Follow these steps to add a web page activity chart and link it to a form:

1. Log in to your Splunk server.

2. Select the default Operational Intelligence application.

3. Select the Dashboards menu item.

4. Select the Visitor Monitoring dashboard.

5. Click on the Edit button and then on Edit Panels.

6. Click on the Add Panel button.

7. In the Add Panel window, set the Content Title field to Sessions Over Time.

8. Set the Search String field to the following search:
index=main sourcetype=access_combined clientip="ip" |
iplocation clientip | fillnull value="Unknown" City,
Country, Region| replace "" with "Unknown" in City,
Country, Region | search City="$city$" Region="$region$"
Country="$country$" | timechart dc(JSESSIONID)

Chapter 4

145

9. Set the Time Range Scope field to Shared Time Picker (field1).

10. Click on the Add Panel button.

11. After the panel is added to the bottom of the dashboard, click on the chart-type panel
icon located at the top-right corner of the panel you just added.

12. Click on the Line chart type.

Building an Operational Intelligence Application

146

13. Click on the edit panel icon.

14. Update the X-Axis label with Custom Title set to Time.

15. Update the Y-Axis label with Custom Title set to Unique Sessions.

16. Set the Legend option to None.

17. Click on Apply, and the pop-up box will disappear with the changes reflected
on the panel.

18. Next, click on Done to finish editing the dashboard.

19. Filter by an IP of 134 or similar again, and you should see that the chart panel also
changes along with the table panel.

How it works...
Adding a chart to the dashboard works in a manner very similar to the way in which the
original form was created. You can utilize the field variables defined in the form in the
inline search that is used for the chart. Splunk will set them when the form is submitted.
The panel can also utilize the time range that was used in the form or contain a separate
time range dropdown.

Chapter 4

147

By building a form and several different charts and tables, you can build a very useful
form-driven dashboard. One of the great uses of a form-driven dashboard is for investigative
purposes. In this example, you can take any of the fields and, for instance, see what all
sessions are coming from a particular country and then see the level of activity over the time
period you are interested in.

There's more...
Additional customizations can be added to the charts in order to give them more meaning.

Adding an overlay to the Sessions Over Time chart
You can have Splunk overlay a field value on top of your existing chart to provide trendlines
and so on. Add the following line to the end of the inline search used for the Sessions Over
Time search:

| eventstats avg(dc(JSESSIONID)) as average | eval
average=round(average,0)

Then, add the following line to the SimpleXML of the panel:

<option name="charting.chart.overlayFields">average</option>

It will then add a line that charts the average of the session count over top of the actual values.

Building an Operational Intelligence Application

148

See also
 f The Creating a form to search web activities recipe

 f The Displaying a geographical map of visitors recipe

 f The Scheduling the PDF delivery of a dashboard recipe

Displaying a geographical map of visitors
Operational intelligence doesn't always need to come in the form of pie charts, bar charts,
and data tables. With a wide range of operational data being collected from IT systems, there
is the opportunity to display this data in ways that can be more meaningful to users or help
present it in ways that can be easier to identify trends or anomalies.

One way that always provides great visibility is by representing your data using a geographical
map. With geolocation data available for many different data types, it becomes very easy to
plot them. Using IP addresses from web server logs is a very common use case for this type
of visualization. Splunk allows for the easy addition of a map to a dashboard with all the
capabilities to zoom and update the portion of the map that the user is viewing.

This recipe will show you how you can configure a map panel within a dashboard and link it
to a search that contains IP addresses in order to visualize where in the world the IP traffic is
originating from.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In, and should have completed
the earlier recipes in this chapter. You should also be familiar with navigating the Splunk
user interface.

How to do it...
Follow these steps to add a map to your form-driven dashboard:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Click on the Dashboards menu item.

Chapter 4

149

4. Select the Visitor Monitoring dashboard.

5. Click on the Edit button and then click on the Edit Panels option.

6. Click on the Add Panel button.

7. In the Add Panel window, set the Content Title field to Sessions By Location.

8. Set the Search String field to the following search:
index=main sourcetype=access_combined clientip="ip" | iplocation
clientip | fillnull value="Unknown" City, Country, Region|
replace "" with "Unknown" in City, Country, Region | search
City="$city$" Region="$region$" Country="$country$" | geostats
count

9. Set the Time Range Scope field to Shared Time Picker (field1).

Building an Operational Intelligence Application

150

10. Click on the Add Panel button.

11. After the panel is added to the bottom of the dashboard, click on the chart-type panel
icon on the top-left corner of the newly added panel.

12. Click on the Map chart type.

13. Click on Done to finish editing the dashboard.

14. Filter by an IP of 134 or similar again, and you should now see that the map panel
also changes along with the table and chart panels you added earlier.

Chapter 4

151

How it works...
Mapping support has been available in Splunk 4 using a third-party developed application.
Since Spunk 6, native map support has been available and can be used easily within
your dashboards.

The rendering of the map is done in the same way in which most browser-based maps are
generated using many small images known as tiles that are put together in a grid layout and
swapped in and out depending on the zoom level and the visible area being requested. As a
result of this, the browser and services do not need to load an entire world's worth of image
data into memory.

Splunk supports both a native tile server that can be used to serve the actual map images
or can be configured to use the external OpenStreetMap service (openstreetmap.org).
The native tiles do not have a very granular level of mapping detail but will work in situations
where there is no external connectivity or security reasons for not calling the external service.

The map panel depends on the result of the geostats command which looks for the
necessary latitude and longitude fields in the search results and adds its own fields that the
map can use to render the data properly. The geostats command is commonly paired with
the iplocation command to map the network traffic-originating locations.

The built-in IP location data within Splunk is provided by Splunk as part of Splunk Enterprise
but is not always the most up-to-date data available from the Internet. It's often best practice
to purchase a third-party service to get the most accurate and real-time data available,
especially when it is used on critical security-monitoring dashboards and searches.

The map panel has many different configuration options that can be used to specify the initial
latitude, longitude, and zoom level that should be applied when the map is initially loaded as
well as the minimum and maximum zoom levels. Drilldown in the maps is also supported.

A full reference of map drilldown options can be found in the Splunk
documentation at http://docs.splunk.com/Documentation/
Splunk/latest/Viz/PanelreferenceforSimplifiedXML#Pan
el_visualization_elements.

There's more...
The map panel option can also be configured in several different ways in Splunk.

http://docs.splunk.com/Documentation/Splunk/latest/Viz/PanelreferenceforSimplifiedXML#Panel_visualization_elements
http://docs.splunk.com/Documentation/Splunk/latest/Viz/PanelreferenceforSimplifiedXML#Panel_visualization_elements
http://docs.splunk.com/Documentation/Splunk/latest/Viz/PanelreferenceforSimplifiedXML#Panel_visualization_elements

Building an Operational Intelligence Application

152

Adding a map panel using SimpleXML
A map panel can be added directly to a dashboard by adding the following SimpleXML
when editing the dashboard source:

<map>
 <title>Count by location</title>
 <searchString>index=main sourcetype=access_combined
 clientip="ip" | iplocation clientip | fillnull
 value="Unknown" City, Country, Region| replace "" with
 "Unknown" in City, Country, Region | search City="$city$"
 Region="$region$" Country="$country$" | geostats
 count</searchString>
 <earliestTime>-24h@m</earliestTime>
 <latestTime>now</latestTime>
 <option name="mapping.data.maxClusters">100</option>
 <option name="mapping.drilldown">all</option>
 <option name="mapping.map.center">(0,0)</option>
</map>

Mapping different distributions by area
The geostats command takes an aggregation term as its main argument. This term is what
is used to render the pie charts that are located on the map. In this recipe, we simply ran |
geostats count, which is the most commonly used command and simply does a single
count. However, you can break out the data by product, and then the pie charts will provide
segmented visual information and can be moused over to see the breakdown.

MySearch | geostats count by product

See also
 f The Linking web page activity reports to the form recipe

 f The Scheduling the PDF delivery of a dashboard recipe

Scheduling the PDF delivery of a dashboard
Getting operational intelligence to users who need it the most can be challenging. They can
be users who are not IT savvy, don't have the correct access to the right systems, or are
executives about to walk into a client meeting to go over the latest result data.

Sometimes, all a user needs is to have data e-mailed to their inbox every morning so that
they can review it on their commute to the office or have an assistant prepare for a morning
briefing. Splunk allows the user to schedule a dashboard so that it can be delivered as a PDF
document via e-mail to a customizable list of recipients.

Chapter 4

153

This recipe will show you how to schedule the delivery of a dashboard within the Operational
Intelligence application as a PDF document to an internal e-mail distribution list.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In, and should have completed the
earlier recipes in this chapter. You should also be familiar with navigating the Splunk user
interface. You should also have configured your e-mail server to work with Splunk such that
Splunk can actually send e-mails to specified addresses.

How to do it...
Follow these steps to schedule a PDF delivery of your dashboard:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Click on the Dashboards menu item.

4. From the dashboard listing, select the dashboard you would like to deliver as a PDF
document. Only the Website Monitoring and Product Monitoring dashboards can
leverage PDF delivery, as the PDF delivery function is not (currently) compatible with
the dashboards driven by form inputs.

5. Once the selected dashboard loads, click on the Edit drop-down menu in the
top-right corner of the screen.

6. Click on the Schedule PDF Delivery option.

Building an Operational Intelligence Application

154

7. On the Edit PDF Schedule form, check the Schedule PDF box.

8. Modify the Schedule field to suit your needs. Update the dropdown and select the
appropriate schedule type.

9. Enter the list of e-mail addresses you wish to send the PDF to in the Email To field
using commas to separate multiple e-mail addresses.

10. Select the priority of the e-mail.

11. Customize the Subject field with the content of the message subject you
would like the recipients to see.

12. Customize the Message field with the content of the message you would like the
recipients to see.

Chapter 4

155

13. Update the layout options of the generated PDF by updating the Paper Size and
Paper Layout options.

14. You can test your PDF and e-mail formatting using the preview options. Click on the
Send Test Email link to send to the recipients the dashboard as it looks when the
link is clicked. Then, click on the Preview PDF link to view a version of the PDF as
it looks when the link is clicked. Sending a test e-mail will require that your Splunk
administrator has configured the appropriate SMTP settings in Splunk.

15. Click on the Save button, and the PDF delivery of the dashboard is now scheduled.

How it works...
Since Splunk 5 was released, Splunk Enterprise has been natively able to produce PDFs of
dashboards and reports. Prior to Version 5, it required a separate add-on app that only worked
on Linux servers and required other operating system dependencies. The new integrated PDF
features allow quicker and easier access to generate PDFs either via a schedule and e-mailed
or directly from the Web.

There are still some situations that will not be able to produce PDFs such as form-driven
dashboard, dashboards created using advanced XML, and SimpleXML dashboards that still
contain Flash components. There are also some features such as heat map overlays that will
not render properly.

PDFs are generated when requested by native libraries built into Splunk that render what
would normally be output as HTML and encode this into the PDF. It's not an easy feat, as you
have to take the page layout and orientation into consideration as the PDF is much more
constrained than the browser window.

When delivering a scheduled PDF of a dashboard, you are using the same mechanism that
scheduled reports and alerts are using. The sendemail command is the backbone of the
process and allows many different configuration options for the format of the message,
including a full range of tokens that can be inserted into the subject and body of the
messages that are replaced with job- and schedule-specific details.

Building an Operational Intelligence Application

156

For more information on the configuration options to schedule
reports and dashboards, check out http://docs.splunk.com/
Documentation/Splunk/latest/Report/Schedulereports.

See also
 f The Displaying a geographical map of visitors recipe

Summary
The key takeaways from this chapter are as follows:

 f Organize your dashboards and knowledge into a custom Splunk app

 f Modify the layout of dashboards so that information can be displayed effectively

 f Layer your operational data and utilize drilldown options to dive deeper when needed

 f Use new visualizations, such as maps, to convey more meaningful data

 f Deliver data to key stakeholders without needing to log in to Splunk

http://docs.splunk.com/Documentation/Splunk/latest/Report/Schedulereports
http://docs.splunk.com/Documentation/Splunk/latest/Report/Schedulereports

5
Extending

Intelligence – Data
Models and Pivoting

In this chapter, we will introduce the Splunk data model and pivoting functionality. We will
learn about:

 f Creating a data model for web access logs

 f Creating a data model for application logs

 f Accelerating data models

 f Pivoting total sales transactions

 f Pivoting purchases by geographical location

 f Pivoting slowest responding web pages

 f Pivot charting top error codes

Introduction
In many of the previous chapters, we leveraged Splunk's Search Processing Language (SPL)
quite a bit in order to build searches, reports, and dashboards. In this chapter, we will learn
how to leverage Splunk's data model and Pivot functionality and demonstrate how these can
be leveraged by less technical users to easily build reports, charts, and dashboards.

Extending Intelligence – Data Models and Pivoting

158

The first set of recipes in this chapter involves building Splunk data models. Data models
allow Splunk datasets to be mapped, together with associated knowledge, into a hierarchical
structure that encapsulates a number of Splunk searches behind the scenes. These models
power Splunk's Pivot tool and allow users to create dynamic reports and dashboards, without
the need to write any searches. Data models are somewhat analogous to relational database
schemas; in that, they present data to Pivot as rows and columns.

Data models are typically built by individuals who are familiar with Splunk's SPL using the
Data Model Editor. Data models have a hierarchical structure made up of objects, object
types, object constraints, and object attributes. A data model consists of one or more objects
and each object will be a certain object type. Each object will have one or more object
constraints and contain one or more object attributes.

There are four different object types and these are outlined in the following table:

Object type Description
Event objects These represent a type of event, such as application log events or

web access log events. They are likely to be the most commonly
used type.

Search objects These represent a Splunk search that includes commands that
transform the data into the data you wish to represent, such as a
search that aggregates data over time.

Transaction objects These represent transaction type searches that group related
events over time.

Child objects These inherit constraints and attributes from their parent objects but
allow for further filtering of events and have additional constraints
and attributes of their own.

All data model objects are defined by one or more object constraints, which help filter out
irrelevant events and these are outlined in the following table:

Object constraint Description
Event object constraints This is limited to a simple constraint, essentially the

first part of a search before the pipe (for example,
sourcetype=x field=y)

Search object constraints The constraint is the object's full search string that may
include a number of transforming commands and pipes

Transaction object constraints The constraint is the transaction definition, which must
identify group objects and group by fields

Child object constraints This is limited to a simple constraint, essentially the
first part of a search before the pipe (for example,
sourcetype=x field=y)

Chapter 5

159

All data model objects have one or more object attributes. These are basically fields within the
dataset being modeled and the available attribute types are outlined in the following table:

Object attributes Description
Auto-Extracted These are fields that Splunk automatically extracts based upon

extractions already defined for the sourcetypes in the dataset
being modeled.

Eval-Expression This is a field generated as a result of an eval expression.
Lookup This is a field where one or more fields are added to the events as a

result of a lookup.
Regular
Expression

This is a field that is extracted from the event data using the entered
regular expression.

Geo IP This a lookup that takes IPs and adds geographical fields such as
lon, lat, city, country, and so on.

The Common Information Model add-on app contains a number
of predefined data models that comply with Splunk's Common
Information Model (CIM). The CIM add-on can be used when modeling
data to ensure compatibility or to take advantage of the prebuilt data
models to Pivot and report. The add-on is available for download at
http://apps.splunk.com/app/1621/.

Once we have built our data models in this chapter, you will learn how to accelerate them.
An accelerated data model leverages Splunk's underlying High Performance Analytics Store
(HPAS), building summaries alongside the buckets of data in the associated indexes and
allows for significant performance increases in Pivot-based reporting across extremely
large datasets.

For more information on data models, please review the Knowledge Manager
documentation at http://docs.splunk.com/Documentation/
Splunk/latest/Knowledge/Aboutdatamodels.

The second half of this chapter is dedicated to using Splunk's Pivot tool in order to search
and report on the data we have modeled. Pivot enables users to report on data within Splunk,
without having to use the SPL. The Pivot interface provides drag-and-drop functionality,
allowing for easy reporting and visualization of Splunk datasets. As Pivot leverages data
models and their associated objects for reporting, a data model must be created before Pivot
can be used.

Extending Intelligence – Data Models and Pivoting

160

The fundamentals of data models and Pivot can be quite challenging to get to grips with
initially and there is no better way to learn than to get our hands dirty and start modeling
and pivoting in Splunk; so, let's do that!

Creating a data model for web access logs
In this first recipe, you will create a data model for our web access logs. You will be using
Splunk's Data Model Editor to do this and define a number of object types, and add
constraints and attributes.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In, and the completed recipes from
earlier chapters. You should be familiar with navigating the Splunk user interface.

How to do it...
Follow the steps in this recipe to create the Web Access data model:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Select the Settings menu item at the top-right corner of the screen, and then select
Data models:

Chapter 5

161

4. An empty list of data models to manage will load. Click on the New Data Model
button located at the top-right corner of the screen:

5. A pop-up box will be displayed. Enter Web Access in the Title field and as you
type, the ID will automatically populate. Ensure the selected app is Operational
Intelligence, and then click on the Create button:

6. This will create an empty data model and the Data Model Editor will be displayed.
Next, create an object type. Select the Add Object dropdown and select Root Event:

Extending Intelligence – Data Models and Pivoting

162

7. The Add Event Object page will be displayed. Enter All Web Access in the Object
Name field and in the Constraints box, enter the search syntax index=main
sourcetype=access_combined. Once these have been entered, click on the
Preview button and a few web access log events will be displayed in the preview area.
Following this, click on Save, to save the event object type:

8. After saving the object type, the Data Model Editor will be displayed with the newly
created All Web Access object displayed. Some inherited attributes will be seen
on the right-hand side. You will now add a few more. Click on the Add Attribute
dropdown and select Auto-Extracted.

Chapter 5

163

9. A pop-up box will be displayed with all the fields that Splunk has already extracted
for the web access logs. You can select specific fields for the model, but to keep
things simple, let's select them all by checking the checkbox next to the Field column
heading at the top of the field list. Notice that all fields will then get checked. Once
complete, click on Save and all these fields will now become attributes for the data
model object.

10. You will now add an evaluated attribute to add a status category. Click on the Add
Attribute dropdown again, but this time select Eval Expression:

Extending Intelligence – Data Models and Pivoting

164

11. The Add Attributes with an Eval Expression screen will be displayed. In the Eval
Expression box, enter the following search syntax to match the status code in the
events to a descriptive category:
case(like(status,"1%"),"Informational",
like(status,"2%"),"Success", like(status,"3%"),"Redirect",
like(status,"4%"),"Client Error", like(status,"5%"),"Server
Error")

12. Enter status_category in the Field Name field and leave all other fields with the
defaults. Then click on the Preview button. You should see the new status_category
field populated in the preview results. Click on Save to save this newly evaluated
attribute:

Chapter 5

165

13. You will now use this newly created status_category object attribute to create a
couple of child object types for error and success events. From the Data Model Editor,
select the Add Object dropdown again, but this time select Child:

14. The Add Child Object screen will be displayed. Enter Success in the Object Name
field and in the Additional Constraints box, enter the search syntax status_
category="Success". Click on Preview to confirm that the results are displayed,
and then click on Save to save the new child object type.

Extending Intelligence – Data Models and Pivoting

166

15. After saving the object, you will be back in the Data Model Editor and the new Success
child object will be seen underneath the root level All Web Access event object.
Click on the All Web Access event object, and then repeat steps 13 and 14, adding
another child object type named Error with Additional Constraints of status_
category="Client Error" OR status_category="Server Error".

16. Once complete, you should see two child objects named Success and Error
underneath the root event object named All Web Access.

Our initial data model is now complete—congrats!

How it works...
In this recipe, you started off by creating a new data model for our web access dataset. After
the initial data model was created, you added a root-level event object type, named All Web
Access that will sit at the top of the object hierarchy. This event object allows for simple
constraints and you created an object constraint that constrained the object to only web
access logs. Following this, you added object attributes to the object, consisting of all the
autoextracted fields that Splunk already knew about, in addition to an evaluated expression
attribute to categorize the various status codes in the event data. You then used this newly
created status_category evaluated attribute to create child object types for Success and
Error events.

Behind the scenes, Splunk is essentially creating a Splunk search to report on the dataset
that is being modeled. The constraint provided essentially tells Splunk what data to look at
and the attributes are basically the fields within the data that Splunk will search. The Success
and Error child object types inherit all the attributes and constraints from their parent All
Access Logs object and act as further filters for the backend search that Splunk creates.

There's more...
Once data models are built, they provide the search time mapping needed by the Pivot tool for
reporting. However, it is also possible to view the underlying dataset mapped by data models
and their objects using the Splunk search interface.

Chapter 5

167

Searching data models using the search interface
The Splunk datamodel command allows for the searching of the dataset mapped by data
models and their associated objects directly from the Splunk search interface. In order to be
used, the command must be the first command used in your Splunk search.

Navigate to the search bar in the Operational Intelligence application and enter the following
search to see a list of all the data models in the application:

| datamodel

If we have multiple data models, you can filter to just the Web Access data model, by entering
the following search:

| datamodel Web_Access

The data returned is in JSON format and you are able to expand out the objectNameList to
see all the objects within the data model. To see data related to the All Web Access object,
enter the following search:

| datamodel Web_Access All_Web_Access

Here you can actually see the underlying search that has been written by Splunk for the
data model Object—it is pretty large! It might be large, but it is not that complicated. There
are actually a lot of renames and evals taking up most of the search, which give a rather
intimidating appearance.

To search the data in this object, enter the following search:

| datamodel Web_Access All_Web_Access search

Notice how all the data is now displayed and all the object attributes you declared in the
object type are represented as fields in the field sidebar. All these fields begin with the name
of the object, in this case, All_Web_Access.fieldname, which is not terribly useful, so we
can remove this by entering the following search:

| datamodel Web_Access All_Web_Access search | rename All_Web_Access.*
AS *

Now we can basically use this data as we would use any Splunk search. So, to see all error
events by status_category, you would enter the following search:

| datamodel Web_Access All_Web_Access search | rename All_Web_Access.*
AS * | search is_Error=1 | stats count by status_category

Extending Intelligence – Data Models and Pivoting

168

So why would you want to take this search approach over searching the data directly? Well
you can actually use data models to do a bit of heavy lifting for you in terms of correlating
datasets and adding additional calculated fields and so on. Therefore, there may be times
when this approach to searching the data does indeed make a lot of sense. Additionally, even
when data model acceleration is turned on, the datamodel command does not currently use
the acceleration. However, the pivot command (more on this later), does use acceleration,
but is not as useful.

For more information on the datamodel command, you should review the
search reference at http://docs.splunk.com/Documentation/
Splunk/latest/SearchReference/Datamodel.

See also
 f The Creating a data model for application logs recipe

 f The Accelerating data models recipe

Creating a data model for application logs
This recipe is similar to the first, except this time, you will create a data model for application
logs. You will be using Splunk's Data Model Editor to do this and will define a number of object
types, and add constraints and attributes. In order to save pages, this recipe will be lighter
on screenshots than the first recipe. The first recipe should therefore be used as a reference
where needed.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In, and the completed recipes from
earlier chapters. You should have also completed the first recipe in this chapter and be
familiar with navigating the Splunk user interface.

How to do it...
Follow the steps in this recipe to create the Application data model:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Select the Settings menu item at the top-right corner of the screen, and then select
Data models.

Chapter 5

169

4. The Web Access data model we created in the earlier recipe will be listed. Click on
the New Data Model button located at the top-right corner of the screen.

5. A pop-up box will be displayed. Enter Application in the Title field and as you
type, the ID will automatically populate. Ensure the selected app is Operational
Intelligence, and then click on the Create button.

6. This will create an empty data model and the Data Model Editor will be displayed.
Select the Add Object dropdown and select Root Event.

7. The Add Event Object page will be displayed. Enter All Application in the
Object Name field and in the Constraints box, enter the search syntax index=main
sourcetype=log4j. Once entered, click on the Preview button and some
application log events will be displayed in the preview area. Following this, click on
Save to save the event object type.

8. After saving the object type, the Data Model Editor will be displayed with the newly
created All Application object. Some inherited attributes will be seen on the right-
hand side. You will now add a few more. Click on the Add Attribute dropdown and
select Auto-Extracted.

9. A pop-up box will be displayed with all the fields that Splunk has already extracted for
the application logs. Check the checkbox next to the Field column heading at the top
of the field list. Notice that all fields will then become checked. Once complete, click
on Save and all these fields will now become attributes for the data model object.

Extending Intelligence – Data Models and Pivoting

170

10. You will now add a regular expression (regex) attribute to extract a new field called
Service from the dataset. This regex matches a pattern in the event that relates to
the different service events, either perf, odbc, or shop application events. Click on
the Add Attribute dropdown again, but this time select Regular Expression:

11. The Add Attributes with a Regular Expression screen will be displayed. In the
Regular Expression box, enter the following search syntax:
(?<Service>\w+)(?=\])

12. Enter Service in the Field Name field if not already automatically populated and
leave all other fields with the defaults. Then click on the Preview button. You should
see the new Service field populated in the preview results. Click on Save to save this
new regular expression attribute:

Chapter 5

171

13. You will now create a number of nested child object types to help filter the different
types of events within the application dataset. The following table lists all of the child
objects that you should create under the All Application Data root event object:

Child object Secondary child
object

Tertiary child
object

Constraints

Performance Service="perf"

Memory perfType="MEMORY"

DB perfType="DB"

Database Service="odbc"

Shop Service="shop"

Request requestType=*

Response NOT requestType=*

Success result="success"

Error NOT result="success"

Remember, that in order to add a child object, you need to select the Add Object
dropdown, and then select Child. Additionally, ensure that you preview the data as
you go, to ensure you have typed the attribute names correctly and that you have the
child objects under the correct parent object!

14. Once completed, your object hierarchy should resemble the following screenshot:

Extending Intelligence – Data Models and Pivoting

172

15. Finally, we will add a transaction object type to group event requests with respective
event responses. Select the Add Object dropdown and select Root Transaction:

The Add Transaction Object screen will be displayed. Enter Transactions in the
Object Name field. Under Group Objects, select to group the Request and Response
child objects that we just created. Select the threadid object attribute in the Group by
(optional) field and enter a maximum span of 1 hour.

16. Click on the Preview button and you should see the grouped transactions populated
in the event results box. Click on Save to save this new object type:

Our Application data model is now complete—congratulations!

Chapter 5

173

How it works...
In this recipe, you started off replicating a similar path to the first recipe by creating a new data
model for our application dataset. After the data model was created, you added a root-level
event object type, named All Application that will sit at the top of the object hierarchy. This
event object allows for simple constraints and you created an object constraint that constrained
the object to only application logs. Following this, you added object attributes to the object,
consisting of all the autoextracted fields that Splunk already knew about, in addition to a regular
expression attribute to categorize the various services within the event data. You then used
this newly created Service regular expression attribute plus other Auto-Extracted attributes to
create several nested child objects, in order to build an object hierarchy for the Application data
model. We also added a root level transaction object type, which grouped related application
events into individual transactions based on a common threadid.

Behind the scenes, Splunk is essentially creating a Splunk search to report on the dataset
that is being modeled. The constraints provided essentially tell Splunk what data to look at
and the attributes are basically the fields within the data that Splunk will search. The child
objects types inherit all the attributes and constraints from their parents and act as further
filters for the backend search that Splunk creates.

See also
 f The Creating a data model for web access logs recipe

 f The Accelerating data models recipe

Accelerating data models
Splunk has several options for optimizing search performance, including summary indexing,
report acceleration, and data model acceleration. We will cover both summary indexing and
report acceleration later in this book. Data model acceleration helps to speed up reporting for
the Object Attributes defined in a data model and this acceleration is leveraged by the Pivot
tool when reporting.

In this next recipe, you will accelerate the data models that we just created in order to
familiarize yourself with the process and enhance understanding. Ordinarily, you would only
really want to use data model acceleration for reporting on extremely large datasets over a
period of time.

Extending Intelligence – Data Models and Pivoting

174

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In, and the completed data model recipes
from earlier in this chapter. You should be familiar with navigating the Splunk user interface.

How to do it...
Perform the following steps in this recipe to accelerate the web access and Application
data models:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Select the Settings menu item at the top-right corner of the screen, and then select
Data Models.

4. The two data models we created in the first two recipes will be displayed. Click on
Edit next to the Application data model, and then on Edit Acceleration.

5. An Add Acceleration pop-up box will be displayed, informing you that private data
models cannot be accelerated. Click on the green Edit Permissions button.

Chapter 5

175

6. Change the Display For permissions button to App, and then click on Save.

7. Repeat step 4 and this time an Edit Acceleration pop-up box will appear. Check the
Accelerate checkbox, select 1 Month in the Summary Range field, and then click
on Save:

Extending Intelligence – Data Models and Pivoting

176

8. In the list of Data Models, you should now see a little yellow lightning bolt, which
indicates that acceleration is now activated for the Application data model.

9. Repeat the previous steps to accelerate the Web Access data model. Once complete,
both models will display the yellow lightning bolt and will also have App level
sharing permissions:

How it works...
Once you accelerate each model, Splunk starts building acceleration summaries behind the
scenes for the one month range that we selected. These summaries are built in the indexes
that contain the attributes specified in each data model; in this case, the main index. The
summaries are held in Splunk TSIDX files alongside the buckets of data in the index. Splunk
runs an internal process to keep these summaries updated every 5 minutes and also runs a
maintenance process to clean out old data every 30 minutes.

In this recipe, you accelerated both data models. However, accelerating
data models does require disk space and adds additional overhead
and processing, so it is only recommended on large datasets where
reporting performance is less than optimal. For more information
on Splunk's data model acceleration, please see http://docs.
splunk.com/Documentation/Splunk/latest/Knowledge/
Acceleratedatamodels.

There's more...
Data model acceleration has its advantages, but it also has several caveats that you should
be aware of. Some are as follows:

 f Only administrators can accelerate data models and private data models cannot
be accelerated.

 f Acceleration adds overhead and requires disk space to build the acceleration
summaries and maintain them on an ongoing basis. Therefore, acceleration is best
used for large datasets where Pivot-based reporting performance is suboptimal.

Chapter 5

177

 f Once accelerated, the data model cannot be edited without first disabling
acceleration. Disabling the acceleration, editing the data model, then re-enabling
acceleration will likely require summaries to be rebuilt.

 f Only root-level event objects and their direct child objects can be accelerated; the
models we just accelerated fit this criteria.

 f To keep data model acceleration as efficient as possible, indexes should be specified
in the object constraints and the summary range limited to as short as possible. The
larger the summary range, the greater the disk space and processing required.

Viewing data model and acceleration summary information
Splunk provides some nice summary information on each data model that is not immediately
apparent from the interface. From the data model management screen that lists the available
data models, you will notice a small information (i) column on the far left-hand side with a
greater than sign (>) next to each model. Click on this sign, and information pertaining to
the data model and acceleration summaries will be displayed, including the build status of
the acceleration summary and size on disk that the summary is using. You can also force a
rebuild or update of the acceleration summary.

Extending Intelligence – Data Models and Pivoting

178

Advanced configuration of data model acceleration
In this recipe, you enabled acceleration through the user interface. However, behind the
scenes, a number of configuration files can be edited directly to offer more flexibility.

Acceleration enablement, acceleration summary range, and the acceleration update
frequency can be edited and/or configured in datamodels.conf.

The location of the data model TSIDX summaries can be changed by modifying the
tstatsHomePath variable in indexes.conf.

See also
 f The Creating a data model for web access logs recipe

 f The Creating a data model for application logs recipe

Pivoting total sales transactions
Now that we have built a couple of data models, we can begin using Splunk's Pivot tool to
search and report the data without needing to write any searches.

In this recipe, you will start to get familiarized with the Pivot interface and use it to calculate
total sales transaction data. You will focus on identifying successful checkout transactions.
These are important from an intelligence standpoint, as they indicate that a sale has occurred
and payment has been made successfully. This data will then be populated on the Product
Monitoring dashboard. You will be using the transaction data model object that we defined in
the Application data model.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In, and the completed recipes from
earlier in this chapter. You should be familiar with navigating the Splunk user interface.

How to do it...
Follow these steps in this recipe to pivot the total sales transactions:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

Chapter 5

179

3. Select the Pivot menu item from the application menu:

4. Now, select the Application data model, and then select the Transactions object:

Extending Intelligence – Data Models and Pivoting

180

5. The New Pivot screen will load. Under the Filters section, change the time range
to Last 24 Hours. Next, select the + sign to add a new filter and select requestType
from the list of available attributes. Then select to match requestType of checkout.
Click on the Add to Table button once complete, to add this new filter to the Pivot.

6. Add another filter where result matches success:

Chapter 5

181

7. You should see a total count of transactions displayed. To turn this into a single value
visualization, select the Single Value Display icon on the left-hand side of the screen.

8. Locate the Under Label textbox on the left-hand side and enter a value of Sales
Transactions. You should see this appear under the number of transactions. Then
click on Save As and select Dashboard Panel:

Extending Intelligence – Data Models and Pivoting

182

9. Select Existing in the Dashboard field and ensure Product Monitoring is selected.
Enter Sales Transactions in the Panel Title field and click on Save:

10. The single value is added to the dashboard and this recipe is complete.

How it works...
The Pivot tool allows for datasets defined in data models to be searched without the need
to enter any searches into Splunk. In this recipe, you leveraged the transaction data model
object, created in a previous recipe, which brings together all application requests and
associated responses. You applied filters to the dataset to identify only the successful
checkout transactions. Splunk then subsequently displayed the count of transactions that
matched the specified filter over the selected time range and you chose to display this as
single value visualization and add it to the Product Monitoring dashboard. Behind the
scenes, Splunk uses the defined object and object attributes, together with the Attribute
filters, to create a Splunk search, not too different from a | stats count type search.
Splunk is then able to visualize the data in a similar way to how you visualized data from a
search. When adding to the existing dashboard, Splunk identifies the inline search associated
with it as a Pivot search.

There's more...
The Pivot tool provides users with a great point and click method for reporting and visualizing
datasets, without having to get to grips with the Splunk search language. However, it is also
possible to view the pivoted data using the Splunk search interface.

Chapter 5

183

Pivot searching using the pivot command and search interface
The Splunk pivot command allows for Pivot-based searching of datasets mapped by data
models directly from the Splunk search interface. The command differs from the datamodel
command we looked at earlier in this chapter, as it can take advantage of performance gains
offered by accelerated data models, whereas datamodel cannot. However, the datamodel
command is more extensible, as it allows for regular Splunk search syntax following the
command, whereas Pivot uses a specialized search syntax that is slightly different from the
regular Splunk search syntax.

When you use the Pivot tool interface to manipulate the underlying dataset, Splunk is writing
a search using the pivot command behind the scenes. Once you have filtered and split
the data to report on as needed, you can select to Open in Search by clicking on the little
magnifying glass in the top-right corner of the Pivot interface.

For this recipe, you will notice that the Pivot search resembles something along the lines of
the following search:

| pivot Application Transactions count(Transactions) AS "Count of
Transactions" FILTER requestType is checkout FILTER result is
success ROWSUMMARY 0 COLSUMMARY 0 NUMCOLS 0 SHOWOTHER 1

As can be seen, this is a slightly different search syntax from the regular Splunk SPL that we
have covered to date. Much like the datamodel command, the pivot command must be the
first command of the search and is followed by the name of the data model (Application)
and then the name of the object (Transactions). Following this, you must also provide a
transforming function, such as count. However, given this specialized syntax, it is easier to
use the Pivot tool to filter the data as needed to create the underlying Pivot search, than it is
to write the search yourself.

For more information on the pivot command, you should review the
search reference at http://docs.splunk.com/Documentation/
Splunk/latest/SearchReference/Pivot.

Extending Intelligence – Data Models and Pivoting

184

See also
 f The Pivoting slowest responding web pages recipe

 f The Pivoting purchases by geographical location recipe

 f The Pivot charting top error codes recipe

Pivoting purchases by geographical location
In the previous recipe, you performed a simple count of the number of successful sales
transactions. In this recipe, we will expand insight into these sales by exploring where in the
world sales requests are coming from. To do this, you will leverage the built-in geolocational
abilities of Splunk. First, you will amend the Application data model to bring in geolocational
object attributes. Then you will pivot off this data to map purchases by location.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In, and the completed recipes from
earlier in this chapter. You should be familiar with navigating the Splunk user interface.

How to do it...
Follow these steps in this recipe to pivot purchases by geographic region:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Select the Settings menu item at the top-right corner of the screen, and then select
Data models.

4. The two data models we created in the first two recipes will be displayed. Click on the
Application data model and the Application Data Model Editor will be displayed.

5. As the data model is accelerated, you will see an error message stating that it cannot
be edited. Click on the Edit button, and then on Edit Acceleration. Uncheck the
Accelerate checkbox in the pop-up box that is displayed, and then click on Save:

Chapter 5

185

6. Ensure the All Application object is selected on the left. Then locate ipAddress from
the list of Object Attributes and click on Edit:

7. On the Edit Attribute screen that is displayed, change the type to IPV4, and then
click on Save.

8. Back in the main Data Model Editor screen, click on Add Attribute and select Geo IP
from the drop-down list.

Extending Intelligence – Data Models and Pivoting

186

9. The Add Geo Attributes with an IP Lookup screen will load. You will notice a list of
additional attributes that are to be added to the data model. Enter lon, lat, city,
region, and country in the Display Name field for lon, lat, City, Region, and
Country respectively. Then click on Preview, to preview the data, followed by Save if
everything looks good.

10. Back in the main Data Model Editor screen, these new attributes will be displayed as
calculated attributes at the bottom of the attribute listing. You will notice that they are
all marked as Required, which is not needed. Select all of these new attributes by
checking their associated checkboxes:

Chapter 5

187

11. At the top of the attribute list, click on Bulk Edit and select Optional. Once this has
been done, the word Required will be removed from the attribute list.

12. Now, click on the Pivot button at the top-right corner of the screen:

13. Select the Request object (a child of the Shop object) from the list of objects that
are displayed.

14. Configure the Pivot with a time range of Last 24 Hours and requestType of checkout.

Extending Intelligence – Data Models and Pivoting

188

15. Next, select Country in Split Rows. A pop-up box will be displayed. Select Descending
in the Sort field, and then click on Add to Table.

16. The count of checkout requests will be calculated and displayed in a table by country.
To turn this into a pie chart visualization, select the Pie Chart icon on the left-hand
side of the screen. You should now see the data represented as a pie chart with
different country segments.

17. As with the previous recipe, click on Save As and select Dashboard Panel.

18. Select Existing in the Dashboard field and ensure Product Monitoring is selected.
Enter Sales Countries in the Panel Title field and click on Save.

19. The pie chart is added to the dashboard and this recipe is complete.

How it works...
Splunk has a built-in external IP address lookup, which is being leveraged in this recipe.
First, you specified which object attribute was an IP address. Following this, you configured
a number of Geo IP object attributes for longitude, latitude, city, region, and country. Behind
the scenes, Splunk passes the specified external IP address attribute into an internal lookup
database that returns the values of these additional Geo IP object attributes. We chose not
to make these required attributed (as is default), because not every event mapped by our
Application data model contains an IP address field. As you defined these fields at the root
event object level in the data model hierarchy, the attributes are available to other child
objects in the hierarchy. Following this, you pivoted off the checkout requests, which contain
an IP address and these IPs were then mapped to countries and reported on in the Pivot tool.

Chapter 5

189

See also
 f The Pivoting slowest responding web pages recipe

 f The Pivot charting top error codes recipe

 f The Pivoting total sales transactions recipe

Pivoting slowest responding web pages
In the past couple of recipes, we worked with the Application data model and added some
additional reports to the Product Monitoring dashboard related to sales and customer
location. In the next couple of recipes, you will begin to look at the operational health of our
environment and begin creating an Operational Monitoring dashboard.

The response time of a web application is one of the most important factors in determining
overall user experience and high response times could lead to lost customers, who are not
prepared to deal with slow loading web pages.

In this recipe, you will use the Pivot tool to table the response times for the various web pages
on our web application and identify the pages that are taking longest to load. You will add this
report to a new Operational Monitoring dashboard.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In, and the completed recipes from
earlier in this chapter. You should be familiar with navigating the Splunk user interface.

How to do it...
Perform the following steps to pivot search for the slowest responding web pages:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Select the Settings menu item at the top-right corner of the screen, and then select
Data models.

4. The two data models we created in the first two recipes will be displayed. Click on the
Web Access data model and the Web Access data model editor will be displayed.

5. As this data model is likely to be accelerated, you will need to click on the Edit button,
then select Edit Acceleration, and uncheck the Accelerate checkbox, as we did in
the previous recipe with the Application data model.

Extending Intelligence – Data Models and Pivoting

190

6. If you scan through the list of object attributes for the All Web Access data model,
you will see there is no ResponseTime attribute. This data is in the underlying
dataset but is not autoextracted by Splunk and therefore, not in the list. Click on the
Add Attribute button and select Regular Expression:

7. The Add Attributes with a Regular Expression screen will be displayed. In the
Regular Expression box, enter the following regex syntax that will identify the value in
the event relating to the response time:
(?i)^(?:[^"]*"){8}\s+(?P<ResponseTime>.+)

8. Enter ResponseTime in the Field Name field if not already automatically populated
and change Type to Number. Then click on the Preview button. You should see the
new ResponseTime field populated in the preview results. Click on Save to save this
new Regular Expression attribute.

9. Next, click on the Pivot button at the top-right corner of the screen and select the All
Web Access object in the list of available objects. The Pivot tool will then load.

10. Using the Pivot interface, select a filter of Last 24 Hours. Next select uri_path in
the Split Rows field. Select Descending in the Sort field, specify Max Rows value of
10, and then click on the Add To Table button.

Chapter 5

191

11. Splunk will now display a count of records by Web Application pages. Change the
Column Values attribute to the newly extracted ResponseTime attribute and select
a value of Average from the available list of operator values, then click on the
Update button.

12. The results will now display the web application pages together with their average
response times, sorted in a descending order:

Extending Intelligence – Data Models and Pivoting

192

13. This provides a good level of insight, but doesn't indicate how things change
over time. To plot these results by time, click and hold the uri_path box under
Split Rows and drag it over to Split Columns. You will notice the results are now
transposed and the web pages now appear as columns, rather than rows. Pretty cool!

14. Next, select _time in the Split Rows field and choose Hours (2011-01-31 23:00)
from the Periods drop-down list. Then click on the Add To Table button:

15. The data will now display rows representing each hour and the average response
time for each page during that hour.

16. This is not terribly useful information when displayed in tabular form; so, click on the
Column Chart icon on the left-hand side of the screen. Next, find the Color section
and choose stacked in the Stack Mode field. Following this, click on the Save as
button and select Dashboard Panel:

Chapter 5

193

17. In the pop-up box, create a new dashboard named Operational Monitoring and
ensure that Permissions field is set to Shared in App. Finally, enter Page Response
Times in the Panel Title field and click on the Save button.

18. The visualization will be saved to the new dashboard and the recipe is now complete.

Extending Intelligence – Data Models and Pivoting

194

How it works…
In this recipe, you explored some additional features of Splunk's Pivot tool. In order to pivot
off data related to response time, you had to add this attribute to the underlying Web Access
data model. Selecting to pivot off the All Web Access object filtered the dataset to the data
defined within the object constraints; in this case only web access event data. When you
began setting up the Pivot in step 9, you initially split the rows by uri_path and chose to
sort the rows in a descending order, keeping only 10 rows. This is very similar to performing
a | top uri_path search at the end of a filtered Splunk search, where only the top 10
results are displayed. When you changed the Column Value to average ResponseTime,
Splunk summed the total response time for all events specific to each web page and then
calculated an average response time, similar to doing a | stats avg(ResponseTime) by
uri_path search at the end of a filtered search. Following this step, you added the additional
element of time to the dataset, taking a snapshot of average response times by web page for
each hour. This is similar to doing a | timechart span=1h avg(ResponseTime) by
uri_path at the end of a filtered search. Finally, you visualized this data as a stacked bar
chart. This is a good way to present the data visually, as each block in each stack on the chart
represents the average response time for a given web page. It is then very easy to compare
all the pages together over a given time frame. Pages that take longer to load than others, will
have a bigger block in the stack.

See also
 f The Pivot charting top error codes recipe

 f The Pivoting purchases by geographical location recipe

 f The Pivoting total sales transactions recipe

Pivot charting top error codes
In this final recipe, you will use the Pivot tool to chart the top error codes over time. Error
codes from web application logs generally fall into two main categories, client-side errors
and server-side errors. Plotting the error codes over time will help identify which errors are
occurring, the types of errors, and when they occur.

While this recipe is slightly less technical to implement than the previous recipe, it will serve to
reinforce understanding and less instruction will be provided.

Chapter 5

195

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In, and the completed recipes from
earlier in this chapter. You should be familiar with navigating the Splunk user interface.

How to do it...
Follow these steps to pivot chart the top error codes:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Select the Pivot menu item from the application menu.

4. Select the Web Access data model and the Error object.

5. Configure the Pivot interface such that Filters is set to Last 24 Hours, Split Rows
is set to _time, Periods under _time is set to Hours (2011-01-31 23:00), Split
Columns is set to status, and Column Values is set to Count of Error.

6. You should see a count by status codes over 1-hour time periods. Select the
Line Chart icon to visualize this data as a line chart. Each error code will be
represented as a different colored line on the chart. Save this chart with a title
of Web Error Codes to the Operational Monitoring dashboard that we created in
the previous recipe.

Extending Intelligence – Data Models and Pivoting

196

How it works...
This recipe further familiarized you with the Pivot interface. Directly selecting the Error data
model object filtered the data to just web access data containing errors, due to the constraints
defined within the object. From here, you leveraged Pivot to count status codes over time in
1 hour increments. This is similar to doing a | timechart span=1h count by status
search at the end of a filtered search. Selecting to visualize this data on a line chart helps
to easily identify the various status codes over time and can clearly illustrate error spikes or
increases over a specific time period.

See also
 f The Pivoting slowest responding web pages recipe

 f The Pivoting purchases by geographical location recipe

 f The Pivoting total sales transactions recipe

Summary
The key takeaways from this chapter are as follows:

 f Data models allow Splunk datasets and associated knowledge to be mapped for use
by the Pivot tool

 f Data models contain objects of different types, constraints, and attributes

 f Data models can be accelerated to speed up Pivot searching over the underlying
dataset mapped by the model

 f Data models power the Pivot tool and allow dynamic reports and visualizations to be
built without the need to write any searches

 f The Pivot tool allows for simple point and click, drag-and-drop, and slicing and dicing
of modeled data

 f Pivot is suitable for less technical users, but leveraging the Splunk SPL directly is
more powerful and advanced

6
Diving

Deeper – Advanced
Searching

In this chapter, we will cover some of the more advanced search commands available within
Splunk. You will learn about:

 f Calculating the average session time on a website

 f Calculating the average execution time for multi-tier web requests

 f Displaying the maximum concurrent checkouts

 f Analyzing the relationship of web requests

 f Predicting website-traffic volumes

 f Finding abnormally sized web requests

 f Identifying potential session spoofing

Introduction
In the previous chapter, we learned about Splunk's new data model and Pivot functionality
and how they can be used to further intelligence reporting. In this chapter, we will return to
Splunk's SPL, diving deeper and making use of some very powerful search commands to
facilitate a better understanding and correlation of event data. You will learn how to create
transactions, build subsearches and understand concurrency, leverage field associations,
and so on.

Diving Deeper – Advanced Searching

198

Looking at event counts, applying statistics to calculate averages, or finding the top values
over time only provide a view of the data limited to one angle. Splunk's SPL contains some
very powerful search commands that provide the ability to correlate data from different
sources and understand or build relationships between the events. Through the building of
relationships between datasets and looking at different angles of the data, you can better
understand the impact one event might have over another. Additionally, correlating related
values can provide a much more contextual value to teams when reviewing or analyzing a
series of data.

Identifying and grouping transactions

Single events can be easily interpreted and understood, but these single events are often
part of a series of events, where the event might be influenced by preceding events or might
affect other events to come. By leveraging Splunk's ability to group associated events into
transactions based on field values, the data can be presented in a way in which the reader
understands the full context of an event and gets to see what led up to this point. Building
transactions can also be useful when needing to understand the time duration between
the start and finish of specific events or calculating values within a given transaction and
comparing them to the values of others.

Converging data sources

Context is everything when it comes to building successful operational intelligence, and when
you are stuck analyzing events from a single data source at a time, you might be missing out
on rich contextual information that other data sources can provide. With Splunk's ability to
converge multiple data sources using the join or append search commands and search
across them as if they are a single source, you can easily enrich the single data source and
understand events from other sources that occurred at, or around, the same time.

For example, you might notice there are more timeouts than usual on your website, but when
you analyze the website access log, everything appears normal. However, when you look at the
application log, you notice that there are numerous failed connections to the database. Even
so, by looking at each data source individually, it is hard to understand where the actual issue
lies. Using Splunk's SPL to converge the data sources will allow for both the web access and
application logs to be brought together into one view, to better understand and troubleshoot
the sequence of events that might lead to website timeouts.

Identifying relationships between fields

In the operational intelligence world, the ability to identify relationships between fields can
be a powerful asset. Understanding the values of a field, and how these values might have a
relationship with other field values within the same event, allows you to calculate the degree
of certainty the values will provide in future events. By continually sampling events as they
come in over time, you can become more accurate at predicting values in events as they
occur. When used correctly, this can provide a tremendous value in being able to actively
predict the values of fields within events, leading to a more proactive incident or issue
identification.

Chapter 6

199

Predicting future values

Understanding system, application, and user behavior will always prove to be extremely
valuable when building out any intelligence program; however, the ability to predict future
values can provide values more immense than simple modeling actions. The addition of
predictive capabilities to an Operational Intelligence program enables the ability to become
more proactive to issue identification, forecast system behavior, and plan and optimize
thresholds more effectively.

Imagine being able to predict the amount of sessions on your website, amount of purchases
of a specific product, response times during peak periods, or general tuning alerting
thresholds to values that are substantiated rather than taking an educated guess. All of this is
possible with predictive analytics; by looking back over past events, you can better understand
what the future will hold.

Calculating the average session time on a
website

In the previous chapters, we created methods to assess various values that show how
consumers interact with our website. However, what these values did not outline is how long
consumers spend on our website. By leveraging Splunk's more powerful search commands,
we can calculate the average session time of consumers interacting with our website, which
can act as supporting information when articulating data such as engagement rates, resource
requirements, or consumer experience.

In this recipe, you will write a Splunk search to calculate the average time of a session on the
website over a given period of time. You will then graphically display this value on a dashboard
using the single value visualization.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar
with navigating the Splunk user interface.

How to do it...
Follow the steps in this recipe to calculate the average session time on a website:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

Diving Deeper – Advanced Searching

200

3. Ensure the time range picker is set to Last 24 Hours, and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter:
index=main sourcetype=access_combined | transaction
JSESSIONID | stats avg(duration) AS Avg_Session_Time

4. Depending on your Splunk server, this might take a little while to run. Splunk will
return a single value representing the average duration in seconds for a session
on the website.

5. Click on the Visualization tab.

6. Since there are a number of visualizations within Splunk, the single value
visualization might not be displayed by default within the Visualization tab.
Click on the dropdown listing the visualization types, and select Single Value:

7. You should now see the value represented as the single value visualization.

8. Let's add more context to the visualization. Click on Format. Enter Avg Session
Time: in the Before Label and secs in the After Label textbox. Click on Apply to
save these labels:

Chapter 6

201

9. Your single value visualization should now look similar to the following example:

10. Let's save this search as a report. Click on Save As and choose Report from the drop-
down menu:

11. In the Save As Report window that appears, enter cp06_average_session_time
as the title, and click on Save:

Diving Deeper – Advanced Searching

202

12. You will receive confirmation that your report has been created. Now, let's add this
report to a dashboard. In the next window, click on Add to Dashboard:

13. You will create a new dashboard for this report. On the Save As Dashboard Panel
screen, ensure New is selected and enter Session Monitoring as the dashboard
title. Select Shared in App for the dashboard permissions and Report to power the
panel by a report. Finally, click on Save to create the dashboard:

Chapter 6

203

14. The report is saved and a new Session Monitoring dashboard is created. You can
now choose to click on View Dashboard to see your newly created dashboard with
the average session time report.

How it works...
Let's break down the search piece by piece:

Search fragment Description
index=main
sourcetype=access_combined

You should be familiar with this search from
the recipes in previous chapters. It is used to
return events from the website access log.

| transaction JSESSIONID Using the transaction command, we
group events together based on their given
JSESSIONID to form a single transaction.
The JSESSIONID field is chosen as each
visitor to the website is given a random
session identifier whose value is stored in
this field. One of the fields created by the
transaction command is the duration
field. The duration field represents the
amount of time, in seconds, between the
first and last events in the transaction.

| stats avg(duration) AS
Avg_Session_Time

Using the stats command, we calculate the
average value of the duration field. Using
the AS operator, we rename the resulting
field that is created with the given value
to something more readable, for example,
Avg_Session_Time.

There's more...
The transaction command provides many parameters to control the way in which
transactions are grouped. Using the startswith and endswith parameters, you can
control what marks the start and end of a transaction based on data inside the events. Using
the maxspan, maxpause, or maxevents parameter, you can control the constraints around
how long a transaction will be, the amount of time between events before splitting it into a
new transaction, or the total number of events within a transaction.

Diving Deeper – Advanced Searching

204

Where possible, using the parameters available for the transaction
command is highly encouraged. Using the transaction command
without any other parameter can result in a processing intensive (and
inefficient) search that takes a while to run.

Starts with a website visit, ends with a checkout
To mark where a transaction begins and ends, you can make use of two parameters available
within the transaction command, called startswith and endswith, respectively. In
the following example, we modify the search in the recipe to include the startswith="GET
/home" and endswith="checkout" parameters. This constrains the transaction
command to only group events together with a general website request when the first event
begins and the last event is a request to checkout. Any other event, or transaction, that does
not meet these criteria will be discarded and not included in the returned results:

index=main sourcetype=access_combined | transaction JSESSIONID
startswith="GET /home" endswith="checkout" | stats avg(duration)
AS Avg_Session_Time

By making use of these parameters, you can be more explicit on what gets treated as a
transaction or focus on specific groupings of data.

Defining maximum pause, span, and events in a transaction
Three more very useful parameters available, apart from the transaction command,
are maxpause, maxspan, and maxevents. These parameters allow you to apply more
constraints around the duration and size of transactions and can be used individually or all
together for even more precise constriction.

Adding the maxpause=30s parameter to the search in the recipe tells the transaction
command that there must be no pause between events greater than 30 seconds, otherwise
the grouping breaks. By default, there is no limit:

index=main sourcetype=access_combined | transaction JSESSIONID
maxpause=30s | stats avg(duration) AS Avg_Session_Time

Adding the maxspan=30m parameter to the search in the recipe tells the transaction
command that when building the transaction, the first and last events cannot be greater than
30 minutes, otherwise the grouping breaks. By default, there is no limit:

index=main sourcetype=access_combined | transaction JSESSIONID
maxspan=30m | stats avg(duration) AS Avg_Session_Time

Chapter 6

205

Adding the maxevents=300 parameter to the search in the recipe tells the transaction
command that when building the transaction, the total number of events contained within
cannot be greater than 300, otherwise the grouping breaks. By default, the value is 1,000:

index=main sourcetype=access_combined | transaction JSESSIONID
maxevents=300 | stats avg(duration) AS Avg_Session_Time

As mentioned, all of these parameters can be combined to create an even more constrained
transaction for specific use cases. Here is an example of a transaction that starts with a home
page request, ends with a checkout, is no longer than 30 minutes, has no events where there
is a pause greater than 30 seconds, and the maximum number of events contained within
is 300:

index=main sourcetype=access_combined | transaction JSESSIONID
startswith="GET /home" endswith="checkout" maxpause=30s
maxspan=30m maxevents=300 | stats avg(duration) AS
Avg_Session_Time

For more information on the transaction command, visit http://
docs.splunk.com/Documentation/Splunk/latest/
SearchReference/Transaction.

See also
 f The Calculating the average execution time for multi-tier web requests recipe

 f The Displaying the maximum concurrent checkouts recipe

Calculating the average execution time for
multi-tier web requests

With components existing at many different layers to provide varying functionalities, web
applications are no longer as straightforward as they once were. Understanding the execution
time for a web request across the entire application stack, rather than at a single layer, can
be extremely beneficial in correctly articulating the average time that requests take to execute
in their entirety. This can lead to identification of issues in relation to increasing website
response times.

In this recipe, you will write a Splunk search to calculate the average execution time of a web
request that traverses not only the website access logs but also application logs. You will then
graphically display this value on a dashboard using the single value visualization.

http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Transaction
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Transaction
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Transaction

Diving Deeper – Advanced Searching

206

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should also complete the
recipes in previous chapters and be familiar with navigating the Splunk user interface.

How to do it...
Follow the steps in this recipe to calculate the average execution time for multi-tier
web requests:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Ensure the time range picker is set to Last 24 Hours, and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter:
index=main sourcetype=access_combined | join JSESSIONID
usetime=true earlier=false [search index=main
sourcetype=log4j | transaction threadId maxspan=5m | eval
JSESSIONID=sessionId] | stats avg(duration) AS
Avg_Request_Execution_Time

4. After a little while, Splunk will return a single value representing the average
execution time in seconds for a complete web request on the website.

5. Click on the Visualization tab.

6. Since there are a number of visualizations within Splunk, the single value
visualization might not be displayed by default within the Visualization tab.
Click on the dropdown listing the visualization types, and select Single Value:

Chapter 6

207

7. You should now see the value represented as the single value visualization.

8. Let’s add more context to the visualization. Click on Format. Enter Avg Request
Execution: in the Before Label and secs in the After Label textbox, as shown in
the following screenshot. Click on Apply to save these labels:

9. Your single value visualization should now look similar to the following example:

10. Let’s save this search as a report. Click on Save As, and choose Report from the
drop-down menu:

Diving Deeper – Advanced Searching

208

11. In the Save As Report window that appears, enter cp06_average_request_
execution_time as the title, and click on Save:

12. You will receive a confirmation that your report has been created. Now, let’s add this
report to a dashboard. In the next window, click on Add to Dashboard:

13. You will now add this to the dashboard that was created in the previous recipe named
Session Monitoring. In the Save As Dashboard Panel window, click on the Existing
button beside the Dashboard label. From the drop-down menu that appears, select
Session Monitoring. For the Panel Powered By field, click on the Report button.
Finally, click on Save:

Chapter 6

209

14. Click on View Dashboard to see the panel that’s been added to your Session
Monitoring dashboard.

15. Now, let’s arrange the panels so they are side by side. Click on Edit and choose Edit
Panels from the drop-down menu:

Diving Deeper – Advanced Searching

210

16. Now, drag the newly added panel so that both single value visualizations are on the
same line, as shown in the following screenshot. When finished, click on Done:

How it works...
Let’s break down the search piece by piece:

Search fragment Description
index=main
sourcetype=access_combined

You should be familiar with this search from the
recipes in previous chapters. It is used to return
events from the website access log.

| join JSESSIONID
usetime=true earlier=false
[search index=main
sourcetype=log4j |
transaction threadId
maxspan=5m | eval
JSESSIONID=sessionId]

Using the join command, we execute a
subsearch to return matching events from
the web application log. The JSESSIONID
field is used as the unique value to join the
events on. Within the subsearch, we leverage
the transaction command to group all
application events together based on their
threadId, which is a unique value for each
function execution. The maxspan parameter
is used with the assumption that application
events common to the transaction will all
be within 5 minutes of each other. Then, we
create a field named JSESSIONID using
eval because it does not exist within the web
application events, which has a field named
sessionId instead. By creating this field,
the join will work properly as it knows how
to associate the events. The usetime and
earlier parameters passed to the join
command tell it to limit matches to only those
events that come after the originating web
access event. This ensures that only web
application events that occurred after the
website access log event will be returned, since
we know the natural method of execution for
our application requires a user interaction with
the website before the application will trigger a
function execution.

Chapter 6

211

Search fragment Description
| stats avg(duration) AS Avg_
Request_Execution_Time

Using the stats command, we calculate
the average value of the duration field, since
this field has been carried through by the use
of the transaction command within the
subsearch. Using the AS operator, we rename
the resulting field that is created with the given
value to something more readable, for example,
Avg_Request_Execution_Time.

There's more…
In this recipe, you used the join command to join an inner subsearch with an outer main
search. This is similar to a join in a SQL database. Another command that is similar to join is
append. The append command allows you to string two different searches together, such
that the results of the second search will be appended to the results of the first search. The
maximum value is obtained from append if the searches you append together share common
fields; use of the eval command or implementation of Common Information Model (CIM)
can help with this.

For more information on join, visit http://docs.
splunk.com/Documentation/Splunk/latest/
SearchReference/Join.
For more information on the append command, visit http://
docs.splunk.com/Documentation/Splunk/latest/
SearchReference/Append.

While both the join and append commands can be useful, they are not the most efficient
commands. This is because both commands execute multiple searches instead of just one.
Often, the stats or transaction command can be used in creative ways to avoid using
join or append, and to increase search performance as a result.

Calculating the average execution time without using a join
Often, there are many ways to write a search that results in providing the same or similar
insight. While there is nothing wrong with the search used in this recipe, we can amend the
search so that it does not use the join command. An example search might be as follows:

index=main sourcetype=access_combined OR sourcetype=log4j
| eval action=substr(uri_path,2) | eval
action=lower(if(isnull(action),requestType,action))
| eval JSESSIONID=if(isnull(JSESSIONID),sessionId,JSESSIONID)
| transaction threadId, JSESSIONID, action maxspan=1m
| stats avg(duration) AS Avg_Request_Execution_Time

http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Join
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Join
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Join
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Append
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Append
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Append

Diving Deeper – Advanced Searching

212

Here, we search both the web access and application logs in the same search. We evaluated
a new field called action using similar field values found in the web access (uri_path) and
application logs (requestType). For example, a checkout web request generates a checkout
application request. Using the transaction command, we transact all events across both
sourcetypes that share a session ID, thread ID, or our new action field. We also make the
assumption that our requests do not take longer than a minute to execute, and subsequently,
we set a maxspan of one minute. Setting this tightened criteria will make the transaction
command more efficient. Splunk will now group all web requests and subsequent application
events related to the web requests together into transactions, with durations calculated for
each. We then apply the same stats command to work out the average request execution
time. This might actually provide a more accurate execution time as we incorporate the
timestamp of the web access logs into the transaction duration.

See also
 f The Calculating the average session time on a website recipe

 f The Displaying the maximum concurrent checkouts recipe

 f The Analyzing the relationship of web requests recipe

Displaying the maximum concurrent
checkouts

Typically, when analyzing web requests, events often overlap with one another due to multiple
users issuing requests concurrently. By identifying these overlapping requests, and further
understanding the concurrency of events, you will gain a clearer picture of the true demand
for both resources and consumer demands.

In this recipe, you will write a Splunk search to find the number of concurrent checkouts over a
given period of time. You will then graphically display this value on a dashboard using the line
chart visualization.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should also complete the earlier
recipes in this chapter and be familiar with navigating the Splunk user interface.

Chapter 6

213

How to do it...
Follow the steps in this recipe to identify the number of concurrent checkouts over a given
period of time:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Ensure the time range picker is set to Last 24 Hours, and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter:
index=main sourcetype=access_combined | transaction
JSESSIONID startswith="GET /home" endswith="checkout"
| concurrency duration=duration | timechart max(concurrency) AS
"Concurrent Checkouts"

4. After a short while, Splunk will return the values associated with the maximum
concurrent checkout's split in 30-minute durations.

5. Click on the Visualization tab.

6. Since there are a number of visualizations within Splunk, the line chart visualization
might not be displayed by default within the Visualization tab. Click on the dropdown
listing the visualization types, and select Line:

7. You should now see the value represented as the line chart visualization.

Diving Deeper – Advanced Searching

214

8. Let's add more context to the visualization and correct some values. Click on Format,
and then click on the Y-Axis tab. Click on the drop-down Title menu and choose
Custom. Enter Count as the title, and click on Apply to apply the changes:

Your line chart visualization should now look similar to the following example:

9. Let's save this search as a report. Click on Save As, and choose Report from the
drop-down menu:

Chapter 6

215

10. In the pop-up box that appears, enter cp06_concurrent_checkouts in the Title
field, and then click on Save:

11. You will receive a confirmation that your report has been created. Now, let's add this
report to a dashboard. In the next window, click on Add to Dashboard:

Diving Deeper – Advanced Searching

216

12. You add this report to the Session Monitoring dashboard that was created in an
earlier recipe. In the Save As Dashboard Panel pop-up box, click on the Existing
button beside the Dashboard label. From the drop-down menu that appears, select
Session Monitoring. Enter Maximum Concurrent Checkouts in the Panel Title
field, and ensure the panel is powered by Report. Then, click on Save:

13. You can now click on View Dashboard to see the panel on your Session Monitoring
dashboard.

How it works...
Let's break down the search piece by piece:

Search fragment Description
index=main
sourcetype=access_combined

You should be familiar with this search from
the earlier recipes in this chapter. It is used to
return events from the website access log.

| transaction JSESSIONID
startswith="GET /home"
endswith="checkout"

Using the transaction command, we
group events together, based on their given
JSESSIONID, to form a single transaction and
apply transaction parameters so that events
start with a GET request for the main page and
end with checkout.

Chapter 6

217

Search fragment Description
| concurrency
duration=duration

The concurrency command is used
to find the concurrent number of events,
given a duration value, which occurred at
the same start time. The duration field
being used here is generated by the use
of the transaction command. A field
named concurrency will be created by the
concurrency command, and this will store
the value of concurrent events.

| timechart
max(concurrency) AS
"Concurrent Checkouts"

The timechart command is leveraged to plot
the maximum values of the concurrency
field over the given period of time. The AS
operator is leveraged to rename the field
to a more readable value, for example,
Concurrent Checkouts.

The concurrency command is a useful way of calculating concurrent events without using
too much logic. In this recipe, you were able to use the command to identify the maximum
amount of concurrent checkouts throughout the day.

For more information on the concurrency command, visit http://
docs.splunk.com/Documentation/Splunk/latest/
SearchReference/Concurrency.

See also
 f The Calculating the average execution time for multi-tier web requests recipe

 f The Analyzing the relationship of web requests recipe

 f The Predicting website-traffic volumes recipe

Analyzing the relationship of web requests
To better understand the events occurring within a web application environment, you need
to start building relationships between the pieces of data within events. By leveraging these
relationships, efforts can become more targeted on the events requiring attention and a
more proactive stance on issue identification can be taken. Imagine being able to say with
confidence that when a certain page is requested, it will have a status of 404, or when a
specific product is added to a cart, the service becomes unresponsive. Having this type of
relationship capability added into your Operational Intelligence application opens up a vast
array of possibilities when performing event analysis.

http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Concurrency
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Concurrency
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Concurrency

Diving Deeper – Advanced Searching

218

In this recipe, you will write a Splunk search to analyze the relationship of web requests
between the status of the request and the pages where the request originated from over
a given period of time. You will then add this table as a panel to a dashboard.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should also complete the earlier
recipes in this chapter and be familiar with navigating the Splunk user interface.

How to do it...
Follow the steps in this recipe to analyze the relationship of web requests over time:

1. Log in to your Splunk server.
2. Select the Operational Intelligence application.
3. Ensure the time range picker is set to Last 24 Hours, and type the following search

into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter:
index=main sourcetype=access_combined NOT status=200 |
associate uri status supcnt=50 | table Description
Reference_Key Reference_Value Target_Key
Top_Conditional_Value

4. Splunk will return the results in a tabular format similar to the following example:

5. Let's save this search as a report. Click on Save As and choose Report from the
drop-down menu:

Chapter 6

219

6. In the pop-up box that appears, enter cp06_status_uri_relationships in the
Title field, and click on Save:

7. You will receive a confirmation that your report has been created. Now, let's add this
report to our Session Monitoring dashboard we created earlier in this chapter. In the
next window, click on Add to Dashboard:

Diving Deeper – Advanced Searching

220

8. In the Save As Dashboard Panel pop-up box, click on the Existing button beside
the Dashboard label. From the drop-down menu that appears, select Session
Monitoring. Enter Status and URI Relationships in the Panel Title field,
ensure the panel is powered by Report, and then click on Save:

9. You can now click on View Dashboard to see the panel that has been added to the
Session Monitoring dashboard.

How it works...
In this recipe, you used the associate command to find relationships between the status
and uri fields in the web access events. The associate command works by calculating
a change in entropy based upon field-pair values. It is able to provide a prediction of a field
value based upon another field value.

Let's break down the search piece by piece:

Search fragment Description
index=main
sourcetype=access_combined
NOT status="200"

You should be familiar with this search from
the earlier recipes in this chapter. However,
we added search criteria to not return any
event where the status field is equal to 200
(success).

Chapter 6

221

Search fragment Description
| associate uri status
supcnt=50

The associate command is used to
identify correlations between the uri and
status fields. The associate command
creates multiple new fields. The fields
Reference_Key, Reference_Value,
and Target_Key are used to indicate
the fields being analyzed. The supcnt
parameter is used to specify the minimum
number of times the "reference
key=reference value" combination
must appear. The fields Unconditional_
Entropy, Conditional_Entropy,
and Entropy_Improvement contain
the entropy that was calculated for each
pair of field values. The Description
field provides a more easily readable
summarization of the result.

| table Description
Reference_Key
Reference_Value Target_Key
Top_Conditional_Value

The table command is used last to format
the output of the results. Here, we chose
to display only a few of the available fields
generated by the associate command.

Examining the tabulated results in more detail, we selected to display the Description,
Reference_Key, Reference_Value, Target_Key, and Top_Conditional_Value
fields. The Description field provides a textual description in the following format:

"When the 'Reference_Key' has the value 'Reference_Value', the
entropy of 'Target_Key' decreases from Unconditional_Entropy to
Conditional_Entropy."

Taking a row from the results table, when the Reference_Key field is equal to the
Reference_Value field, then the Target_Key field is most likely to be the Top_
Conditional_Value field. For example, a status code of X might most likely have a uri
value of Y.

It is highly recommended that you review the documentation for the
associate command as there is quite a bit to it and some of the
concepts are fairly complex. The documentation is available at http://
docs.splunk.com/Documentation/Splunk/latest/
Searchreference/Associate.

http://docs.splunk.com/Documentation/Splunk/latest/Searchreference/Associate
http://docs.splunk.com/Documentation/Splunk/latest/Searchreference/Associate
http://docs.splunk.com/Documentation/Splunk/latest/Searchreference/Associate

Diving Deeper – Advanced Searching

222

There's more…
The associate command does not require that you explicitly pass field names to it, so when
starting out with your event data, it is best to just call the command without any parameters
and explore the results that are returned. At times, this can prove to be most useful, as you
will likely identify relationships that you might previously not have thought of.

Analyzing relationships of DB actions to memory utilization
The associate command is most useful to analyze events related to system resource
utilization. It can be leveraged to understand if there is any relationship between the type
of DB action being executed by the web application and the current memory utilization. The
following search will group events together into transactions based on their given threadId,
and then compile relationships between the dbAction and mem_user fields using the
associate command:

index=main sourcetype=log4j | transaction threadId | associate
supcnt=50 dbAction mem_used

This can be most beneficial when trying to understand how function calls have an impact on
resource utilization by drawing out direct relationships of the values.

See also
 f The Displaying the maximum concurrent checkouts recipe

 f The Predicting website-traffic volumes recipe

 f The Finding abnormally sized web requests recipe

Predicting website-traffic volumes
In any environment, the capability to predict events provides immense value. In many cases,
predictive analytics involves looking back over past events to predict what might occur in the
future with a certain degree of confidence. When applied to the operational intelligence space
and used correctly, predictive analytics can become a key asset that is more heavily relied on by
teams rather than any other part of an Operational Intelligence program. For example, imagine
having the ability to know the appropriate thresholds to set to alert key staff of impending
issues, the capability to understand that a problem is beginning to occur even before it does, or
simply being able to predict what consumers will purchase and ensuring the items are in stock.
These examples just scratch the surface on use cases for predictive analytics.

In this recipe, you will write a Splunk search to predict website traffic volumes over a given time
period. You will then graphically represent these values on a dashboard using a line chart.

Chapter 6

223

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with
navigating the Splunk user interface.

How to do it...
Follow the steps in this recipe to predict website traffic volumes over a given period of time:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Ensure the time range picker is set to Last 24 Hours, and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter:
index=main sourcetype=access_combined | timechart span=1h
count | predict count

4. Splunk will return the resulting calculations in a tabular format in 1-hour intervals.

5. Click on the Visualization tab.

6. Since there are a number of visualizations within Splunk, the line chart visualization
might not be displayed by default within the Visualization tab. Click on the dropdown
listing the visualization types and select Line:

Diving Deeper – Advanced Searching

224

7. You should now see the value represented as line chart visualization, which is similar
to the following example:

8. Let's save this search as a report. Click on Save As and choose Report from the
drop-down menu:

9. A Save As Report pop-up box will appear. Enter cp06_website_traffic_
prediction in the Title field, and then click on Save:

Chapter 6

225

10. You will receive a confirmation that your report has been created. Now, let's add this
report to a dashboard. In the next window, click on Add to Dashboard:

11. You will create a new dashboard for this report. On the Save As Dashboard Panel
pop-up screen, make sure New is selected. Enter Predictive Analytics in the
Dashboard Title field. Ensure the dashboard permissions are set to Shared in App.
Enter Website Traffic Volume Predictions as the panel title and ensure the
panel is powered by Report. Then, click on Save to create the dashboard:

12. You can now click on View Dashboard to view your newly created Predictive
Analytics dashboard.

Diving Deeper – Advanced Searching

226

How it works...
Let's break down the search piece by piece:

Search fragment Description
index=main
sourcetype=access_combined

You should now be familiar with this search
from the earlier recipes. It is used to return
events from the website access log.

| timechart span=1h count The timechart command simply performs
a count of events in 1-hour intervals. This
produces the total count in a tabular form.

| predict count The predict command is used to look
back over the given dataset and generate
three new fields: prediction, which is the
predicted future value for the given data point,
upper95, which is the upper-confidence
interval, and lower95, which is the lower-
confidence interval. The confidence intervals
specify the percentage of predictions that are
expected to fail. The default value is 95% but
can be adjusted as needed.

There's more…
Predictive analytics can be applied to many different aspects of operational intelligence.
The following are a few more short examples of other ways that Splunk's predict command
might be leveraged to provide operational insight.

Predicting the total number of items purchased
The predict command can be used to analyze the number of items being purchased from
a website, therefore ensuring that the right amount of product is always stocked. The Splunk
search will be written as shown:

index=main sourcetype=log4j requestType=checkout | timechart
span=1h sum(numberOfItems) as count | predict count

Here, we simply look for all of the checkout events within the web application log and create
a time chart of the sum of items purchased in 1-hour intervals. Then, we pipe the results into
the predict command.

Chapter 6

227

Predicting the average response time of function calls
Predicting the average response time of function calls can allow you to better tune your
alerting thresholds if, or when, a function call falls outside the acceptable range. This can
allow teams to better prioritize and hone in on issues as they occur or even when they begin to
occur. The Splunk search will be written as shown:

index=main sourcetype=log4j | transaction threadId | timechart
span=1h avg(duration) as avg_duration | predict upper98=high
lower98=low avg_duration

Here, we must first calculate the duration of a function call by using the transaction
command to group the events by threadId. Next, the timechart command will calculate
the average duration by 1-hour intervals, and rename the field to avg_duration. Then, the
results are piped to the predict command, where we have specified an upper and lower 98%
confidence interval in which predictions are expected to fail.

For more information on the predict command, visit http://
docs.splunk.com/Documentation/Splunk/latest/
SearchReference/Predict.

See also
 f The Analyzing the relationship of web requests recipe

 f The Finding abnormally sized web requests recipe

 f The Identifying potential session spoofing recipe

Finding abnormally sized web requests
The identification of abnormalities within events can prove to be valuable for many reasons; it
can lead to the identification of a resource issue, highlight malicious activities hidden within
high volumes of events, or simply detect users attempting to interact with the application in a
way they were not designed to. When building an Operational Intelligence application for your
website, the ability to detect abnormal activities should be at the top of your list. Frequently,
after issues are identified, remediated, and due diligence has been done, it is common to
see that some abnormality in the system or application was an early identifier of the cause.
Capitalize on these opportunities to capture the abnormalities and triage them accordingly.

In this recipe, you will create a Splunk search to highlight abnormal web requests based
on the size of the request over a given time period. You will then present all findings in a
tabular format.

http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Predict
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Predict
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Predict

Diving Deeper – Advanced Searching

228

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should also complete the earlier
recipes in this chapter and be familiar with navigating the Splunk user interface.

How to do it...
Follow the steps in this recipe to identify abnormally-sized web requests:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Ensure the time range picker is set to Last 24 Hours, and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter:
index=main sourcetype=access_combined | eventstats
mean(bytes) AS mean_bytes, stdev(bytes) AS stdev_bytes |
eval Z_score=round(((bytes-mean_bytes)/stdev_bytes),2) |
where Z_score>1.5 OR Z_score<-1.5 | table _time, clientip,
uri, bytes, mean_bytes, Z_score

4. Splunk will return the results in a tabulated form, similar to the following example:

5. Let's save this search as a report. Click on Save As and choose Report from the
drop-down menu:

Chapter 6

229

6. In the Save As Report pop-up box that appears, enter cp06_abnormal_web_
request_size as the title, and then click on Save:

7. You will receive a confirmation that your report has been created. Now, let's add this
report to the Session Monitoring dashboard you created earlier in this chapter. In the
next window, click on Add to Dashboard:

Diving Deeper – Advanced Searching

230

8. In the Save As Dashboard Panel pop-up box, click on the Existing button beside
the Dashboard label, and then select Session Monitoring from the drop-down menu.
Enter Abnormal Web Requests by Size in the Panel Title field and ensure it is
powered by Report. Then, click on Save:

9. You can now click on View Dashboard to see your newly added panel.

How it works...
Let's break down the search piece by piece:

Search fragment Description
index=main
sourcetype=access_combined

You should now be familiar with this search
from the earlier recipes. It is used to return
events from the website access log.

| eventstats mean(bytes) AS
mean_bytes, stdev(bytes) AS
stdev_bytes

The eventstats command is used to
calculate the mean value and standard
deviation of bytes over a given time period.
The resulting values are added as new fields
to each event.

| eval
Z_score=round(((bytes-
mean_bytes)/stdev_bytes),2)

Using the eval command, we calculate a
new field called Z-score for each event
and round it to two decimal places. The
Z-score field associated with each event
will enable us to understand the amount
and direction of variation from what is
normal.

Chapter 6

231

Search fragment Description
| where Z_score>1.5 OR
Z_score<-1.5

Using the where command, we filter for
only those Z-scores that are deemed to
be too far away from what is normal. This
numeric threshold should be tuned as you
get a better understanding of your data and
events. As a standard best practice, 1.5 is
used here. The higher the values, the more
extreme the abnormalities will become.

| table _time, clientip,
uri, bytes, mean_bytes,
Z_score

The table command is used here to format
the output of our search to make it more
easily understandable.

You can make use of the predict command to look at previous events
and to provide a better insight into the most accurate threshold values
used to filter Z-scores.

There's more...
In this recipe, we looked at the use of the eventstats command with some general
statistics applied to isolate events that might deviate too far from what is considered normal.
There are a few other prebuilt commands that Splunk has to perform similar tasks. We will
cover these commands in the following sections.

The anomalies command
The anomalies command is used to look for events based on the values of a field and return
only the values that you won't expect to find. As the anomalies command is running, it
assigns an unexpectedness score to each event, and the event is only considered unexpected
if the unexpectedness score breaches the defined threshold. In the following example, we use
the anomalies command to assess the bytes field within our website access logs, and we
define a threshold of unexpectedness at 0.03. The table and sort commands are just to
make data presentation a little bit nicer:

index=main sourcetype=access_combined | anomalies field=bytes
threshold=0.03 | table unexpectedness, _raw | sort –unexpectedness

The results that are returned will be those that the anomalies command deems to be
unexpected events. The algorithm that scores the events is proprietary to Splunk, but a short
description can be found on the Splunk documentation site for the anomalies command.

Diving Deeper – Advanced Searching

232

For more information on the anomalies command, visit http://
docs.splunk.com/Documentation/Splunk/latest/
SearchReference/Anomalies.

The anomalousvalues command
The anomalousvalues command provides yet another means to find irregular or
uncommon search results. It will look at the entire event set for the given time range, take
into consideration the distribution of values, and then make a decision on whether a value is
anomalous. In the following example, we use the anomalousvalues command against the
website access logs and set a probability threshold of 0.03 that must be met:

index=main sourcetype=access_combined | anomalousvalue
pthresh=0.03

The results that are returned will be those that the anomalousvalues command deems
to be anomalous.

For more information on the anomalousvalues command, visit
http://docs.splunk.com/Documentation/Splunk/
latest/SearchReference/Anomalousvalue.

The cluster command
The cluster command provides a method to cluster similar events together, making it easier
for you to identify outliers. Outliers are those events that are part of very small clusters or are
on their own; all other events are a part of large-sized clusters. In the following example, we
use the cluster command against the website access logs to identify any potential outlier.
The showercount parameter is used to ensure the size of each cluster displayed. The table
and sort commands are just to make data presentation a little bit nicer:

index=main sourcetype=access_combined | cluster showcount=t |
table cluster_count _raw | sort +cluster_count

The results that are returned will be sorted with the smallest cluster being listed first.
Additional filtering, such as NOT status=200, can be applied to the event search to further
filter out false-positives and allow for proper prioritization of event investigation.

For more information on the cluster command, visit http://
docs.splunk.com/Documentation/Splunk/latest/
SearchReference/Cluster.

http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Anomalies
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Anomalies
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Anomalies
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Anomalousvalue
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Anomalousvalue
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Cluster
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Cluster
http://docs.splunk.com/Documentation/Splunk/latest/SearchReference/Cluster

Chapter 6

233

See also
 f The Predicting website-traffic volumes recipe

 f The Identifying potential session spoofing recipe

Identifying potential session spoofing
Sometimes, the most common website-operational issues relate to malicious users operating
on the site or attempting malicious activities. One of the simpler and more common activities
is to attempt to spoof the session identifier to that of a legitimate one in the hope that a
session can be hijacked. Typically, web applications are built for proper session handling, but
mistakes can be made, and even the best web applications can fall victim to simple session
spoofing or hijacking. Understanding the impact that this can have on the operation of the
website, we will leverage a common command we used throughout this chapter to identify any
potential malicious use and flag it for investigation.

In this recipe, you will write a Splunk search to aid in the identification of potential session
spoofing over a given period of time. The results will be presented in a tabular format and
added to a dashboard.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should also complete the earlier
recipes in this chapter and be familiar with navigating the Splunk user interface.

How to do it...
Follow the steps in this recipe to identify potential session spoofing activity:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Ensure the time range picker is set to Last 24 Hours, and type the following search
into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter:
index=main sourcetype=access_combined | transaction
JSESSIONID | eval count_of_clientips=mvcount(clientip) |
where count_of_clientips > 1 | table _time,
count_of_clientips, clientip, JSESSIONID | sort
count_of_clientips

4. Splunk will return the results in a tabular format.

Diving Deeper – Advanced Searching

234

5. Let's save this search as a report. Click on Save As and choose Report from the
drop-down menu:

6. In the Save As Report pop-up box that appears, enter cp06_potential_session_
spoofing in the Title field, and then click on Save:

7. You will receive a confirmation that your report has been created. Now, let's add this
report to the Session Monitoring dashboard you created earlier in this chapter. In the
next window, click on Add to Dashboard:

Chapter 6

235

8. In the Save As Dashboard Panel pop-up box, click on the Existing button beside the
Dashboard label and select Session Monitoring from the drop-down menu. Enter
Potential Session Spoofing in the Panel Title field and ensure the panel is
powered by Report. Then, click on Save:

9. You can now click on View Dashboard to see your newly added panel.

It is best practice to save these types of searches as alerts so that
you are automatically notified at the time a security incident occurs.
It will help to lessen the impact of any potential repercussions due to
malicious activity.

How it works...
In this recipe, you wrote a search to detect spoofed sessions. Essentially, the search looks for
where a single session identifier (JSESSIONID) is associated with multiple client IP addresses
over the given time range of 24 hours. Understandably, in almost all cases, a session identifier
will only come from a single client IP address. So, if there are sessions that have multiple IPs,
then this can very well detect spoofing of a session. Results will only be displayed where there
is more than one client IP associated with a specific session.

Diving Deeper – Advanced Searching

236

Let's break down the search piece by piece:

Search fragment Description
index=main
sourcetype=access_combined

You should now be familiar with this search
from the earlier recipes. It is used to return
events from the website access log.

| transaction JSESSIONID Using the transaction command, we
group events together based on their given
JSESSIONID to form a single transaction.

| eval
count_of_clientips=mvcount
(clientip)

Using the eval command, we create a
new field called count_of_clientips,
which is populated by the output of the
mvcount function. The mvcount function
is responsible for providing a count of the
values contained within a multivalued
field.

| where count_of_clientips
> 1

Using the where command, we tell Splunk
to only return events where the value
of the count_of_clientips field is
greater than 1.

| table _time,
count_of_clientips,
clientip, JSESSIONID

The table command is used here to
format the output of our search to make it
more easily understandable.

| sort count_of_clientips The sort command is used to sort the
results based on the values stored within
the field named count_of_clientips.

There's more...
Besides presenting the data sorted based on the count of client IPs that were associated with
a given session identifier, logic can be applied to ensure events that meet specific criteria and
are raised higher in the list when compared to others.

Creating logic for urgency
Not all session spoofing is alike, and therefore, it needs to be responded to differently
according to the urgency associated with the event. For example, a session might be spoofed,
but this session is not in the midst of any purchasing, and therefore, the potential financial
loss to either the website or the consumer is extremely low. Another session is spoofed in the
middle of making over $1,000 in purchases, and therefore, the potential financial loss to the
parties involved is substantial.

Chapter 6

237

You can build some common logic into your search based upon given values to increase the
urgency associated with an event. In the following example, we bring together the website
access and web application logs to enhance the amount of information we have access to. We
then set up specific conditions that increase the urgency based on the values stored within
the given events:

index=main sourcetype=access_combined
| join JSESSIONID usetime=true earlier=false [search index=main
sourcetype=log4j | transaction threadId | eval
JSESSIONID=sessionId]
| transaction JSESSIONID
| eval count_of_clientips=mvcount(clientip) | where
count_of_clientips > 1
| eval cost_urgency=if(itemPrice>=1000,"2","1")
| eval frequency_urgency=case(count_of_clientips=="2","1",
count_of_clientips=="3","2",1=1,"3")
| eval urgency=cost_urgency + frequency_urgency
| table _time, count_of_clientips, clientip, JSESSIONID
| sort urgency

In this example, we join the field values from the web application log with the website access
log, and then build a transaction of the session identifiers within the website access log. Next,
we count the number of clientip values associated with each unique session identifier
and ensure that only events with more than one clientip are returned. We now add further
logic to say that if the itemPrice field value is greater than or equal to $1,000, then the
cost_urgency field value will be raised to 2, otherwise it will remain at 1. The next piece of
logic looks at the number of clientip fields associated with the unique session identifier
and assigns a value to frequency_urgency accordingly. The values of cost_urgency
and frequency_urgency are then added together to form the overall urgency value. The
tabulated results are then sorted based on the overall urgency, allowing teams to focus more
clearly on the most important incidents.

See also
 f The Predicting website-traffic volumes recipe

 f The Finding abnormally sized web requests recipe

Diving Deeper – Advanced Searching

238

Summary
The key takeaways from this chapter are as follows:

 f There are many ways to analyze data aside from looking at events individually

 f Adding contexts to events by converging data sources provides immense value

 f Building transactions leads to a better understanding of user, system, and application
behavior

 f Using statistics to assess abnormalities in your events can lead to a more proactive
issue identification

 f Predictive analytics provides more conclusive evidence to assist with resource
planning and threshold tuning

7
Enriching

Data – Lookups
and Workflows

In this chapter, we will learn how to augment and enrich the data within Splunk. You will
learn about:

 f Looking up product code descriptions

 f Flagging suspicious IP addresses

 f Creating a session state table

 f Adding hostnames to IP addresses

 f Searching ARIN for a given IP address

 f Triggering a Google search for a given error

 f Creating a ticket for application errors

 f Looking up inventory from an external database

Introduction
In the previous chapter, you continued to improve your Splunk search and analytical skills by
creating more advanced searches that leveraged more of the deep analytical commands to
gain more operational intelligence from the data contained within the logs. In this chapter, you
will leverage Splunk's lookup functionality to enrich these results with the data found outside
of the logs. You will also use Splunk's workflow functionality to perform some simple actions
on the data that you discovered.

Enriching Data – Lookups and Workflows

240

Lookups
Lookups are used to enrich log data with additional data not found in the log events
themselves. They allow you to key off one or more fields in the event data and add additional
fields to this data. These additional fields are commonly added by looking up the specified
fields in a static CSV-based lookup table and then bringing back additional fields associated
with that specific entry in the table. However, lookups can also be a lot more dynamic,
leveraging Python scripts or directly looking up fields in an external database table. Lookup
tables can also contain time fields to allow for time-based lookups in a given time period.

While external lookups using Python scripts are usually dynamic in nature, you might think
that CSV-based lookups would only be useful for types of data such as HTTP status codes
that never change over time (well, maybe every once in a while). However, Splunk can be
used to populate CSV lookups using the output of a search and saving this as a lookup table.
This technique can provide many different possible uses, from identifying trends to creating
various aging reports. In this chapter, you will build and populate a number of lookups and
leverage a dynamic scripted lookup.

Workflows

When working with events being returned by Splunk, there are often times where there is a
need to perform a subsequent operation in order to get more details. Sometimes, performing
another search within Splunk is enough, but at other times, you might need to send this data
to an external system for further processing.

Splunk provides a feature known as workflow action that can be configured to provide
different options, depending on what fields are present in your search results. There are
two types of workflow actions currently available: the ability to open a link to a web-based
resource and the ability to execute an additional search within Splunk. The link action can be
used to search for data in popular search engines or link to other internal resources such as
helpdesk tools or change management systems. The search action can be used to initiate
more complex searches than you can get with a chart or table drilldown. In this chapter, you
will build both link- and web-based workflow actions.

DB Connect

Splunk DB Connect is a Splunk supported application for Splunk Enterprise that lets you
enrich and combine your log data with external database data. Using DB Connect, you can
directly query external databases using SQL from Splunk directly and return the results to
Splunk. These results can be combined with other log data, converted to local lookups, or
indexed into Splunk. DB Connect also allows for external database lookups to enrich your log
data with additional information while it is being searched. At the end of this chapter, we will
install DB Connect and pull in inventory data from an external database.

Ok, enough of discussion; let's get started!

Chapter 7

241

Looking up product code descriptions
Log data can be filled with identification numbers, short codes, error numbers, or other values
that don't always make the information easy to read or understand quickly.

This recipe will show you how to add a lookup table to your Operational Intelligence application
so that when a product code field is present in an event, a description field can automatically
be added and populated with the full description of that product.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with
navigating the Splunk user interface.

How to do it...
Follow the steps in this recipe to create an automatic product code lookup:

1. Create a new file called productdescriptions.csv using your favorite text editor
on your local computer and add the following lines, taking care to ensure that the
commas are typed correctly:
itemId,itemName,itemDescription
4728475,Rolux Navigator,Stylish mens watch with metal band
38492,Rolux Sportsman,Mens sport watch with timer
1000014,Ripple BookPro 13,13 inch laptop - 5PB HDD/200GB RAM
1000015,Ripple Jukebox 500,Portable music player - 984 hour
battery life
1000016,Poku Castbox,Video streaming device - HDMI compatible
1000017,Ripple Jukebox 300,Music streaming device 300GB storage
capacity
1000020,Ripple MyPhone 8,The latest phone from Ripple - 8 inch
with 8TB of storage capacity

2. You can alternatively use the productdescriptions.csv file that is provided.

3. Save the file in a location that is easily accessible from your web browser.

Enriching Data – Lookups and Workflows

242

4. Log in to your Splunk server.

5. Select the Operational Intelligence application.

6. Click on the Settings menu, and then select the Lookups menu item.

7. Click on Lookup table files.

Chapter 7

243

8. Click on New.

9. Select the destination app as operational_intelligence.

10. Click on the Choose File button (it may be different depending on your browser
or operating system) and select your productdescriptions.csv file.

As the file is much smaller than the maximum 500 MB file size, we are able to upload
it via the GUI without any issue.

Larger files can be uploaded through the backend filesystem
to $SPLUNK_HOME/etc/apps/operational_
intelligence/lookups.

11. In the Destination filename field, enter productdescriptions.csv and then
click on Save.

Enriching Data – Lookups and Workflows

244

12. Now, we need to define our lookup in Splunk.

13. Click on Lookups.

14. Click on Lookup definitions.

15. Click on New.

16. In the Name field, enter Product_Descriptions, set the Type field to File-based,
and select the productdescriptions.csv file in the Lookup file field. Then, click on Save.

Chapter 7

245

17. Finally, we are going to automate the lookup such that the lookup is performed
automatically when searching for the log4j sourcetype. Click on Lookups again.

18. This time, click on Automatic lookups.

19. Click on New.

20. Select operational_intelligence in the Destination app field, and enter Product_
Descriptions in the Name field.

21. In the Lookup table dropdown, select Product_Descriptions:

Enriching Data – Lookups and Workflows

246

22. Select sourcetype in the Apply to field and enter log4j in the named field.

23. Enter itemId in both fields for Lookup input fields.

24. Set itemDescription to ProductDescription and itemName to ProductName
in the Lookup output fields.

25. Click on Save.

26. Click on Apps and select the Operational Intelligence app.

27. In the search bar, enter the following search over Last 24 hours:
index=main sourcetype="log4j" itemId=* | table itemId
ProductDescription, ProductName

28. It should now display the ProductDescription and ProductName entries for each field.

Chapter 7

247

How it works...
When you issue a search in Splunk, it checks its configuration to see if there are any lookups
defined. If it finds a lookup that matches the appropriate host, source, or sourcetype for the
events returned in the search, it will take the input fields that are defined and match them
against the data in the lookup file and the fields in the events. If the field values match, it
will add the output fields from the lookup table to the events as the new fields using the
fieldnames as configured in the lookup.

There are many different configurations possible with lookup tables. For example, it is possible
to have input field matches on more than one field, and you can have the output fields
overwrite the fields that already exist in the search results.

In this recipe, we chose to implement an automatic lookup. Automatic lookups negate the
need to explicitly use the lookup command in your search but can carry a performance cost.
For example, every search of the log4j sourcetype will now perform this product lookup
automatically, whether we need the fields and associated values returned from the lookup
or not.

Automatic lookups are only recommended where it makes sense to do so and
where every search of that sourcetype, source, or host would benefit from the
automatic lookup.

There's more...
As with most configurations in Splunk, there is more than one way to do something. While the
product lookup can be configured via the web interface, it can also be performed manually.

Manually adding the lookup to Splunk
Lookups don't have to be added just via the web interface. The lookup files can be
manually uploaded to the Splunk server and the configuration can be manually added
to the lookup configuration.

1. Upload your productdescriptions.csv file to $SPLUNK_HOME/etc/apps/
operational_intelligence/lookups (create the lookups directory if
required)

2. Add the following stanza to $SPLUNK_HOME/etc/apps/operational_
intelligence/local/transforms.conf (create the transforms.conf file
if required):
 [Product_Descriptions]
filename = productdescriptions.csv

Enriching Data – Lookups and Workflows

248

3. Add the following stanza to $SPLUNK_HOME/etc/apps/operational_
intelligence/local/props.conf (create the props.conf file if required):
 [log4j]
LOOKUP-Product_Descriptions = Product_Descriptions itemId
AS itemId OUTPUTNEW itemDescription AS ProductDescription,
itemName AS ProductName

See also
 f The Flagging suspicious IP addresses recipe

 f The Creating a session state table recipe

 f The Looking up inventory from an external database recipe

Flagging suspicious IP addresses
Any server that receives requests from clients will always be a potential target for someone
to try and exploit by initiating an attack. Attacks can come in many different forms, and over
time, it is important to keep a history of the originating source of the attack. So, we can
monitor the behavior and patterns more closely and potentially use this data to block access
as needed.

In this next recipe, you will learn how to store the source IP addresses of clients, who based
on their request behavior are to be flagged as suspicious IPs.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar
with navigating the Splunk user interface.

How to do it...
Follow the steps in this recipe to create a lookup table of malicious IP addresses:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. In the search bar, enter the following search over a time range of Last 7 days, and
press Enter or click on the search icon to execute the search:
index=main sourcetype="access_combined" status=403 | stats
count by clientip | eval suspect="1" | outputlookup
createinapp=true suspect_ips.csv

Chapter 7

249

4. A tabulated list of IPs that contain the three columns of clientip, count, and suspect
will be displayed. Click on the Save as link and select Report.

5. Enter cp07_suspect_ips in the Title field.

6. Select None in the Visualization field and No in the Time Range Picker field. Then,
click on Save.

7. Click on the Schedule link.

Enriching Data – Lookups and Workflows

250

8. Check the Schedule Report box.

9. In the Schedule dropdown, select Run every hour.

10. Click on Next and then on Save.

11. Now, let's leverage the new suspect_ips.csv lookup to identify all the web access
events from the IP addresses that are suspect. In the search bar of the Operational
Intelligence application, enter the following search over Last 24 hours:
index=main sourcetype=access_combined | lookup
suspect_ips.csv clientip AS clientip OUTPUTNEW suspect AS
suspect | where suspect=1

12. You will now see all the web access events filtered to only show the clientip
addresses that were in the suspect_ips.csv lookup file.

How it works...
In this recipe, you identified the clients associated with web requests that have a status
code of 403 over the past 7 days and wrote these IP addresses to a lookup file. Status code
403 means the clientip address in question has attempted to access something that is
forbidden. When writing the lookup, you evaluated a new field called suspect and gave every
entry a value of 1. This suspect field will be used as a flag to filter data later on.

Chapter 7

251

When the initial search is executed, it leverages the outputlookup command, which writes
data to a lookup file that you specify in the search (in this case, a file called suspect_ips.
csv). The outputlookup command takes several arguments, as shown in the following table:

Argument Value

<filename> or
<tablename>

This tells Splunk where to insert the lookup data. If the name matches an
existing lookup stanza in the transforms.conf configuration, then it
will use that location; otherwise, it will create a new file with the filename
specified. This field is required.

append
This will tell Splunk to append the table data to the end of the file.
Otherwise, it will just overwrite the file with new data.

max This limits the number of rows that Splunk will populate in the lookup table.

create_empty

This can be true (default) or false. If true, then when there is no data
to output, Splunk will still create a zero-byte file. If false, then when there
is no data to output, Splunk will not create a file, and if the file already
exists, it will delete it.

createinapp
This tells Splunk to create the lookup file in the app context in which the
search was run. If not specified, then the lookup table is created in the
system location.

The inline outputlookup command is a convenient way to create lookup tables or maintain
lookup tables since the lookup file was created following the execution of the search. You then
saved the search and scheduled it to run every hour. By doing this, the search will run hourly
and rewrite the lookup file each hour with up-to-date data. As a result, the suspect IP listing
will be continually updated and maintained.

Once this was done, you wrote a new search to leverage the lookup file you just created and
filter the access_combined events to only those events that contain a suspect=1 field
value. The search leverages the lookup command to match clientip in the data with
clientip in the suspect_ips.cvs lookup file. The lookup file then enriches the data by
adding a suspect=1 field/value pair where clientip matches. You were then able to use
this new data in the search to filter the results to only events that contained a suspect=1
field/value.

This recipe scratches the surface of how lookups can be used in a powerful way. In this recipe,
you were able to filter your results using the data that was not present in the source but rather
the data that you enriched the source data with using a lookup.

In this recipe, you wrote a search to look back over 7 days but then had
the schedule of the search running hourly. This works fine in our example
dataset but might be considered inefficient. Report acceleration or
summary indexing can be used for efficiency gains. Review Chapter 9,
Speed Up Intelligence – Data Summarization, for more information on this.

Enriching Data – Lookups and Workflows

252

There's more...
As with most configurations in Splunk, there is more than one way to do something. While the
product lookup can be configured via the web interface, it can also be performed manually.

Modifying an existing saved search to populate a lookup table
You can modify an existing saved search via a configuration file to populate a lookup table by
adding the following code to the search stanza in any of your savedsearches.conf files:

action.populate_lookup = 1
action.populate_lookup.dest = <string>

The <string> value can either be the path to a *.csv file or the name of an existing lookup
table definition in the transforms.conf file.

Alternatively, you can also just use the Splunk GUI and amend the saved search to include the
outputlookup command and required parameters.

See also
 f The Looking up product code descriptions recipe

 f The Creating a session state table recipe

 f The Looking up inventory from an external database recipe

Creating a session state table
In this recipe, you will learn how to leverage lookups to maintain a state table that will capture
the first time a session was seen and continually update the existing session's information
accordingly. You can use this to determine if a session has gone stale and has been
abandoned or if someone is trying to hijack an old session.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with navigating
the Splunk user interface.

Chapter 7

253

How to do it...
Follow the steps in this recipe to create a state table of sessions:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. In the search bar, enter the search and select to run it over Last 15 minutes:
index=main sourcetype="access_combined" | eval
firsttime=_time | eval lasttime=_time | stats
last(firsttime) as firsttime, first(lasttime) as lasttime
by JSESSIONID | outputlookup createinapp=true
session_state.csv

4. You should see a tabulated list by session ID, listing the firsttime and lasttime
columns. Splunk will also have created a lookup named sessions.csv as a result
of the search.

5. Next, amend the query slightly as follows and rerun the search over Last 15
minutes again:
index=main sourcetype="access_combined" | eval
firsttime=_time | eval lasttime=_time | fields JSESSIONID
firsttime lasttime | inputlookup session_state.csv
append=true | stats last(firsttime) as firsttime,
first(lasttime) as lasttime by JSESSIONID | outputlookup
createinapp=true session_state.csv

Enriching Data – Lookups and Workflows

254

6. You should see a very similar (if not the same) list of times and session IDs. Now, let's
save this search as a report. Click on the Save As link and select Report.

7. Enter cp07_session_state as the title, and then click on Save.

8. Click on the Schedule link.

9. Check the Schedule Report box.

Chapter 7

255

10. In the Schedule dropdown, select Run on Cron Schedule, and then enter */15 * *
* * in the Cron Expression field. This cron schedule means that the saved report will
run every 15 minutes. Then, click on Next and then on Save.

11. The state table is now created and will periodically update every 15 minutes. Let's
now view the table. Enter the following search in the search bar of the Operational
Intelligence application:
|inputlookup session_state.csv
| eval firsttime_daysago=round((now()-firsttime)/60/60/24)
| eval lasttime_daysago=round((now()-lasttime)/60/60/24)
| convert ctime(firsttime), ctime(lasttime)
| table JSESSIONID firsttime, firsttime_daysago, lasttime,
lasttime_daysago

12. You should be presented with a session table, listing the first time the session was
seen, how many days ago the first time was, the last time the session was seen, and
how many days ago the last time was.

How it works...
This recipe is designed to maintain some form of state about the sessions being used within
the application we are monitoring. The data we are capturing includes both the first time the
session ID was detected and also the last time the session ID was detected. A lookup table
is used to maintain the up-to-date states of the sessions over time and will be a lot faster to
search than trying to search for all the sessions over time.

Enriching Data – Lookups and Workflows

256

In this recipe, we initially started with two searches: the first search was used to create the
lookup file as this did not exist, and the second search was the search that we chose to save
and schedule. This second search brings in the existing lookup table we created in the first
search, which is why the first search was performed.

As the first and second searches are similar, let's explain how the second search works with
the help of the following table:

Search fragment Description
index=main
sourcetype="access_
combined"

This tells Splunk to find all of the web server logs in the
main index.

| eval
firsttime=_time |
eval lasttime=_time

Here, we use the eval command to evaluate firsttime
and lasttime. In this case, both times will be using the
_time field in the event, which is the timestamp of the event.

| fields JSESSIONID
firsttime lasttime

Next, we declare that we only want to use the JSESSIONID,
firsttime, and lasttime fields.

| inputlookup
session_state.csv
append=true

Next, we leverage the inputlookup command to bring in
the existing session_state.csv lookup file (created in
the one-time first search). The results of this will be appended
to the existing results of the search.

| stats
last(firsttime) as
firsttime,
first(lasttime) as
lasttime by
JSESSIONID

Here, we leverage the last() and first() functions of
the stats command to find the oldest firsttime date
(using last) and the most recent lasttime date (using
first), and list these two fields using JSESSIONID. This
will ensure that we keep a copy of the oldest date as the first
time the session was seen and the most recent date as the
last time the session was seen.

| outputlookup
createinapp=true
session_state.csv

Finally, we write back to the session_state.csv lookup
using the outputlookup command. This will replace the
old file with a new one that contains the results of our search.

As this search is scheduled to run every 15 minutes and look back over the past 15 minutes, it
will build up a large table of session IDs in time. This can be very useful for tracking purposes.

You might want to amend the lookup population search to drop session IDs
that have a firsttime date older than a certain number of days so that
the lookup does not keep filling up forever.

Chapter 7

257

Once the lookup was saved and scheduled, the final part of the recipe involved putting
together a search that leveraged inputlookup to view the data in the lookup file. You
evaluated new fields to calculate the number of seconds between the present time (using
now()) and both the firsttime and lasttime field's epoch values. The convert
command and ctime function were then leveraged to display the firsttime and lasttime
fields in a readable timestamp format rather than displaying the epoch seconds.

See also
 f The Flagging suspicious IP addresses recipe

 f The Adding hostnames to IP addresses recipe

 f The Searching ARIN for a given IP address recipe

Adding hostnames to IP addresses
In this recipe, you will learn how to add hostnames to IP addresses in the log data by
leveraging external lookups. There are many times where a hostname value can be more
valuable than an IP address, and it can provide an easier identifier around what clients are
connecting to your application. Many ISP-based connections can be very identifiable by the
format of their hostnames, which can help you identify potential malicious activity.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with
navigating the Splunk user interface.

How to do it...
Follow the steps in this recipe to lookup hostnames for given IP addresses:

1. On your Splunk server, create a new transforms.conf file at $SPLUNK_HOME/
etc/apps/operational_intelligence/local/transforms.conf. If one
already exists, then you can just edit the existing file.

2. Add the following text to the file and save it:
 [dnsLookup]
external_cmd = external_lookup.py host ip
fields_list = host, ip

3. Return to the Splunk web interface and select the Operational Intelligence application.

Enriching Data – Lookups and Workflows

258

4. In the search bar, enter the following search:
index=main sourcetype="access_combined" | lookup dnslookup
clientip

5. Hit your Enter key, and the search should start; wait for some results to show.

6. You should now see a clienthost field in your data.

How it works...
The external lookup used in this recipe is bundled with Splunk. When the script is called at
search time, a lookup table is created in the memory to facilitate the passing back of content,
just as if it had been read from a CSV file on the server. Multiple columns are in the table and
can be mapped to in order to have the lookup enrich your data with the appropriate new field/
values from the table. In this case, we passed the clientip to the script, the IP is looked up
using DNS, and clienthost returned.

External lookup commands provide a mechanism to look up data in real time. This is useful
when a local lookup data table becomes too large or the data becomes stale too quickly. As
external lookups are just scripts, they can also be used to call out to your custom applications
or services to provide a very simple integration. Other examples for external lookups could
involve looking up more data about specific product codes or order information.

Chapter 7

259

Note that as an external script is generally used to access third-party systems, there can be a
delay in the time it takes to return search results, or the script might place additional load on
the third-party systems.

Currently, Splunk only supports Python scripts to be used for
external lookups.

There's more…
In this recipe, we leveraged a DNS lookup to convert IP addresses into hostnames. We did
this by calling the lookup in the search directly using the lookup command. However, you
might wish to automate this and have the IP/host translation done automatically for a given
sourcetype, host, or source.

Enabling automatic external field lookups
To enable DNS lookups to occur automatically on the web server logs, add the following code
to the $SPLUNK_HOME/etc/apps/operational_intelligence/local/props.conf
file. If there is no props.conf file, then you will need to create one.

[access_combined]
LOOKUP-dns = dnsLookup clientip OUTPUTNEW clienthost AS
resolved_hostname

See also
 f The Flagging suspicious IP addresses recipe

 f The Creating a session state table recipe

 f The Searching ARIN for a given IP address recipe

Searching ARIN for a given IP address
IP addresses, on their own, can only give a tiny glimpse into their association, where they are
from, or what they are for. You might be able to determine if an IP is from a private range, what
asset it belongs to, or if it is from a well-known server, but in many cases, you might not know
much about the IPs in question.

In this recipe, you will learn how to leverage Splunk's workflow functionality to search an IP
address in your events against the ARIN (American Registry for Internet Numbers) database
to look up more useful information about the IP in question, such as who the IP address is
assigned to.

Enriching Data – Lookups and Workflows

260

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with navigating
the Splunk user interface.

How to do it...
Follow the steps in this recipe to create a workflow action ARIN search for a given IP address:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Click on the Settings menu.

4. Click on the Fields menu option.

5. Click on the Workflow actions link.

Chapter 7

261

6. Click on New.

7. Ensure that the destination app is the operational_intelligence app.

8. Enter ARIN_Lookup in the Name field. This name must not contain any spaces or
special characters. It will be used as the internal name of the action and is not the
text that will be made visible.

Enriching Data – Lookups and Workflows

262

9. Enter Lookup $clientip$ in ARIN in the Label field. The label is the text that
will appear in the workflow dropdown. It can contain a field name enclosed with dollar
signs, which will be replaced with the value of that field in the event.

10. Enter clientip in the Apply to the following fields field.

11. In the Show action in dropdown, select Both, and in the Action Type dropdown,
select link.

12. In the URI field under Link configuration, enter http://whois.arin.net/rest/
ip/$clientip$ and ensure that the Link method field is set to get.

13. Click on Save to finish creating the workflow action.

14. Let's now test the workflow action and see what it does. In a new search bar of your
Operational Intelligence app, enter the following search over Last 15 minutes:
index=main sourcetype=access_combined

Chapter 7

263

15. Once the results are displayed, click on the little arrow next to an event, and then
click on the Event Actions button. You will see an option in the dropdown to
run the ARIN search on the clientip address.

16. Clicking on this option in the dropdown will open a new tab in the browser; this tab
passes the IP address to arin.net and performs a whois lookup. The results from
arin.net will be displayed.

How it works...
When your search results are rendered in the event listing, Splunk will match the returned
fields and event types with the workflow actions you have configured and present the
dropdown workflow actions as required. In this case, the clientip field was matched with
the ARIN workflow action you created.

The basic GET link method used in this recipe will insert the variable value into the URI for
the user to click on. In this case, the $clientip$ field variable inserts the IP address into
the ARIN query URI, such that the IP is passed within the URI when it is clicked on. Other link
methods are available and covered in other recipes in this chapter.

Workflow actions can be made to appear in both the Event Actions drop-down menu and Action
column in the row specific to the field in the event that the workflow action is set to work with.

By utilizing the field name substitution in the label and the URI, you can dynamically
create a full assortment of workflow actions to enable your users to link to other internal
or external resources.

arin.net
arin.net

Enriching Data – Lookups and Workflows

264

There's more...
While workflow actions can be a convenient way to link to external resources based on the
presence of certain fields in your events, you sometimes require more control when particular
workflow actions are displayed.

Limiting workflow actions by event types
Edit the workflow action that you created in this recipe, and in the Apply only to the following
event types box, you can add in a comma-separated list of the event type names that this
workflow action will be limited to.

For more information on event types, see the Splunk documentation at
http://docs.splunk.com/Documentation/Splunk/latest/
Knowledge/Abouteventtypes.

See also
 f The Creating a ticket for application errors recipe

 f The Triggering a Google search for a given error recipe

 f The Adding hostnames to IP addresses recipe

Triggering a Google search for a given error
Many times, you will run across data in your events that you might not fully understand. For
example, logs typically contain error codes that can be cryptic to figure out. You can use a
lookup table to translate these error codes into something meaningful, if this makes sense.
However, you can also create a workflow action to search the Internet for codes that, perhaps,
you do not need to look up that often. Looking at what the greater web community has posted
has certainly saved many an administrator a sleepless night.

This recipe will show you how to build a workflow action that will allow you to take the status
code from a search in Splunk and have it initiate a search in Google with the Google search
terms already populated.

http://docs.splunk.com/Documentation/Splunk/latest/Knowledge/Abouteventtypes
http://docs.splunk.com/Documentation/Splunk/latest/Knowledge/Abouteventtypes

Chapter 7

265

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar
with navigating the Splunk user interface.

How to do it...
Follow the steps in this recipe to create a workflow action that allows you to trigger a Google
search for the error codes in your events:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Click on the Settings menu.

4. Click on the Fields menu option.

Enriching Data – Lookups and Workflows

266

5. Click on the Workflow actions link.

6. Click on New.

7. Ensure that the destination app is the operational_intelligence app.

8. Enter Google_Search in the Name field. This name must not contain any spaces
or special characters. It will be used as the internal name of the action and is not the
text that will be made visible.

Chapter 7

267

9. Enter Google HTTP Status $status$ in the Label field. The label is the text
that will appear in the workflow dropdowns. It can contain a field name enclosed with
dollar signs, which will be replaced with the value of that field in the event.

10. Enter status in the Apply only to the following fields box.

11. In the Show action in dropdown, select Both, and in the Action type dropdown,
select link.

12. In the URI field under Link configuration, enter http://google.com/
search?q=http%20status%20$status$ and ensure that the Link method
field is set to get.

13. Click on Save to finish creating the new workflow action.

14. Let's now test the workflow action and see what it does. In a new search bar of your
Operational Intelligence app, enter the following search over Last 15 minutes:
index=main sourcetype=access_combined

Enriching Data – Lookups and Workflows

268

15. As in the previous recipe, once the results are displayed, click on the little arrow next
to an event, and then click on the Event Actions button. You will see an option in the
dropdown to run the Google search on the status code in the event.

16. Clicking on this option in the dropdown will open a new tab in the browser that
passes the status code to google.com, and a Google search is then performed for
the status code in question.

How it works...
This recipe is similar to the previous recipe. When your search results are rendered in the
event listing, Splunk will match the returned fields and event types with the workflow actions
you have configured and present the dropdown workflow actions as required. In this case, the
status field was matched with the Google workflow action you created.

The basic GET link method used in this recipe will insert the variable value into the URI for
the user to click on. In this case, the $status$ field variable inserts the HTTP status code
into the Google search query URI such that the status code is passed within the URI when it
is clicked on.

By utilizing the field name substitution in the label and the URI, you can create a full array of
dynamically named workflow actions that can be generated to enable your users to link to
other internal or external resources.

There's more...
While workflow actions can be a convenient way to link to external resources based on the
presence of certain fields in your events, it is possible to link data to external resources in
other ways.

google.com

Chapter 7

269

Triggering a Google search from the chart drilldown options
Workflow actions work well when you are in an event-based view, but sometimes, you might
wish to perform a Google search when looking at data within a visualization. By adding some
minor tweaks to the SimpleXML in a chart element, you can have the chart linked to Google
as well.

<drilldown>
<link target="_blank">
http://google.com/search?q=$row.sourcetype$
</link>
</drilldown>

You can replace $row.sourcetype$ with the correct chart variable you need to pass to your
Google search.

See also
 f The Creating a ticket for application errors recipe

 f The Searching ARIN for a given IP address recipe

 f The Adding hostnames to IP addresses recipe

Creating a ticket for application errors
When errors or other notable events are detected in your application events, you might wish to
carry out some further investigation or remediation measures. Often, this involves creating a
ticket in a system to assign and track progress.

This recipe will show you how you can take error code data from your search results in Splunk
and have it open a ticket in your helpdesk system, using a Splunk workflow action. Of course,
there are tons of different ticketing systems in use out there, and there isn't a one-size-fits-all
approach. So, while the principles of this recipe are sound, you might need to configure things
slightly differently to work with the ticketing system in use within your own business.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with
navigating the Splunk user interface.

Enriching Data – Lookups and Workflows

270

How to do it...
Follow the steps in this recipe to set up a workflow action that allows us to generate a ticket
when errors are detected:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Click on the Settings menu and then on the Fields menu option.

4. Click on the Workflow actions link.

Chapter 7

271

5. Click on New.

6. Ensure that the destination app is the operational_intelligence app.

7. Enter Open_JIRA_Issue in the Name field. This name must not contain any spaces
or special characters. It will be used as the internal name of the action and is not the
text that will be made visible.

8. Enter Open JIRA Issue for $errorCode$ in the Label field. The label is the text
that will appear in the workflow dropdowns. It can contain a field name enclosed with
dollar signs, which will be replaced with the value of that field in the event.

9. Enter * in the Apply to the following fields field.

Enriching Data – Lookups and Workflows

272

10. In the Show action in dropdown, select Both, and in the Action type dropdown,
select link:

11. In the URI field under Link configuration, enter http://127.0.0.1:8000/jira/
issue/create.

12. Select Post in the Link method dropdown:

13. Enter error in the first Post arguments field and $errorCode$ in the second field.

14. Click on Save.

When creating workflow actions that you wish to share with
other users, make sure that you update the permissions.
More information on permissions can be found at http://
docs.splunk.com/Documentation/Splunk/latest/
Knowledge/Manageknowledgeobjectpermissions.

http://docs.splunk.com/Documentation/Splunk/latest/Knowledge/Manageknowledgeobjectpermissions
http://docs.splunk.com/Documentation/Splunk/latest/Knowledge/Manageknowledgeobjectpermissions
http://docs.splunk.com/Documentation/Splunk/latest/Knowledge/Manageknowledgeobjectpermissions

Chapter 7

273

How it works...
This recipe is somewhat theory based and will not work with our sample data as, first, we do
not have an errorCode field in our dataset, and secondly, the workflow action configuration
will need to point to your own ticketing system. However, this recipe works in a very similar way
to the other recipes in this chapter that use workflow actions to improve the integration with
external resources. The difference with this recipe is that it uses an HTTP POST method to
submit data to the external system. When configuring a POST request, you need to specify the
field names and values within the body of the request. This differs from the simple GET method
that does everything via the query string. POST requests are useful when you are sending a
larger number of fields or a larger amount of data .Some browsers or web servers cannot handle
sending that much data using a GET request. In this case, you might wish to post a number of
different fields to the ticketing system.

This recipe showed how tickets can be generated using a workflow action.
However, often, tickets can be generated based upon an e-mail being sent,
containing the information needed. Splunk's native alerting functionality can
be used to do this automatically when an alert is triggered. Additionally, the
sendresults command on the Splunk apps site might also be useful.

There's more...
Workflow actions can also be configured at the backend rather than using the Splunk GUI. To
do this, you will need to create/edit the workflow_actions.conf file in the application's
local directory.

Adding a workflow action manually in Splunk
You can manually add a workflow action to Splunk by updating the configuration files directly.
To add our action to open a ticket for application errors, add the following code to $SPLUNK_
HOME/etc/apps/operational_intelligence/local/workflow_actions.conf:

[Open_JIRA_Issue]
display_location = both
fields = *
label = Open JIRA issue for $errorCode$
link.method = post
link.postargs.1.key = error
link.postargs.1.value = $errorCode$
link.target = blank
link.uri = http://127.0.0.1:8000/jira/issue/create
type = link

Enriching Data – Lookups and Workflows

274

See also
 f The Triggering a Google search for a given error recipe

 f The Searching ARIN for a given IP address recipe

Looking up inventory from an external
database

In this recipe, you will install and leverage DB Connect to search an external database's
product inventory table. You will then pull this data back into Splunk and turn it into a local
lookup that harvests the data once per day. This product inventory table will be used in the
next chapter.

DB Connect has a dedicated Splunk manual that can be found at http://
docs.splunk.com/Documentation/DBX/latest/DeployDBX.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar
with navigating the Splunk user interface.

Additionally, it is recommended that you have one of the following supported
databases installed:

 f DB2

 f MS SQL

 f MySQL

 f Oracle

 f Sybase

 f HyperSQL

 f PostgreSQL

 f H2

 f SQLite

 f Adaptive Server Enterprise v15.7 Developer Edition

DB Connect might work with other databases and data stores using the generic ODBC driver
provided with the application, but this is not guaranteed.

http://docs.splunk.com/Documentation/DBX/latest/DeployDBX
http://docs.splunk.com/Documentation/DBX/latest/DeployDBX

Chapter 7

275

How to do it…
Follow the steps in this recipe to generate a local Splunk lookup using data from an external
database and DB Connect:

1. In your database application, create a new database called productdb, and within
the database, create a new table called productInventory. Insert the contents
of the provided productInventory.csv file into the new database table. The new
table will resemble the following screenshot:

2. Once the DB table is built, you need to install the DB Connect application in order to
connect to it. From the drop-down application menu, select Find More Apps.

Enriching Data – Lookups and Workflows

276

3. Search for the Splunk DB Connect application, and then, select it to install it.
You will have to enter your Splunk.com account credentials after hitting the
Install free button.

If your environment has no Internet access, you can download
the DB Connect application from the Splunk app store
at http://apps.splunk.com/app/958. Once it is
downloaded, you can upload and install the application to your
Splunk environment by selecting Manage Apps from step 2.

4. When prompted, select to restart Splunk, and DB Connect will continue
its installation.

5. After logging back in, you will see a DB Connect Install successful message. Click on
the Set up now button.

http://apps.splunk.com/app/958

Chapter 7

277

6. On the next screen, we will leave the default settings as they are. If you are
connecting to a large amount of data, the heap size might need to be increased,
as this will allocate more memory and result in faster performance.

7. Click on the Settings menu on the top-right corner, and then, click on the new option
called External Databases.

Enriching Data – Lookups and Workflows

278

8. Click on the New button, and you will be presented with a configuration screen.
Enter productdb as the name and enter all other details on the configuration
screen to connect to your specific productdb database, using your database
username and password.

Chapter 7

279

If you receive an error message about missing drivers,
you might need to install the JDBC driver for the database
you are using. For example, the MySQL JDBC driver is
not installed by default. The process to install the driver
is simple and is well documented at http://docs.
splunk.com/Documentation/DBX/latest/
DeployDBX/Installdrivers. Once the driver is
installed, you will need to restart Splunk and return to this
configuration screen.

9. After saving, the new database connection will be created and displayed.

10. Return to the Operational Intelligence application from the application dropdown,
and enter the following search in the search bar:
| dbquery productdb limit=1000 "select * from
productInventory;"

11. The contents of the productdb table should now be displayed inside Splunk.

http://docs.splunk.com/Documentation/DBX/latest/DeployDBX/Installdrivers
http://docs.splunk.com/Documentation/DBX/latest/DeployDBX/Installdrivers
http://docs.splunk.com/Documentation/DBX/latest/DeployDBX/Installdrivers

Enriching Data – Lookups and Workflows

280

12. Amend the search as follows in order to save the database data as a local lookup
inside Splunk:
| dbquery productdb limit=1000 "select * from
productInventory;" | outputlookup productInventory.csv

13. Run this new search to create the lookup. Then, save it as a report and name it
generate_productInventory_dblookup.

14. Click on the Save button, and on the next screen, select the Schedule link and set
Schedule to Run every day.

15. Click on the Next button, and then, on the next screen, hit the Save button to
save the report. This search will now pull the inventory data back from our product
database once per day and turn it into a local lookup for use in Splunk.

Chapter 7

281

How it works...
DB Connect enables real-time integration between Splunk and traditional relational databases.
In this recipe, you installed the DB Connect application and configured it to talk to a product
inventory table in your external productdb database. When installed, DB Connect sets up
something called a Java Bridge Server that is essentially a Java Virtual Machine (JVM) that is
constantly running in the background. The Java Bridge Server helps speed up connectivity to
external databases by allocating memory and caching a lot of the metadata associated with
the database tables. Once the productdb database was configured through DB Connect,
you were able to execute standard SQL inside a Splunk search and return the contents of the
productInventory table to Splunk. Once the data is in Splunk, it is treated the same as any
other data inside of Splunk, and you were able to very easily turn the data into a local lookup
using the outputlookup command.

There's more...
In this recipe, we chose to pull the data out of the database and create a lookup locally in
Splunk. This is likely to be a best practice approach, as it is unlikely that you would want users
constantly polling your database directly. However, rather than creating the lookup locally, DB
Connect does also allow you to look up data in the database directly. In addition, DB Connect
is able to monitor external database tables and index content into Splunk as it is written to
the table.

Use DB Connect for direct external DB lookups
Rather than creating the lookup locally inside Splunk, as we did with this recipe, Splunk DB
Connect allows you to create a lookup table that uses an external database table as its source.
If you navigate to the Lookups screen (Settings | Lookups), you will notice a new line item
called Database lookups. This was added when DB Connect was installed.

Enriching Data – Lookups and Workflows

282

Clicking on Add new allows you to add a new lookup. Give the lookup a name—in this case,
we used productInventory_dblookup—and select the productdb database and the
productInventory table. After a few seconds, the Fill all columns button will become
active, and clicking on this button will populate all the fields in the table as lookup fields.

Chapter 7

283

After clicking on Save, return to the Operational Intelligence search bar and execute the
following search:

index=main sourcetype=log4j itemId=*
| lookup local=1 productInventory_dblookup itemId AS itemId
OUTPUT itemInventory AS itemInventory

In this search, we look for events that contain itemId and then use the direct database
lookup to return itemInventory for itemId in the event. You should notice that
itemInventory is populated as a new field for the event. Also notice that we used local=1
in the previous search. This is because DB Connect database lookups are constrained only to
the search head where DB Connect is installed.

This approach might have some advantages, as it gets data from the database directly, but
this can also be a disadvantage. Pulling the data back on a periodic basis and creating a local
lookup, as we did in the earlier recipe, will result in a lookup that performs faster and has less
impact on any production database.

DB Connect is bundled with a generic ODBC driver. This driver allows you
to connect to other data stores outside of traditional RDBMS databases.
For example, DB Connect can be used to connect into Hadoop and query
data directly from the Hive or Hadoop vendor data products such as
Cloudera Impala—very cool!

See also
 f The Looking up product code descriptions recipe

Summary
The key takeaways from this chapter are as follows:

 f Use lookup tables to add more user-friendly data to search results

 f Create state tables that can track data over long periods of time

 f Create workflow actions that can link to external resources that can't be added in
lookup tables

 f Automate tasks such as opening helpdesk tickets using data extracted from Splunk

 f The DB Connect application allows for a powerful connectivity between external
databases or between ODBC/JDBC data stores and Splunk

8
Being Proactive –

Creating Alerts

In this chapter, we will learn about alerting capabilities within Splunk. You will learn about:

 f Alerting on abnormal web page response times

 f Alerting on errors during checkout in real time

 f Alerting on abnormal user behavior

 f Alerting on failure and triggering a scripted response

 f Alerting when predicted sales exceed inventory

Introduction
Throughout the previous chapters in this book, you created a great deal of Splunk searches,
including historic searches that look back over a period of time and real-time searches. In this
chapter, you will learn about alerting—arguably, one of Splunk's most powerful features.

A key part of gaining complete operational intelligence is the ability to be proactive rather than
reactive. Periodic, ad hoc searching of the data for certain conditions might provide some
operational insight, but a better approach would be to continually monitor the data and know
immediately when certain conditions are met. For example, instead of reacting to a network
outage after it has occurred, it would be better to proactively look for the factors that could
lead to a network outage and prevent it from occurring in the first place. It is this type of
proactive approach that Splunk's alerting functionality allows for.

In this chapter, we will continue to build our Operational Intelligence application and
incorporate alerting for a number of different scenarios. You will learn how to implement
the different types of alerts and leverage a number of different alert actions.

Being Proactive – Creating Alerts

286

About Splunk alerts

As with many features of Splunk, alerts are powered-off underlying searches. These
underlying searches can either run on a schedule against historically indexed data or run
against real-time data as it flows into Splunk. Alerts can then be triggered every time a search
runs or when certain conditions are met as a result of the search.

Additionally, all alerting in Splunk can be throttled such that alerts do not continuously fire if
similar conditions are met repeatedly, and this will be covered later in the chapter.

Splunk has a dedicated manual for alerting, which can be found
at http://docs.splunk.com/Documentation/Splunk/
latest/Alert/Aboutalerts.

Types of alerts

There are three types of alerts, and these are detailed in the following table:

Alert Description Trigger Example
Scheduled
alert

This is an alert based
on a historical search
that runs periodically
in accordance with a
set schedule.

This triggers an alert
whenever the results of
the historic search meet
a particular condition
defined in the alert. It
is usually less resource
intensive than other
alert types and used
when immediate action
is not required.

An example of a scheduled
alert would be to trigger
an alert whenever the
number of web server
errors exceeds 200 in any
30-minute interval.

Per-result
alert

This is an alert based
on a real-time search
that is set to run over
All time.

This triggers an alert
every time the base
search returns a result.
It is useful to know
immediately when
a matching result is
detected.

An example of a per-result
alert would be to trigger
an alert whenever a web
server error occurs on a
specified host. To avoid
a flood of alerts, this can
optionally be throttled to
alert only once per time
period, such as once per
10 minutes.

http://docs.splunk.com/Documentation/Splunk/latest/Alert/Aboutalerts
http://docs.splunk.com/Documentation/Splunk/latest/Alert/Aboutalerts

Chapter 8

287

Alert Description Trigger Example
Rolling-
window alert

This is an alert based
on real-time search
that is set to run
over a user-defined,
rolling time window.

This triggers an alert
whenever events pass
through the rolling
window that match the
particular condition
defined in the alert.

An example of a rolling-
window alert would be to
trigger an alert whenever
there are five consecutive
errors of the same type
for a specific session
ID within a 10-minute
window, but they are
optionally throttled such
that only one alert for a
particular session ID is
sent within a 30-minute
timeframe.

In this chapter, you will gain experience in creating all three types of alerts and apply them to
real-world operational intelligence examples.

Trigger conditions

Alerts are triggered when the results of the search meet specific conditions. For example, you
might have a condition that specifies to only alert when the count of results is greater than
X. Triggering conditions are set when you set up the alert, and the following table lists the
various conditions that are available:

Type Description
Per-result This triggers whenever a search returns a result. It is only available for

real-time alerts and leveraged by the per-result alert type.
Number of results This triggers based on the number of search results. The options

include greater than, less than, equal to, and not equal to.
Number of hosts This triggers based on the number of hosts seen. The options include

greater than, less than, equal to, and not equal to.
Number of sources This triggers based on the number of sources seen. The options include

greater than, less than, equal to, and not equal to.
Custom This triggers based on a custom search condition. Think of this as

sticking a custom search at the end of the base search, for example,
search count > 20.

Being Proactive – Creating Alerts

288

Alert actions

So, what happens when an alert fires in Splunk? Well, that is up to you, as Splunk offers a
number of possible actions out of the box, and these are detailed in the following table:

Action Description
E-mail notification This sends an e-mail to one or more specified individuals

together with details of the alert that has fired. This e-mail can
be substantially customized in Version 6 and is probably the
most commonly used action.

Execute a script This executes a custom script when the alert is triggered and
provides a very powerful functionality. For example, you might
have a script that opens a ticket in a third-party ticketing system
when an alert is triggered.

RSS notification This creates an RSS feed for all alerts that have triggered for a
particular search. Users can then subscribe to this feed.

Summary indexing This writes data from the alert to a summary index. It is best
used with statistical commands.

Display in Alert manager Splunk has a built-in Alert manager console that will list all the
triggered alerts that have been selected to be displayed in the
Alert manager.

Multiple alert actions can be selected for a given alert. For example, you might wish to send
an e-mail and also execute a script when a particular alert is triggered.

There are commands for Splunk that will allow you to craft a search and
send an e-mail directly from the search itself. These can be used in a
fashion similar to alerting if the search that contains the commands is
scheduled. One of these commands is sendemail, which is bundled
with Splunk and allows search results to be sent to specified e-mail
addresses. Another command is sendresults, which is developed by
Discovered Intelligence and available for free in the Splunk app store. The
sendresults command allows you to dynamically evaluate where to
send the search results, based on the search results themselves.

Chapter 8

289

Alerting on abnormal web page response
times

It is important that our web application remains responsive for users. Sites that lag frequently
put off users and can result in them going elsewhere or lost sales. In Chapter 2, Diving into
Data – Search and Report, you completed a recipe that analyzes average response times over
a given period. In this recipe, you will create a scheduled alert to identify response times that
are abnormal (that is, not within a normal range).

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with
navigating the Splunk user interface. You should also have configured the e-mail settings on
your Splunk to enable the delivery of e-mail alerts.

Should you be running your Splunk server on a desktop PC
for the purposes of this book and wondering how to configure
the e-mail settings, there is a good Splunk blog posting on
configuring Splunk to work with Gmail and Yahoo Mail at
http://blogs.splunk.com/tag/gmail/.

How to do it...
Follow the steps in this recipe to create an alert that identifies abnormal response times:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Ensure that the time range picker is set to Last 60 Minutes, and type the following
search into the Splunk search bar. Then, click on the magnifying glass icon or hit Enter:
sourcetype=access_combined index=main | stats max(response)
AS MAX by uri_path | join uri_path [search earliest=-25h
latest=-24h sourcetype=access_combined index=main | stats
avg(response) AS AVG by uri_path] | eval MAG=round(MAX/AVG)

This search relies on data being indexed on your Splunk server
25 hours ago. If this data is not present, you might need to adjust
the subsearch's earliest and latest times accordingly.

http://blogs.splunk.com/tag/gmail/

Being Proactive – Creating Alerts

290

4. Once the search completes, you should see tabulated data. In the Save As dropdown,
select Alert:

5. A pop-up box will appear. Give the alert a title of cp08_abnormal_webpage_
response. Select Scheduled as the alert type, and select Run every hour in the
Time Range field. Select Custom as the trigger condition, and enter search MAG>5
in the Custom Condition field Then, click on Next.

Chapter 8

291

6. The alert configuration screen will be displayed. Perform the following steps on
this screen:

1. Check the List in Triggered Alerts checkbox.

2. In the Severity dropdown, select Medium.

3. Select the Send Email checkbox.

4. Enter a valid e-mail address in the To box; this is where the alert will go.

5. In the Include section, check Link to Alert, Link to Results, and Trigger
Condition.

6. Scroll down to Sharing, and in Permissions select the Shared in App option.

7. Verify that the given details are entered correctly, and then, click on Save.

Being Proactive – Creating Alerts

292

7. Click on View Alert. A summary screen should be displayed, and your first alert is
now configured and set to run every hour in accordance with the schedule. The alert
should trigger but might take some time depending on when you scheduled the alert.

8. When the alert triggers, you should receive an e-mail similar to the following
screenshot. Note that the link to the alert, the link to the results, and the trigger
condition in the body of the e-mail are as specified when configuring the alert.

How it works...
In this recipe, you created a search to look for abnormal web page response times by creating
an alert to trigger when the maximum response time in the last hour for a given web page is
greater than 5 times the average response time for that page at the same time the previous day.

We selected to get the average from the same period yesterday, as the data might be
abnormal today. You might wish to look back over a wider period, such as 7 days, to get a
more accurate average. Alternatively, you might have a hardcoded threshold for the number
of milliseconds within which a web page must respond.

Let's break the search down piece by piece.

Chapter 8

293

Search fragment Description
index=main sourcetype=access_
combined

You should now be familiar with this search
from the earlier recipes in this book.

| stats max(response) AS MAX by
uri_path

Using the stats command with the max
function, we first identify the maximum
response time per web page or uri_path
in the past hour. We name this a field MAX.

| join uri_path [search earliest=-
24h latest=-23h sourcetype=access_
combined index=main | stats
avg(response) AS AVG by uri_path]

Using the join command, we join the
results of another search with our results.
This search looks back over the same
past hour period, but 24 hours earlier. The
average response time is calculated for
each page and given a field name of AVG.

| eval MAG=round(MAX/AVG) Using the MAX and AVG fields, we calculate
how many times the MAX value is greater
than the AVG value (that is, the order of
magnitude). This then gives us a MAG field.

| search MAG>5 This is not in our actual search but
represents the custom alert condition we
selected for our alert. Behind the scenes,
Splunk essentially adds this to the search,
and if any values are returned, the alert is
triggered.

There's more...
This alert used the scheduled alert type and is based on a historical search that runs
periodically in accordance with the hourly schedule you set. In terms of alert actions, you
selected to have an e-mail sent out each time the alert is triggered and also for the triggered
alert to appear in the Alert manager inside Splunk.

Viewing triggered alerts in Splunk's Alert manager
Assuming that an alert has been triggered, you can view the alert in the Alert manager by
clicking on the Activity drop-down menu in the top-right corner of the screen and selecting
Triggered Alerts.

Being Proactive – Creating Alerts

294

Once the screen has loaded, you will see all of the alerts that have triggered till date. There
are not too many management actions you can take on the triggered alerts, although you
can delete them from the list or select to edit the underlying alert if any tweaks are needed.
Clicking on View Results of any alert will pop open a new screen with the results of the
underlying search that powers the alert. Basic filtering and search capability are also provided
for the triggered alerts in the list.

See also
 f The Alerting on errors during checkout in real time recipe

 f The Alerting on abnormal user behavior recipe

 f The Alerting on failure and triggering a scripted response recipe

Alerting on errors during checkout in real
time

A very powerful feature of Splunk is the ability to trigger alerts based on specific conditions in
real-time events. From the perspective of operational intelligence, real-time alerting provides
the ability to be notified of something that requires immediate action. Real-time alerting in
Splunk is based upon an underlying real-time search.

In this recipe, you will create a real-time alert that will trigger anytime there is an error during
the checkout stage of our online store. The checkout stage in the purchasing process is where
the payment details are submitted by the customer and our sales transactions ultimately
occur. Errors here can result in lost sales revenue and lost customers. It is, therefore,
important to immediately understand if errors occur such that they can be remediated as
soon as possible.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with
navigating the Splunk user interface. You should also have configured the e-mail settings on
your Splunk server to enable the delivery of e-mail alerts.

Chapter 8

295

How to do it...
Follow the steps in this recipe to create a real-time alert when checkout errors occur:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. In the Search bar, enter the following search:
index=main sourcetype=log4j
| transaction threadId maxspan=5m
| search requestType="checkout" result="failure"
| stats count by requestType, threadId, sessionId,
customerId, orderId, invoice, paymentId, numberOfItems,
total, result

4. Change the search time period to a 5-minute window by selecting 5 minute window
from the real-time Presets column on the time range picker.

5. The search will run but might not produce any results if there are no results to display.
This is OK. Click on the Save As dropdown and select Alert.

Being Proactive – Creating Alerts

296

6. A pop-up box will appear. Enter cp08_realtime_checkout_error in the Title
field. Select Real Time in the Alert type field and change the Trigger condition field
to Number of Results. Select Greater than and 0 in the Number of results is field
and then click on Next.

7. The alert configuration screen will be displayed. The configuration of this alert is slightly
more complex than the previous recipe. Perform the following steps on this screen:

1. Check the List in Triggered Alerts checkbox.

2. In the Severity dropdown, select High; this simply classifies the alert severity
in Splunk.

3. Check the Send Email checkbox, as we want to send an e-mail when the
alert fires.

4. Specify an e-mail address that the alert should go to in the To textbox.

5. In the Priority dropdown, select High.

6. In the Include section, check Link to Alert, Link to Results, Inline Table,
and Trigger Time. These settings will ensure that there are links in the
e-mail to both the alert and the results in Splunk. The Inline Table option
will tabulate the results in the e-mail body.

7. For the When triggered, execute actions field, select the For each
result option.

8. Select the Throttle checkbox.

9. In the Suppress results containing field value textbox, enter threadid.

10. In the Suppress triggering for textbox, select 600 and seconds().

Chapter 8

297

11. For the Permissions field under Sharing, select the Shared in App option.

12. Verify that the given details are entered correctly, and then, click on Save.

Being Proactive – Creating Alerts

298

8. Click on View Alert. A summary screen should be displayed, and the alert is now
mostly configured.

9. Unfortunately, at the time of writing this book, creating the alert in this way does
not respect the 5-minute window we selected at the beginning, so we must edit the
search and manually set this. This is relatively simple to do. Click on the Settings
menu in the top-right corner, and select Searches, reports, and alerts.

10. Search for cp08 to bring up the cp08 searches, and select the cp08_realtime_
checkout_error search that you just created.

Chapter 8

299

11. The details of the search will be listed. Modify the earliest time to be rt-5m and the
latest time to be rt-0m. Then, click on Save.

12. The search is now correctly configured and running in real time. When the alert
triggers, you should receive an e-mail similar to the following screenshot. Note the
Trigger Time and the key fields from the data are included in the e-mail body as an
inline table, as specified when configuring the alert.

Being Proactive – Creating Alerts

300

How it works...
This recipe was a little complex, so let's step through it methodically. In this recipe, we were
looking at identifying checkout failures. To do this, the search looked for failure events in the
application logs at the checkout stage. Specifically, we were looking for database update
response failures, where payment information had been submitted to the backend application
database, but a failure had been returned in the logs. The web application log events are
broken into transactions known as threads. Each thread has a common threadId to link
them together, and the events within a unique thread typically consist of requests and
responses. The real-time search was set to look over a 5-minute window, as a distinct thread
is unlikely to take longer than this.

Let's break down the search piece by piece.

Search fragment Description
index=main sourcetype=log4j We have selected to search the application logs

in the main index.
| transaction threadId
maxspan=5m

Using the transaction command, we first
group all the events with the same threadId
together into multivalued transactional events.
We have selected to look over a transactional
time span of 5 minutes, as our individual
threads should not take any longer than this.

| search
requestType="checkout"
result=failure

Once the events are grouped into transactions
by threadId, we search only for the threads
that pertain to the checkout process. We also
look for where a failure result is returned
from the backend database update.

| stats count by
requestType, threadId,
sessionId, customerId,
orderId, invoice, paymentId,
numberOfItems, total, result

If/when a failure event occurs, the stats
command is used to put the relevant field
values into a nice tabulated format and
eliminate duplicate values. These values are
tabulated in the e-mail alert.

In this recipe, we used a rolling-window alert type and set the search to run over a 5 minute
real-time rolling window. This window allows for all events in a single thread transaction
to occur.

Chapter 8

301

When configuring the alert, we selected the alert to trigger whenever one or more events
occur that match the failure condition, as we want to be notified whenever an error occurs.
We also chose to execute an action for each result, as each result will pertain to a new error.
This means that if we get two errors back at once, then two alerts will be triggered, one for
each error. We selected to throttle the alert on threadId such that an alert for a unique
threadId values will not be triggered more than once. This throttling is sensible, as there
is no need to know about the same error over and over again. We selected to throttle the
alert for 600 seconds, or 10 minutes, meaning that no further alerts will be triggered for a
given threadId for 10 minutes. However, if the error reoccurs after 10 minutes for the same
threadId, then another alert will be triggered. In this case, threadId in our events are
unique, so the likelihood of reoccurrence of a transaction with the same threadId is zero.

Within the e-mail itself, we specified to include the results as an inline table and to include the
trigger time. These inclusions help make the alert a lot more actionable to the person at the
receiving end. The trigger time will let the receiver know exactly when the failure event occurs,
and the inline table contains key information related to the event. This helps ensure that the
receiver of the alert has all the information they need to investigate, without needing to log in
to Splunk and run additional searches.

By default, only users with the admin role can run and save real-time
searches, schedule searches, or create alerts. Use caution when
granting users permissions to schedule their own searches and alerts,
as they can write searches that are resource intensive.

There's more...
This recipe was as much about real-time alerting as it was about real-time searching. Real-
time searching has limited value on its own, unless you are staring at the screen, waiting for
data to come into Splunk. However, when paired with alerting, this functionality really comes
into its own. Real-time searches and alerts can be more taxing on system resources than
their scheduled counterparts, so care should be taken to ensure that they are efficient and
delivering value. The Jobs screen can be helpful in understanding which real-time searches
are running on your system. Additionally, alerts can be configured directly by editing a
configuration file in a manner similar to editing searches.

Indexed real-time search can be enabled to increase performance and
reduce the amount of system resources used by real-time searching and
alerting in Splunk. For more information on this, review the documentation
at http://docs.splunk.com/Documentation/Splunk/
latest/Search/Aboutrealtimesearches.

http://docs.splunk.com/Documentation/Splunk/latest/Search/Aboutrealtimesearches
http://docs.splunk.com/Documentation/Splunk/latest/Search/Aboutrealtimesearches

Being Proactive – Creating Alerts

302

Building alerts via a configuration file
As alerts are just extensions of Splunk searches, the underlying configuration details related
to an alert are written to the app's local directory in a file named savedsearches.conf
alongside the search.

The savedsearches.conf file for our Operational Intelligence application is located
at $SPLUNK_HOME$/etc/apps/operational_intelligence/local/
savedsearches.conf.

If you open this file, you will see entries related to the two searches and alerts you have
created in this chapter until now. Notice all the additional configuration fields that specify the
alert criteria. If you were to copy and paste one of the searches and all the fields but give it a
new name ([name]), it would create a duplicate alert inside Splunk. Changes made to this
.conf file will require us to restart Splunk as with many other .conf file changes.

You might be wondering why you might need to configure an alert via savedsearches.conf.
It can be useful if you want to create multiple alerts, where the alert configuration is mostly
similar, but the underlying search is slightly different. Editing savedsearches.conf directly
will likely be a lot quicker than going into the GUI and setting up each alert one by one.

Identify the real-time searches that are running
A quick and useful way to see what real-time searches are currently running on your Splunk
environment is to leverage the Jobs screen. From the main menu in the top-right corner, click
on the Activity dropdown and select Jobs.

Chapter 8

303

The Jobs screen will load. Select Running to view all the running jobs in the Operational
Intelligence application. You will notice that the cp08_realtime_checkout_error search is
displayed, and the Status column is set to Running (100%). All real-time searches in Splunk
will be displayed with a Running (100%) status, and this is a quick way of identifying them.
Historical searches will increment up to 100 percent as they progress and then disappear out
of the running jobs once 100 percent is reached and the search finalized. However, real-time
searches will stay at 100 percent forever until they are disabled or deleted. If a restart of Splunk
is performed, all real-time searches will restart automatically when Splunk comes back up.

See also
 f The Alerting on abnormal web page response times recipe

 f The Alerting on abnormal user behavior recipe

 f The Alerting on failure and triggering a scripted response recipe

Alerting on abnormal user behavior
In this recipe, you will write a relatively simple real-time per-result type of alert to look for
abnormal user behavior. The abnormal behavior you will be looking for would be successful
payments that did not go through the checkout process.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with
navigating the Splunk user interface. You should also have configured the e-mail settings on
your Splunk server to enable the delivery of e-mail alerts.

Being Proactive – Creating Alerts

304

How to do it...
Follow the steps in this recipe to create an alert when abnormal user behavior occurs:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. In the Search bar, enter the following search over Last 24 hours:
index=main sourcetype=log4j requestType=checkout
(numberOfItems>10 OR total>3000)
| table ipAddress, numberOfItems, total, invoice,
customerId, paymentId, orderId

4. The search will run but might not produce any results if there are no results
to display, and this is OK. As in the previous recipes, click on the Save As
dropdown and select Alert.

5. A pop-up box will appear. Enter cp08_abnormal_purchase as the title of. the alert.
This time, select Real Time in the Alert type field and change the Trigger condition
field to Per-Result. Then, click on Next.

6. The alert configuration screen will be displayed. The configuration of this alert is less
complex than the previous recipe, and we will leave many of the default settings as is.
Perform the following steps on this screen:

1. Check the List in Triggered Alerts checkbox.

2. Check the Send Email checkbox.

3. Specify an e-mail address that the alert should go to in the To textbox.

Chapter 8

305

4. In the Include section, check Link to Alert, Link to Results, and Inline
Table.

5. Do not select the Throttle checkbox this time.

6. For the Permissions field under Sharing, select the Shared in App option.

7. Verify that the given details are entered correctly, and then, click on Save.

Being Proactive – Creating Alerts

306

7. Click on View Alert. A summary screen should be displayed, and the alert is now
configured and running in real time.

8. When the alert triggers, you should receive an e-mail similar to the following
screenshot. Note that the key fields from the data are included in the e-mail
body as an inline table, as specified when configuring the alert.

How it works...
This recipe revolved around a fairly simplistic search that looked for purchase events that
included more than 10 items or where the total value of the purchase was greater than
$3000. This might be considered abnormal in an environment where typical purchases
involve two items and the total value is less than $1000. Simplicity aside, it served to illustrate
how a per-result type of alert functions. Essentially, as soon as a matching result is detected,
the alert is triggered. The search runs over All time, in real time, just waiting and watching for
a matching event to come in. There was no throttling enabled, so if five matching events were
to come in, then the alert will be triggered five times. A per-result type of alert would not have
been suitable for the previous recipe, as the previous recipe relied on a number of events over
time being transacted together.

Chapter 8

307

There's more...
There are many different aspects of abnormal user behavior that you might wish to alert on,
and this recipe touched on a rather obvious abnormality. For example, a more discrete user
behavior might be where a successful order is made, but there is no checkout event. This
might indicate unauthorized access to the backend database, where an order has been
made without actually paying for it.

Alerting on abnormal user purchases without checkouts
In order to detect purchases where no checkout event exists, you will use a similar
search as you did in the previous recipe (Alerting on errors during checkout in real time).
A transactional search is required to group the entire thread together; once this has been
performed, you can look for the threads that do not include a requestType value of
checkout. The search will be as follows:

index=main sourcetype=log4j
| transaction threadId maxspan=5m
| search paymentReceived="Y" result="success" NOT
requestType="checkout"
| stats count by threadId, sessionId, orderId, invoice, paymentId,
result

You cannot use a per-result alert type for this alert, as it is transactional in nature, grouping
events together over a time period. Instead, a rolling-window alert type should be used.

There are applications in the Splunk app store that leverage complex
algorithms behind the scenes to help with the detection of operational
anomalies and abnormal behavior.

See also
 f The Alerting on errors during checkout in real time recipe

 f The Alerting on failure and triggering a scripted response recipe

 f The Alerting when predicted sales exceed inventory recipe

Being Proactive – Creating Alerts

308

Alerting on failure and triggering a scripted
response

By now, you have used every different type of alert available and many of the more common
alert actions such as e-mailing. However, one extremely powerful alert action feature we are
yet to touch upon is the ability to execute a script when an alert triggers.

In this recipe, you will create a simple real-time per-result alert that triggers when any 503
HTTP web server errors are detected. Upon triggering, the alert will execute a script that will
write the details of the event to a local file on the server.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar
with navigating the Splunk user interface.

How to do it...
Follow the steps in this recipe to create an alert on failure and a scripted response:

1. The first thing to do is to write the script that Splunk will execute. Splunk is able to
output a number of variables (0-8) to a script (this script will output all of them) to
illustrate what each one does. An explanation of the variables follows after the recipe.

For Unix/Linux Splunk installs, name your script testscript.sh and enter
the following lines in the script. You can change the location that the file writes
to if required.
echo "
`date`
ARG0='$0'
ARG1='$1'
ARG2='$2'
ARG3='$3'
ARG4='$4'
ARG5='$5'
ARG6='$6'
ARG7='$7'
ARG8='$8'" >> "/var/tmp/splunk_testscript.log"

Chapter 8

309

For Windows Splunk installs, name your script testscript.bat and enter the
following lines in the script. You can change the location that the file writes to
if required.
@echo off
date /T >> "c:\temp\splunk_testscript.log"
time /t >> "c:\temp\splunk_testscript.log"
echo %0 >> "c:\temp\splunk_testscript.log"
echo %1 >> "c:\temp\splunk_testscript.log"
echo %2 >> "c:\temp\splunk_testscript.log"
echo %3 >> "c:\temp\splunk_testscript.log"
echo %4 >> "c:\temp\splunk_testscript.log"
echo %5 >> "c:\temp\splunk_testscript.log"
echo %6 >> "c:\temp\splunk_testscript.log"
echo %7 >> "c:\temp\splunk_testscript.log"
echo %8 >> "c:\temp\splunk_testscript.log"
echo ***************>> "c:\temp\splunk_testscript.log"

2. Once the file is created, place the testscript.sh/testscript.bat file in the
$SPLUNK_HOME$/etc/apps/operational_intelligence/bin/scripts
directory. You might need to create the scripts directory if it doesn't exist. Ensure
that file permissions are set appropriately based on the operating system you are
using to allow Splunk to execute the script and write the results to the specified
directory. Speak to your local administrator if you are unsure how to update
these permissions

3. Log in to your Splunk server.

4. Select the Operational Intelligence application.

5. In the Search bar, enter the following search over Last 24 hours:
index=main sourcetype=access_combined status=503

6. The search will run but might not produce any results if there are no results to display.
This is OK. As in the previous recipes, click on the Save As dropdown and select Alert.

Being Proactive – Creating Alerts

310

7. A pop-up box will appear. Enter cp08_webserver_failure_script as the title of
the alert. Select Real Time in the Alert type field, and change the Trigger condition
field to Per-Result. Then click on Next.

8. The alert configuration screen will display. The configuration of this alert is less
complex than the previous recipe, and we will leave many of the default settings as is.
Perform the following steps on this screen:

1. Check the Run a Script checkbox and enter testscript.sh (or
testscript.bat) in the Filename field.

2. Scroll down to Sharing, and in Permissions, select the Shared in App option.

3. Verify that the given details are entered correctly, and then, click on Save.

Chapter 8

311

9. Click on View Alert. A summary screen should be displayed, and the alert is now
configured and running in real time.

10. Navigate to the /var/tmp directory if on Linux or the c:\temp directory if on
Windows. You should shortly see a splunk_testscript.log file; this might take
10 minutes or so to appear. Open up the log file, and you should see the details of all
the alerts that have triggered.

How it works...
This was a per-result type of alert, meaning that any time a 503 error event is seen, the alert
is triggered and the script executed. In this example, we wrote a simple script that wrote out
details of the triggered alert to a local file on the Splunk server. Splunk can pass a number
of variables to a script when an alert is triggered. The test script that you wrote in this recipe
writes out every possible variable. There are eight variables in total, numbered from 0 to 8
(there is no 7), and these are listed in the following table:

Variable Description
0 This denotes the script name
1 This denotes the number of events returned
2 This denotes the search terms
3 This denotes the fully qualified query string
4 This denotes the name of the report
5 This denotes the reason for the trigger
6 This denotes the browser URL to view the report
8 This denotes the file where the results for the search are stored

There might be times when you want to create a script that can also
include the search results of the alert somewhere. In this case, you
can configure your script to open the CSV file detailed in variable 8
and parse out the search results from the file.

Being Proactive – Creating Alerts

312

There's more…
This recipe took a very simplistic approach to scripted alerts, simply to illustrate the
functionality in a way that will work for every reader. Of course, you can get a lot more
involved with the scripts that are executed when alerts are triggered. Examples of scripts
might include:

 f A script to pass key fields to a ticketing system; this script will then open a ticket for
the triggered alert to be actioned upon by the relevant people

 f A script that SSHs over to a server and restarts the web server when the web
server crashes

 f A script that dynamically adds firewall rules to block suspicious IP addresses

See also
 f The Alerting on errors during checkout in real time recipe

 f The Alerting on abnormal user behavior recipe

 f The Alerting when predicted sales exceed inventory recipe

Alerting when predicted sales exceed
inventory

In this final recipe, you will create a scheduled alert type that triggers when predicted sales
are expected to exceed the levels of inventory levels on hand. This type of information is a key
perspective of operational intelligence, as by knowing ahead of time that we might be running
low on inventory, we might have time to order more before we actually run out.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar
with navigating the Splunk user interface and have a good command over the Splunk search
language as you have completed the earlier recipes in this book. You should also have
configured the e-mail settings in your Splunk server to enable the delivery of e-mail alerts.

Additionally, this chapter relies on an inventory lookup implemented in the Looking up inventory
from an external database recipe in Chapter 7, Enriching Data – Lookups and Workflows. If this
recipe has not been completed, you can upload the provided productInventory.csv file as
a lookup in the Operational Intelligence application instead.

Chapter 8

313

How to do it...
Follow the steps in this recipe to create an alert when predicted sales exceed inventory:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. Ensure that the time range picker is set to Last 60 Minutes, and type the following
search in the Splunk search bar. Then, click on the magnifying glass icon or hit Enter.
index=main sourcetype=log4j earliest=-0d@d
requestType=removeItem OR requestType=updateCart OR
requestType=addItem
[search index=main sourcetype=log4j requestType="checkout"
earliest=-0d@d | fields orderId]
| eval quantity=if(requestType="removeItem",-1,quantity)
| stats sum(quantity) AS quantity by itemId, date_hour
| stats avg(quantity) as salesRate, sum(quantity) as Sales
by itemId
| lookup productInventory.csv itemId AS itemId OUTPUT
itemInventory AS origInventory
| eval currentInventory=origInventory-Sales
| eval predictSales=round(salesRate*24)
| eval predictInventory=currentInventory-predictSales
| table itemId, origInventory, Sales, currentInventory,
salesRate, predictSales, predictInventory

This search leverages a subsearch to identify orderIds that
reached the checkout step. Subsearches work well but are limited
to returning a maximum of 10,500 results. See the documentation
at http://docs.splunk.com/Documentation/Splunk/
latest/Search/Aboutsubsearches for more information.

4. You should see tabulated results relating to sales and inventory. Click on Save As and
select Alert.

http://docs.splunk.com/Documentation/Splunk/latest/Search/Aboutsubsearches
http://docs.splunk.com/Documentation/Splunk/latest/Search/Aboutsubsearches

Being Proactive – Creating Alerts

314

5. A pop-up box will appear. Enter cp08_predict_sales_inventory as the title of
the alert. Select Scheduled in the Alert type field, and select Run every hour in the
Time Range field. Select Custom in the Trigger condition field, and enter search
predictInventory<1 in the Custom Condition field. Then, click on Next.

6. The alert configuration screen will be displayed. Perform the following steps on
this screen:

1. Check the List in Triggered Alerts checkbox.

2. In the Severity dropdown, select Medium.

3. Select the Send Email checkbox.

4. Enter a valid e-mail address in the To box; this is where the alert will go to.

5. In the Include section, check Link to Alert, Link to Results, and Inline Table.

6. Scroll down to Sharing, and in Permissions select the Shared in App option.

Chapter 8

315

7. Verify that the given details are entered correctly, and then, click on Save.

7. Click on View Alert. A summary screen should be displayed, and the alert is now
configured and set to run every hour in accordance with the schedule. The alert
should trigger but might take some time, depending on when you scheduled the alert.

Being Proactive – Creating Alerts

316

8. When the alert triggers, you should receive an e-mail similar to the following
screenshot. Note the link to the alert, the link to the results, and the actual
results in the body of the e-mail as requested when configuring the alert.

How it works...
The underlying search here is a little complex. Essentially, the search looks to calculate how
many sales of each item we expect to sell in the next 24 hours, based on the sales of each
item since midnight on the day of the search. Once we have this data, we are able to check
the inventory and calculate if we might run out of any items. The alert then triggers if the
expected inventory is anticipated to be 0 or below. The search runs every hour. You should
assume that the inventory lookup is refreshed each day at midnight.

Chapter 8

317

Let's break the search down piece by piece.

Search fragment Description
index=main
sourcetype=log4j
earliest=-0d@d
requestType=removeItem
OR
requestType=updateCart
OR requestType=addItem

First, we search all the application logs for events
related to updating the shopping cart, in this case,
removeItem, updateCart, or addItem events.
The shopping cart events give us key information
about the quantities of each item that the
customers are purchasing. We have selected to look
back to midnight on the day of the search, using
earliest=-0d@d.

[search index=main
sourcetype=log4j
requestType="checkout"
earliest=-0d@d | fields
orderId]

An inner search is used to look for only orders that
actually went through to the checkout stage. A list
of orderId is returned to the outer search that
filters out any shopping cart events not related to an
eventual order.

| eval
quantity=if(requestType=
"removeItem",-
1,quantity)

The removeItem events do not have a quantity
value, so we evaluate a quantity of -1 for these
events, as if a customer removes an item, this will
reduce the quantity by 1.

| stats sum(quantity) AS
quantity by itemId,
date_hour

We are left with shopping cart events relating to
actual purchased orders and the quantities for
each itemId. We are then able to use the stats
command to sum up the quantities purchased each
hour by itemId.

| stats avg(quantity) as
salesRate, sum(quantity)
as Sales by itemId

Using the stats command and avg and sum,
we find the overall average hourly sales rate by
itemId and also the total number of sales for each
itemId since midnight on the day of the search.

| lookup
productInventory.csv
itemId AS itemId OUTPUT
itemInventory AS
origInventory

Using the lookup command, we now look up the
inventory on tap for each item. Assume that this
inventory is refreshed daily at midnight.

| eval
currentInventory=origInv
entory-Sales

We now take the inventory for each itemId sold
since midnight and subtract this from the inventory
to get the current inventory.

| eval
predictSales=round
(salesRate*24)

We now multiply the calculated average sales rate
by 24 hours to get an idea of how many of each
item we predict will sell over the next day.

| eval
predictInventory=current
Inventory-predictSales

Once we have the predicted sales, we subtract this
from the current inventory to calculate the predicted
inventory in 24 hours' time.

Being Proactive – Creating Alerts

318

Search fragment Description
| table itemId,
origInventory, Sales,
currentInventory,
salesRate, predictSales,
predictInventory

The various evaluated fields are tabulated using the
table command.

| search
predictInventory<1

This is the alert condition used to trigger the alert.
Should the predicted inventory for any item be 0 or
less, then the alert will be triggered.

Using the previous search, we set up a scheduled alert type and set the schedule to run
hourly. Should the predicted inventory for any item be 0 or less, the alert will trigger. In this
case, it would go on triggering every hour until the inventory is updated, as we did not set any
throttling of any kind. We selected to include the results in the e-mail; however, we could have
simply included only the link to the results or attached the results as a CSV file to the e-mail.

It is likely that in a real-world situation, you would have a different way of calculating sales
than looking through application logs. However, this example serves to illustrate how we can
take a set of data, process it, and then use it further to help predict if anything untoward
might occur in the future, based upon historical trends.

There's more…
One of the alert actions we mentioned at the beginning of this chapter is the ability to create
an RSS feed of alert notifications. Unfortunately, at the time of writing this book, this is not
an available action when creating an alert through the Save As Alert function of Splunk.
However, we can implement this action by editing the alert once it is saved.

Adding an RSS feed notification action to an alert
To add an RSS feed notification to the alert you just created, click on the Settings menu in
the top-right corner and select Searches, reports, and alerts.

Chapter 8

319

Search for cp08 to bring up the cp08 searches, and select the cp08_predict_sales_inventory
search that you just created. Once the configuration screen loads, scroll down and enable the
Add to RSS checkbox.

Click on Save and you will now see the RSS icon next to the search. Clicking on the RSS icon
will take you to the feed of triggered alerts for this search.

See also
 f The Alerting on abnormal user behavior recipe

 f The Alerting on failure and triggering a scripted response recipe

Summary
The key takeaways from this chapter are as follows:

 f There are three different types of alerts in Splunk: scheduled alerts, per-result alerts,
and rolling-window alerts

 f Alerts are based-off underlying historical or real-time searches

 f Alerts are triggered based on user-specified conditions and can be throttled
as required

 f Alerts have a number of different actions that can be performed when an alert is
triggered, including sending an e-mail and executing a script

 f Alerts play a critical part in gaining proactive operational intelligence

 f Alerts can be used for relatively simple use cases such as detecting errors or much
more complex use cases such as predicting future sales

9
Speed Up

Intelligence – Data
Summarization

In this chapter, we will cover the methods that exist within Splunk to speed up intelligence.
You will learn about:

 f Calculating an hourly count of sessions versus completed transactions

 f Backfilling the number of purchases by city

 f Displaying the maximum number of concurrent sessions over time

Introduction
In Chapter 5, Extending Intelligence – Data Models and Pivoting, we learned all about data
models and how they can be accelerated to facilitate faster Pivot reporting. Data model
acceleration works by leveraging data summarization behind the scenes. In this chapter, we
will take a look at two more data summarization methods within Splunk: summary indexing
and report acceleration. These enable you to speed up reports or preserve focused statistics
over long periods of time. You will learn how to populate summary indexes, use report
acceleration, backfill summary indexes with historical data, and more.

Speed Up Intelligence – Data Summarization

322

Data summarization

Big Data is, just that, big, and even with the best infrastructure, it can be extremely time
consuming to search or report over large datasets and/or very costly to store for long periods
of time. Within Splunk exists data summarization features that simplify and speed up
reporting over large datasets. Data summarization essentially allows for raw event datasets
to be summarized to much smaller (usually statistical) datasets, which can then be searched
to facilitate significantly faster reporting.

The following diagram helps to illustrate how data summarization works. In the example,
we start with a large raw dataset on the left, and then create a statistical summary from it,
capturing the key information. The statistical summary will be much faster to report on than
the raw log data as it represents a lot less data. This summarized data can either be written
into a new index or automatically captured alongside the raw event data behind the scenes
by Splunk.

From an operational intelligence perspective, data summarization allows you to unlock
the ability to quickly calculate and report on key, focused metrics, while also reducing the
underlying data storage footprint.

Chapter 9

323

Data summarization methods

At the time of writing this book, there are three data summarization methods in Splunk, which
are listed in the following table:

Data summarization
method

Description

Summary indexing Summary indexing involves the creation of separate indexes
to hold summarized event data. These indexes, instead of the
index containing the raw event data, can be searched and
reported on.

Report acceleration Report acceleration creates automated summaries behind
the scenes, alongside the raw event data, to facilitate faster
execution of reports that have been accelerated.

Data model acceleration Data model acceleration is similar to report acceleration in that
automated summaries are created behind the scenes. However,
this summarization is performed on an entire modeled set of
data, rather than individual reports, and the acceleration is only
realized when using Pivot.

In this chapter, we will focus on summary indexing and report acceleration since data model
acceleration was covered in Chapter 5, Extending Intelligence – Data Models and Pivoting.

About summary indexing

Summary indexing is a simple but very useful feature within Splunk, which allows you to
summarize large amounts of data into smaller subsets, based on defined search criteria. This
summarized data is usually stored in a separate index from where the original data exists and is
typically a lot smaller in size. Reporting over the smaller summary index rather than the original
data will be a lot faster. Additionally, as the summary index is smaller, you will be able to retain
data for longer periods of time, which is key for long-term trending and predictive analytics.
Summary indexing is the only method to keep data longer than the retention time of the index
that stores the raw events; the other summarization methods need raw events to be present.

How summary indexing helps

One of the more common operational intelligence use cases is around the generation of
metrics. For example, say we want to find the average execution time of a web request for the
past month. This data might come from multiple web servers and millions of events per day.
So, running a report over an entire month's raw event data will likely take a long period of time
simply due to the event volume.

Speed Up Intelligence – Data Summarization

324

With summary indexing, a search can be scheduled to run each day to compute the average
execution time for the day, and the results can be stored in a summary index. This will result in
a summary index containing roughly 30 events for a given month—a lot less than the millions of
raw event records! The following month, when this same report is run, the report is merely run
against the summary index that is inherently much smaller than the raw event data, resulting in
a report that is computed at an exponentially faster rate than what was observed previously.

Summary indexing of data does not count against your Splunk license
as the data being used for summary indexing is almost always already
indexed into Splunk.

About report acceleration

When it comes to operational intelligence, detection and response times can be critical, with
delays adding to costs and potential severity. Therefore, it is likely that you will want to get to
your intelligence data as fast as possible. Report acceleration allows you to speed up the time
it takes to execute operational intelligence reports. Report acceleration can be thought of as a
form of summary indexing, without the need to create a separate index as the summary data
is stored alongside ordinary indexes.

The big difference between report acceleration and summary indexing is the way in which
data is computed. Summary indexing is based on the execution of scheduled searches over a
given time frame that populates summary indexes with their search results. However, report
acceleration is based on the execution of acceleration-enabled scheduled searches over a given
timeframe, which results in Splunk executing background processes to automatically manage
the summary of data related to the search. In addition, report acceleration is self-repairing after
any data interruption, whereas summary indexing is unaware if the data over a time frame is
incomplete in any way or has endured gaps.

The words search and report are used interchangeably in Splunk, but are
essentially the same thing. In legacy versions of Splunk, searches that
were saved and/or scheduled were known as Saved Searches; however,
in Version 6 and above, they are known as Reports.

The ease of report acceleration

We earlier outlined that the one key difference between report acceleration and summary
indexing is in the way in which report acceleration automatically handles the data
summarization behind the scenes. Not only is this automatically computed, but Splunk
also automatically identifies when searches are run, which might benefit from the already
accelerated report data and make this data available to the searches; all of this is performed
by the click of a button.

Chapter 9

325

Calculating an hourly count of sessions
versus completed transactions

From an operational intelligence standpoint, it is interesting to understand how many visitors
we have to our online store and how many of these people actually purchase something.
For example, if we have 1,000 people visiting a day, and only 10 people actually purchase
something, this might indicate something is not quite right. Perhaps the prices of our products
are too high, or the site might be difficult to use, and thus need a redesign. This information
can also be used to indicate peak purchasing times.

In this first recipe, we will leverage summary indexing to understand how many sessions we
have per hour versus how many actual completed purchase transactions there have been.
We will plot these over a line graph going back the last 24 hours.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar
with navigating the Splunk user interface and using the Splunk search language.

How to do it...
Follow these steps in this recipe to leverage summary indexing in calculating an hourly count
of sessions versus the completed transactions:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. From the search bar, enter the following search and select to run over Last
60 Minutes:
sourcetype=log4j index=main | stats dc(sessionId) AS
Sessions, count(eval(requestType="checkout")) AS
Completed_Transactions

Speed Up Intelligence – Data Summarization

326

4. Click on the Save As dropdown and select Report from the list:

5. In the pop-up box that gets displayed, enter cp09_sessions_transactions_
summary as the title of the report and select No in the Time Range Picker field;
then, click on Save:

6. On the next screen, select Schedule from the list of additional settings:

Chapter 9

327

7. Select the Schedule Report checkbox, Run every hour in the Schedule field, and a
time range of Last 60 minutes. Click on Next, and then simply click on Save on the
next screen:

8. In order to activate summary indexing on the report that you just saved, you will need
to edit the search manually. Click on the Settings menu at the top-right corner and
select Searches, reports, and alerts:

9. A list of all the saved searches will be displayed. Locate the search named cp09_
sessions_transactions_summary, and click on it to edit it.

Speed Up Intelligence – Data Summarization

328

10. The search editor screen will be displayed. Scroll down to the very bottom Summary
indexing section and select the Enable checkbox. Ensure the default summary index
called summary is selected, and then click on Save:

11. The search is now scheduled to run every hour, and the results are scheduled to be
written to a summary index named summary. After 24 hours have passed, run the
following search from the search bar in the Operational Intelligence application, with
a time range set to Last 24 hours:
index=summary source="cp09_sessions_transactions_summary"
| table _time Sessions Completed_Transactions

12. The search will complete very fast and list 24 events, one for each hour. Select the
Visualization tab to see the data presented as a line chart representing sessions
versus completed transactions:

Chapter 9

329

13. Let's save this as a report, and then add the report to a dashboard panel. Click on the
Save As dropdown and select Report.

14. Enter cp09_sessions_vs_transactions in the Title field of the report, and
ensure the Visualization field is set to Line; then, click on Save:

15. On the next screen, click on the Add to Dashboard button.

16. In the pop-up box that appears, select New to add a new dashboard and give it
the title of Session and Purchase Trends. Ensure the permissions are set to
Shared in App and give the panel we are adding a title of Hourly Sessions vs
Completed Transactions. Ensure the panel is powered by Report and the panel
content is set to Line, and then click on Save to create the new dashboard with the
line-chart panel:

Speed Up Intelligence – Data Summarization

330

How it works...
In this recipe, you created a scheduled search that will take hourly snapshots, counting
the number of unique sessions and the sessions that resulted in completed purchase
transactions. Every hour the search runs, a single line item with two values is created, and the
results are written to a summary index named summary. Returning to the search 24 hours
later, you are able to run a report on the summary index to instantly see the activity over
the past day in terms of sessions versus purchases. There were 24 events in the summary,
one for each hour. Reporting off the summary data is a lot more efficient and faster than
attempting to search across the raw data. If you wait longer, say 30 days, then you can run the
report again and plot the results across an entire month. This information might then be able
to provide predictive insight into the sales forecast for the next month.

There were two searches that you used for this recipe. The first search was used to generate
the summary data and ran hourly. The second search was used to search and report against
the summary data directly. Let's break down each search piece by piece:

Search 1 – Summary index generating search

Search fragment Description
sourcetype=log4j index=main We first select to search the application

data in the main index over the past hour.
| stats dc(sessionId) AS
Sessions, count(eval
(requestType="checkout"))
AS Completed_Transactions

Using the stats command with the
distinct count (dc) function, we obtain the
number of unique sessions in the past
hour. We then use the count function to
total the checkout requests. A checkout
request indicates that a sale has gone
through.

Search 2 – Reporting off the summary index

Search fragment Description
index=summary
source="cp09_sessions_
transactions_summary"

We first select to search the summary
index. Then, within this index, we look for
data with a source of cp09_sessions_
transactions_summary. This is the
name of our saved search and is used as
the source field by Splunk when writing to
a summary index.

| table _time Sessions
Completed_Transactions

We tabulate the data by time, number
of sessions, and number of completed
transactions.

Chapter 9

331

If you search the summary data directly, you will notice that Splunk
gives the summary data a sourcetype field value of stash by
default. However, the source-field value for the data will be the name
of the saved search. Therefore, searching by source rather than
sourcetype is likely to be your preferred approach.

There's more...
As you can see, summary indexing is a great way to shrink down our raw dataset into just the
valuable data that we need to report on. The raw dataset still exists, so we can create many
summaries off the same data if we want to do so.

Generating the summary more frequently
In this recipe, the summary-generating search was set to run hourly and look back over the
past hour. This results in a single event being generated per hour and written to the summary.
If more granularity is required, the search can be set to run every 15 minutes; look back over
the past 15 minutes, and four events per hour will be generated. As the search is now only
looking back over the past 15 minutes, instead of the past hour, it will likely execute faster as
there is less data to search over. For some data sources, generating the summary index data
more frequently over smaller chunks of time can be more efficient.

Avoiding summary index overlaps and gaps
Care needs to be taken when creating summary index generating searches to avoid both gaps
in your summary and overlaps in the data being searched.

For example, you schedule a summary index generating search to run every 5 minutes and
look back over the past 5 minutes, but the search actually takes 10 minutes to run. This will
result in the search not executing again, until its previous run is complete, which means it
will run every 10 minutes, but only look back over the past 5 minutes. Therefore, there will
be data gaps in your summary. This can be avoided by ensuring adequate search testing is
performed before scheduling the search.

In another example, you schedule a summary index generating search to run every 5 minutes
and look back over the past 10 minutes. This will result in the search looking back over 5
minutes of data that the previous run also looked back over. Therefore, there will be data
overlaps in your summary. This can be avoided by ensuring there are no overlaps in time when
scheduling the search.

Additionally, gaps can occur if you take the search head down for an extended period of time
and then bring it back up. Backfilling can be used to fill in past gaps in the data, and this is
discussed in the next recipe.

Speed Up Intelligence – Data Summarization

332

See also
 f The Backfilling the number of purchases by city recipe

 f The Displaying the maximum number of concurrent sessions over time recipe

Backfilling the number of purchases by city
In the previous recipe, you generated an hourly summary, and then, after waiting for 24 hours,
you were able to report on the summary data over a 24-hour period. However, what if you
wanted to report over the past 30 days or even 3 months? You would have to wait a long time
for your summary data to build up over time. A better way is to backfill the summary data over
an earlier time period, assuming you have raw data for this time period in Splunk.

In this recipe, you will create a search that identifies the number of purchases by city on a
given day, and write this search to a summary index. You will leverage the IP location database
built into Splunk to obtain the city based on IP address in the results. You will then execute a
script that comes bundled with Splunk in order to backfill the summary for the previous 30
days. Following this, you will use the generated summary data to quickly report on the number
of purchases by city for the past month.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar
with navigating the Splunk user interface and using the Splunk search language.

How to do it...
Follow the steps in this recipe to leverage summary indexing and to backfill the number
of purchases by city:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. From the search bar, enter the following search and select to run over Last 24 hours:
sourcetype=log4j index=main requestType="checkout"
| iplocation ipAddress | fillnull value="Unknown" City
| replace "" with "Unknown" in City
| stats count AS Purchases by City

Chapter 9

333

4. Click on the Save As dropdown and select Report from the list:

5. In the pop-up box that gets displayed, enter cp09_backfill_purchases_city as
the title of the report and select No in the Time Range Picker field. Then, click on Save:

6. On the next screen, select Schedule from the list of additional settings:

Speed Up Intelligence – Data Summarization

334

7. Select the Schedule Report checkbox and set Schedule to Run every day and
Time Range to Last 24 hours. Click on Next, and then simply click on Save on
the next screen:

8. You will be taken back to the report you just saved. Select the Edit dropdown,
and then select Edit Permissions from the list:

9. In the permissions pop-up box that is displayed, select the App option against
Display For, and then click on Save:

Chapter 9

335

10. In order to activate summary indexing on the report that you just saved, you will need
to edit the search manually. Click on the Settings menu at the top-right corner and
select Searches, reports, and alerts:

Speed Up Intelligence – Data Summarization

336

11. A list of all the saved searches will be displayed. Locate the search named cp09_
backfill_purchases_city and click on it to edit it.

12. The search editor screen will be displayed. Scroll down to the Summary indexing
section at the bottom, and select the Enable checkbox. Ensure the default summary
index called summary is selected, and then click on Save:

13. The search is now scheduled to run every day, and the results are written to a
summary index named summary. Now, you will leverage the script to backfill the
summary. Bring up a terminal window in Linux or open a command window in
Windows.

14. From within your terminal or command window, change your working directory to
$SPLUNK_HOME/bin.

15. From the command line, tell Splunk to backfill the summary index by executing
the fill_summary_index.py script and supplying the required parameters.
Execute the following command and change the values admin:changeme to the
username:password combination of the user who populates the summary index
within Splunk; an administrative login can be used here to ensure proper access to
populate the summary index:
./splunk cmd python fill_summary_index.py -app
operational_intelligence -name cp09_backfill_purchases_city
-et -30day@day -lt now -j 8 -auth admin:changeme

Chapter 9

337

16. In Windows, omit the ./ at the start of the command.

17. Once the script has completed executing, run the following search from the search
bar in the Operational Intelligence application with a time range set to Last 30 days:
index=summary source=cp09_backfill_purchases_city
City!="Unknown"
| timechart span=1d useother=F sum(Purchases) by City

18. The search will complete very fast and list one result per day for the last 30 days.
Select the Visualization tab to see the data presented as a line chart representing
the total purchases by day for each city over the past month:

19. Let's save this chart to our Session and Purchase Trends dashboard that we created
in the previous recipe. Click on the Save As dropdown and select Report.

20. In the pop-up box that appears, enter cp09_purchases_city_trend in the Title
field and ensure Visualization is set to Line; then, click on Save.

21. On the next screen, select Add to Dashboard.

Speed Up Intelligence – Data Summarization

338

22. On the Save As Dashboard Panel screen, select Existing as the dashboard, and
then select the Session and Purchase Trends dashboard. Give the panel the title of
Purchases by City – Last 30 Days, ensure the panel is powered by Report,
and content is set to Line. Then, click on Save to save the chart to the dashboard:

How it works...
This recipe started off by taking a similar approach to the first recipe in this chapter. You
first created a search to look back over the past day for purchases by city and wrote the
summarized results to a summary index. You then scheduled this search to run on a daily
basis. However, rather than waiting 30 days for data to be populated, you executed a script
to backfill the summary with the previous 30 days worth of data.

The bundled Splunk script inputs a number of variables, including the saved search name
(cp09_backfill_purchases_city), the time frame that the search runs over (Last 24
hours), and the period of time that you wish to backfill (Last 30 days). Using this information,
the script essentially executes the search 30 times, once for each of the 30 days, and the
results of each day are written to the summary. Once the script is successfully executed, you
are able to run a report across the summary index over the past 30 days to quickly see the
daily purchases by city over time.

There are two searches that you used for this recipe, in addition to a script. The first search
was used to generate the summary data and was run daily. The script used the first search to
backfill the summary with 30 days of data. The second search was used to search and report
against the summary data directly. Let's break down each search piece by piece:

Chapter 9

339

Search 1 – Summary index generating search

Search fragment Description

sourcetype=log4j
index=main
requestType="checkout"

We first select to search the application
data in the main index over the past day.
We select to search for only events with a
requestType of checkout.

| iplocation ipAddress Using the built-in iplocation command, we
deduce the geolocational city information from
the ipAddress field in the data.

| fillnull
value="Unknown" City |
replace "" with
"Unknown" in City

The fillnull command is used to fill in the
blanks with a value of "Unknown", where
the iplocation command is unable to
match a city to the IP address. The replace
command replaces all "" values with a value
of "Unknown".

| stats count AS
Purchases by City

Using the stats command, we do a simple
count to count the number of purchases by
city.

fill_summary_index.py – Backfilling the summary index

Search fragment Description
./splunk cmd python
fill_summary_index.py

This is the actual command execution telling
Splunk that you wish to run a command (cmd)
ensuring the various Splunk environment
variables are set prior to execution. Next, the
command you wish to execute is specified
(python). Finally, you tell Python what you wish
to do; in this case, we execute the backfill script
provided with Splunk, which is named fill_
summary_index.py.

-app
operational_intelligence

This parameter tells the script the name of
the application under which the saved search
resides. For purposes here, it will be the
operational_intelligence application.

-name
cp09_backfill_purchases_
city

This parameter tells the script the name of the
saved search to run. For this execution, it will
be the name of the search saved in the cp09_
backfill_purchases_city recipe.

-et -30day@day This parameter tells the script the earliest
time for which results are to be returned. For
purposes here, it will be 30 days.

Speed Up Intelligence – Data Summarization

340

Search fragment Description
-lt now This parameter tells the script the latest time

for which it should return results. For purposes
here, it will be the current time of execution.

-j 8 This parameter tells the script the maximum
number of concurrent searches to run, which
will be 8.

-auth admin:changeme This parameter tells the script which credentials
to authenticate to Splunk as. In this case,
it will be Splunk's default credentials,
admin:changeme.

Search 2 – Reporting off the summary index

Search fragment Description
index=summary source=cp09_
backfill_purchases_city
City!="Unknown"

Firstly, we select to search the summary
index. Then, we look for data with a source of
cp09_backfill_purchases_city within
this index. This is the name of our saved search
and is used as the source field by Splunk when
writing to a summary index. We also filter out
cities with a value of "Unknown" to focus in on
the cities that we do know about.

| timechart span=1d
useother=F sum(Purchases) by
City

Using the timechart command and spanning
across a single day, we sum the purchases by
city over 30 days. By specifying useother=F,
we ensure that cities are not grouped together
and listed as "Other". This data is then
perfect to use on a line chart, with each line
representing a different city.

There's more...
In this recipe, you leveraged a script to help backfill the index automatically in Splunk.
However, in many cases, access to the command line to execute scripts might not be
permitted, and/or you won't mind doing a little bit more work to backfill a summary,
if it means you can do it directly from the search bar within Splunk.

Chapter 9

341

Backfilling a summary index from within a search directly
Splunk provides a way to write to a summary index directly from the search using the
addinfo and collect commands. For example, using the summary-generating search in
this recipe, we can modify the search to directly write to the summary index, as follows:

sourcetype=log4j index=main requestType="checkout" earliest=-2d@d
latest=-1d@d
| iplocation ipAddress | fillnull value="Unknown" City
| replace "" with "Unknown" in City
| stats count AS Purchases by City
| addinfo | collect index=summary
source="cp09_backfill_purchases_city" addtime=t

The earliest and latest field values are used to set the time range that the search should
run over. In this case, we run the search over the previous day, starting 2 days ago and ending
1 day ago. We also add the addinfo command, which adds information that Splunk needs
for summary indexing. Additionally, we use the collect command and specify the summary
index as well as the value for the source field that is written to the summary. The source field
value we use is the name of the saved search. If you execute this search, it will write a day's
worth of data to the summary index. You can repeat this search, modifying the earliest and
latest field values back a day each time, until you run the search 30 times and backfill the
entire month. You can also use the append command to append 30 searches together, each
with a different earliest and latest time. It is a bit uglier than the script method used in
the recipe and more prone to user error, but it works.

With summary indexing, it is very easy to write data to an index that you
don't want. Perhaps, you duplicate the data or tweak your generating
search to correct the results. Splunk has a delete command that can
be used to clean out bad data from any index. However, you will likely
need to have your Splunk administrator delete the data for you.

See also
 f The Calculating an hourly count of sessions versus completed transactions recipe

 f The Displaying the maximum number of concurrent sessions over time recipe

Speed Up Intelligence – Data Summarization

342

Displaying the maximum number of
concurrent sessions over time

In the past two recipes of this chapter, you leveraged a method of data summarization called
summary indexing to summarize data into a new index, which you then reported on. In this
recipe, you will use another method of data summarization known as report acceleration to
speed up your report times.

In this recipe, you will create a report to look for the maximum number of concurrent sessions
over a time period of 30 days. This report will then be accelerated to speed up the time taken
to execute the search.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar
with navigating the Splunk user interface and using the Splunk search language.

How to do it...
Follow the steps in this recipe to leverage report acceleration to display the maximum
number of concurrent sessions over time:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

3. From the search bar, enter the following search and select to run over Last 7 days:
index=main sourcetype=log4j
| timechart span=1m dc(sessionId) AS concurrent_sessions
| timechart span=30m max(concurrent_sessions) AS
max_concurrent_sessions

4. You might find that the search takes about 2-3 minutes to run if you have 7 days
of generated data.

5. Click on the Save As dropdown and select Report from the list:

Chapter 9

343

6. In the pop-up box that gets displayed, enter cp09_maximum_concurrent_
sessions as the title of the report and select No in the Time Range Picker field.
Then, click on Save:

7. On the next screen, select Acceleration from the list of additional settings:

Speed Up Intelligence – Data Summarization

344

8. Select the Accelerate Report checkbox, set a summary range of 1 Month, and
then click on Save. If you see a warning about running in verbose mode, it is okay
to ignore:

9. The report is now saved and Splunk builds the accelerated summary behind the
scenes. There is no need to schedule the search. To check on the status of the
summary building, click on the Settings menu and select Report acceleration
summaries:

10. The list of report acceleration summaries will be displayed, and you will see the
report that you just created with Summary Status of Building Summary:

Chapter 9

345

11. If you do not see the summary building, try hitting refresh on the browser. Sometimes,
you have to wait a bit. If you are impatient, click on the Summary ID value that you
are monitoring and you will be taken to a screen where you can force a build by
clicking on Rebuild . If you see a status of Pending, it is normal as it is telling you that
an update to the summary is pending. If you see Not enough data to summarize, it is
letting you know that there is not enough data yet to summarize properly and will wait
until there is. If that occurs, consider updating Summary Range in the acceleration
configuration to a smaller window:

12. Eventually, the report will complete the building of the summary. When it is complete,
click on the Apps menu and select the Operational Intelligence app:

Speed Up Intelligence – Data Summarization

346

13. Once back in the app, click on Reports, filter on the word maximum, and click on
Open in Search next to the cp09_maximum_concurrent_sessions report:

14. The report will now load in seconds. Select the Visualization tab to see the data
presented as a line chart representing the maximum number of concurrent sessions,
and select a time range of Last 7 days:

15. Let's save this chart to our Session and Purchase Trends dashboard that we created
in the first recipe. Click on the Save As dropdown and select Dashboard Panel.

16. In the pop-up box that appears, select Existing in the Dashboard field, and then
select the Session and Purchase Trends dashboard. Enter Maximum Concurrent
Sessions as the title of the panel, ensure the panel is set to be powered by Report,
ensure the panel content is set to Line, and click on Save to save the chart to
the dashboard:

Chapter 9

347

How it works...
In this recipe, you first created a search to look for concurrent sessions over time. The search
has two timechart components to it. Let's break down the search piece by piece:

Search fragment Description
index=main
sourcetype=log4j

Select to search the application data in the
main index.

| timechart span=1m
dc(sessionId) AS
concurrent_sessions

The first timechart command identifies
the number of distinct (or unique) sessions
in each 1-minute period.

| timechart span=30m
max(concurrent_sessions)
AS
max_concurrent_sessions

The second timechart command takes
the number of concurrent sessions that
have been calculated for each minute and
identifies the highest (or maximum) number
in any 30-minute period.

This search is actually fairly resource intensive when searched for over an extended period of
time. Running the nonaccelerated search over 7 days will likely take several minutes, mostly
because Splunk performs a calculation for every minute of data for the past week. Once the
report is created, you select to accelerate it over a 1-month period. Behind the scenes, Splunk
creates an internal summary in line with the data itself. Once the summary is built, you return
to the report and rerun it; it completes in seconds, thanks to the new acceleration. As the
report is accelerated for an entire month, you can look back up to a month in the past and it
will still run fast. Going forward, Splunk will periodically refresh the internal summary every
10 minutes to summarize and accelerate any new event data.

Speed Up Intelligence – Data Summarization

348

Report acceleration will only work with searches or reports that contain
what is known as a transforming command. Examples of commonly used
transforming commands are stats, timechart, chart, and top.

There's more...
Report acceleration does add some overhead as disk space is used to store the internal
summary data. Splunk provides detailed information on the health of the various reports
that are accelerated.

Viewing the status of an accelerated report
To investigate the details of an accelerated report, first click on the Settings menu, and then
select Report Acceleration Summaries. A list of all the accelerated reports will load together
with a high-level build status. Click on the report we accelerated in this recipe to drill into the
details. The Summary Details screen provides some good insight into the accelerated report,
including information such as how many times the report has been accessed, the range the
report is set at, and how much data is being used by the summary.

Chapter 9

349

See also
 f The Calculating an hourly count of sessions versus completed transactions recipe

 f The Backfilling the number of purchases by city recipe

Summary
The key takeaways from this chapter are as follows:

 f There are currently three methods of data summarization in Splunk: summary
indexing, report acceleration, and data model acceleration

 f Summary indexing can greatly improve the time taken to access key metrics
computed over long periods of time

 f Summary indexing provides a method to retain data over long periods of time with
a much smaller footprint on disk space

 f Report acceleration provides an intelligent method for automatically summarizing
report data to enhance the speed of the report

 f Report acceleration summary data is shared amongst similar reports automatically

 f Report acceleration is self-repairing; it will automatically detect gaps in data and
recompute the expected data summaries

 f The speed at which reports are produced is a cornerstone to a successful Operational
Intelligence program

10
Above and Beyond –
Customization, Web

Framework, REST API,
and SDKs

In this chapter, we will learn how to customize a Splunk application and use advanced
features of Splunk SDKs and APIs to work with the data within Splunk. You will learn about:

 f Customizing the application's navigation

 f Adding a force-directed graph of web hits

 f Adding a calendar heatmap of product purchases

 f Remotely querying Splunk's REST API for unique page views

 f Creating a Python application to return unique IP addresses

 f Creating a custom search command to format product names

Introduction
Throughout all of the chapters so far, we have been dealing directly with the core functionality
found within Splunk Enterprise. In this chapter, we will dive into the functionality that lets
us create an even more powerful interactive experience with Splunk. By leveraging the
latest technology in Splunk Enterprise, we can customize the look and feel, expose our
users to richer visualizations, extract knowledge and data from Splunk into our own internal
applications, or build completely new applications that leverage Splunk.

Above and Beyond – Customization, Web Framework, REST API, and SDKs

352

Taking your Splunk experience to the next level breaks out into three areas: the web
framework, the REST API, and software development kits (SDKs).

Web framework

The web framework is a core component of the Splunk 6 platform. The framework extends
the abilities of Splunk to allow for more extensible development. Server-side functionality
leverages the Django web framework to create a more fluid development experience. In
this framework, you don't have to restart Splunk to see your changes, you can write custom
handlers and URL routing, and you can create custom templates that can be used to generate
client-side components. On the client side, you can leverage a custom Splunk JavaScript stack
combined with HTML-based dashboards. You no longer need to do everything in SimpleXML!
The SplunkJS Stack can even be downloaded as a set of libraries to be included in your
applications outside of Splunk.

The full power of these technologies can be used to create the type of dashboards and reports
that will meet your exact needs.

REST API

The backbone of Splunk has always been the underlying REST API. The REST API allows
access to everything from configuration to ingesting data. Whether it's running one-off scripts
to extract some data or automating a workflow with a third-party system, it can all be done
with simple web requests to the API.

As with most of Splunk, there are also many different options and parameters that you can
apply to your REST API calls in order to manipulate the output types or filter the results. Long
before Splunk had the web framework, the REST API was the workhorse of integrating with
Splunk and still plays a big part in this.

Software development kits (SDKs)

Over the past few years, the Splunk development team has been creating SDKs to assist
developers with the creation of their own Operational Intelligence applications.

Using the SDKs, developers can easily:

 f Manage and execute searches and saved searches

 f Manage configuration details and user access

 f Log data directly into Splunk

And many other features.

The SDKs are written to interact with the REST API and abstract the various details away to
let you focus on getting the operational intelligence you need. Splunk currently has SDKs for
Python, Java, JavaScript, PHP, Ruby, and C#.

OK, let's get some hands-on experience of this exciting technology!

Chapter 10

353

Customizing the application's navigation
As we come to the end of this book, it is a good time to take a look at the Operational
Intelligence application that you developed and add some simple customization to pull the
app together from a presentation standpoint.

In this recipe, you will add custom navigation to your application to better organize the reports
and dashboards.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the sample
data loaded from Chapter 1, Play Time – Getting Data In. Ideally, you should have completed
all the earlier recipes in this book such that you have an Operational Intelligence application
with a number of dashboards and reports contained within it. By now, you should be familiar
with navigating the Splunk user interface and using the Splunk search language.

How to do it...
Follow the steps in this recipe to add some custom navigation and design tweaks:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

Above and Beyond – Customization, Web Framework, REST API, and SDKs

354

3. Click on Settings and then on User interface.

4. Click on Navigation menus.

5. You should see one item in the list named default. Click on it.

6. You should see some existing code as follows:
<nav search_view="search" color="#65A637">
 <view name="search" default='true' />
 <view name="data_models" />
 <view name="reports" />
 <view name="alerts" />
 <view name="dashboards" />
</nav>

Chapter 10

355

7. Modify the code as follows:
<nav search_view="search" color="#999999">
 <view name="search" default='true' />
<!--
 <view name="data_models" />
 <view name="reports" />
 <view name="alerts" />
-->
 <collection label="Sales">
 <view name="product_monitoring" />
 <view name="purchase_volumes" />
 </collection>
 <collection label="Performance">
 <view name="operational_monitoring" />
 <view name="website_monitoring" />
 <view name="session_monitoring" />
 <view name="predictive_analytics" />
 </collection>
 <collection label="Operations">
 <view name="session_and_purchase_trends" />
 <view name="web_hits" />
 </collection>
 <collection label="Visitors">
 <view name="visitor_monitoring" />
 </collection>
 <collection label="Saved Reports">
 <collection label="Chapter 1 - Play Time">
 <saved source="unclassified" match="cp01" />
 </collection>
 <collection label="Chapter 2 - Diving into Data">
 <saved source="unclassified" match="cp02" />
 </collection>
 <collection label="Chapter 3 - Dashboards
 Visualizations">
 <saved source="unclassified" match="cp03" />
 </collection>
 <collection label="Chapter 4 - Building an App">
 <saved source="unclassified" match="cp04" />
 </collection>
 <collection label="Chapter 5 - Extending Intelligence">
 <saved source="unclassified" match="cp05" />
 </collection>
 <collection label="Chapter 6 - Advanced Searching">

Above and Beyond – Customization, Web Framework, REST API, and SDKs

356

 <saved source="unclassified" match="cp06" />
 </collection>
 <collection label="Chapter 7 - Enriching Data">
 <saved source="unclassified" match="cp07" />
 </collection>
 <collection label="Chapter 8 - Being Proactive">
 <saved source="unclassified" match="cp08" />
 </collection>
 <collection label="Chapter 9 - Speed Up Intelligence">
 <saved source="unclassified" match="cp09" />
 </collection>
 <collection label="Chapter 10 - Above and Beyond">
 <saved source="unclassified" match="cp10" />
 </collection>
 </collection>
 <collection label="Administration">
 Splunk
 Documentation
 Splunk Apps
 <a href="http://discoveredintelligence.ca/
 getting-started-with-splunk/">Splunk Help
 <view name="dashboards" />
 </collection>
</nav>

You can also edit this file outside of the Splunk GUI, and it can be found
in $SPLUNK_HOME/etc/apps/operational_intelligence/
default/data/ui/nav/default.xml.

8. Once the edits have been made, click on Save, and then select the Operational
Intelligence app as you did in step 2. You should now see that you have fully
customized the menus of the application and also changed the navigation toolbar
color to gray.

Chapter 10

357

How it works...
In this recipe, you edited the navigation of the Operational Intelligence application to better
organize the dashboards and reports. You also changed the color of the navigation bar from
the default green to gray. Let's break down the code a bit to explain a few things.

Search fragment Description
<nav
search_view="search"
color="#999999">

This is where the color of the navigation menu
bar was changed using the HEX color value for
gray.

<!--
 <view
name="data_models" />
 <view name="reports"
/>
 <view name="alerts" />
-->

These default views were commented out such
that they do not display in the application. You
can also simply delete the lines instead.

<collection
label="Sales">
 <view
name="product_monitoring" />
 <view
name="purchase_volumes" />
 </collection>

Next, you added a series of collection
elements that group the various views
(dashboards) into categories such as sales,
performance, and so on.

<collection label="Saved
Reports">
 <collection
 label="Chapter 1 -
 Play Time">
 <saved
 source=
 "unclassified"
 match="cp01" />
 </collection>
...
</collection>

You then added a series of nested collection
elements, which allow for grouping within a
common group. In this case, we list all of the
reports that you saved during the recipes in
this book. Using the match parameter, we are
able to match the searches by chapter name
into their respective collections.

Note that to display searches, we use the
saved parameter, and earlier, we used the
view parameter.

Above and Beyond – Customization, Web Framework, REST API, and SDKs

358

Search fragment Description
<collection
label="Administration">
 <a href="http://
 docs.splunk.com">
 Splunk
 Documentation
 <a href="http://
 apps.splunk.com">
 Splunk Apps
 <a href="http://
 discovered
 intelligence.ca/
 getting-started-
 with-splunk/">
 Splunk Help
<view

name="dashboards" />

</collection>

Finally, you added an admin menu that lists
a number of resources. To do this, you simply
added the familiar HTML href code. As
well we retain the Dashboards menu item
for easy access to a centralized listing of all
dashboards.

There's more…
This really just skims the surface of some of the customization that can be applied to a
Splunk application. For example, you can implement your own CSS for the app or even use
your own icons and graphics.

Splunk has a detailed manual on advanced development, including how to
modify the CSS for an app, how to change the icons and images, and how
to package your application to upload it to the Splunk app store. For more
information, see the documentation at http://docs.splunk.com/
Documentation/Splunk/latest/AdvancedDev.

Adding a force-directed graph of web hits
As you have seen from the other recipes throughout the book, we have used many of
the normal everyday visualizations seen commonly in spreadsheets and presentations.
As data intelligence tools such as Splunk push the boundaries of getting data into a user's
hands, there is a need to deliver and represent data via new and unique visualizations.

This recipe will show you how to install the Splunk web framework and create a force-directed
graph (FDG) of relationships between web page hits that will be populated as a new dashboard
in the Operational Intelligence application.

http://docs.splunk.com/Documentation/Splunk/latest/AdvancedDev
http://docs.splunk.com/Documentation/Splunk/latest/AdvancedDev

Chapter 10

359

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with
navigating the Splunk user interface and using the Splunk search language. Some basic
knowledge of JavaScript is recommended.

How to do it...
Follow the steps in this recipe to add a force-directed graph that illustrates web hits:

1. Log in to your Splunk server.

2. From the top menu, select Apps and then select Manage Apps.

3. Click on Find more apps online.

4. In the app search field, enter Web Framework, and click on the magnifying
glass button.

Above and Beyond – Customization, Web Framework, REST API, and SDKs

360

5. Find Splunk Web Framework Toolkit and click on the Install free button.

If your Splunk server is not connected to the Internet, you will not be able
to use this method to install the app. Instead, head to http://apps.
splunk.com/app/1613/, download the app, and then click on the
Install app from file button after completing step 2.

6. Enter your Splunk app's username and password. If you don't have an account, go to
Splunk.com and register for an account.

7. Click on the Login button.

8. Splunk will need to restart. Click on the Restart Splunk button.

http://apps.splunk.com/app/1613/
http://apps.splunk.com/app/1613/

Chapter 10

361

9. Once Splunk has restarted, click on Ok on the confirmation alert.

10. From a console window or a file explorer window, go to the $SPLUNK_HOME/etc/
apps/operational_intelligence directory and create an appserver folder
and then a static folder so that the complete path is now $SPLUNK_HOME/etc/
apps/operational_intelligence/appserver/static.

11. Copy the components folder from the toolkit into the newly created static folder in
your Operational Intelligence application.

In Linux, copy the contents of the components folder to the static folder you just
created in your operational_intelligence application:
cp -R
$SPLUNK_HOME/etc/apps/splunk_wftoolkit/django/splunk_wftoolkit/
static/splunk_wftoolkit/components
$SPLUNK_HOME/etc/apps/operational_intelligence/appserver/
static/

Note that $SPLUNK_HOME is the directory of your Splunk install,
which is generally /opt/splunk by default in Linux.

In Windows, copy the contents of the components folder in c:\program files\
splunk\etc\apps\splunk_wftoolkit\django\splunk_wftoolkit\
static\splunk_wftoolkit\components to the static folder you just created
in your operational_intelligence application.

12. Log in to your Splunk server.

13. Select the Operational Intelligence application.

14. Click on the Administration menu and then click on the Dashboards menu item.

Above and Beyond – Customization, Web Framework, REST API, and SDKs

362

15. Click on the Create New Dashboard button.

16. In the Create New Dashboard window, enter Web Hits in the Title field and select
Shared in App in the Permissions field.

17. Click on Create Dashboard.

18. Click on Done.

19. Click on the Edit button.

Chapter 10

363

20. Click on the Convert to HTML menu item.

21. Click on the Replace Current option.

22. Click on Convert Dashboard.

Above and Beyond – Customization, Web Framework, REST API, and SDKs

364

23. Click on the Edit HTML button.

24. In the dashboard editor form, locate the HTML <div> tag with the data-
role="main" value and update it to look like the following code:
<div class="dashboard-body container-fluid main-section-body"
data-role="main">
 <div class="dashboard-header clearfix">
 <h2>Web Hits</h2>
 <p class="description"></p>
 </div>
 <div class="dashboard-row dashboard-row1">
 <div class="dashboard-cell" style="width: 100%;">
 <div class="dashboard-panel clearfix">
 <div class="panel-element-row">
 <div class="dashboard-element chart"
id="element1" style="width: 100%">
 <div class="panel-head">
 <h3>Webpage relationship</h3>
 </div>
 <div class="panel-body">
 <div id="fd-chart"></div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

Chapter 10

365

25. Locate the require.config statement just below in the script section and add the
additional path that will help Splunk find the toolkit components. Add the app path
to the require.config statement as follows (remember to add a comma to the
preceding array item):
require.config({
 baseUrl: "{{SPLUNKWEB_URL_PREFIX}}/static/js",
 waitSeconds: 0, // Disable require.js load timeout
 paths:
 {
 "app": "../app"
 }
});

26. Locate the require portion of the JavaScript just below and add this item to the
array (remember to add a comma to the preceding array item):
"app/operational_intelligence/components/forcedirected/
forcedirected"

27. Below the function statement, add ForceDirected (remember to add a comma
to the preceding array item):
PostProcessManager,
UrlTokenModel,
ForceDirected

28. Locate the SEARCH MANAGERS section of the JavaScript and add the following code:
var search1 = new SearchManager({
 "id": "search1",
 "status_buckets": 0,
 "latest_time": "now",
 "search": " index=main sourcetype=access_combined | rex
field=referer \".*(?<sourcepage>\/.*?)$\" | stats count by
sourcepage, uri_path",
 "cancelOnUnload": true,
 "earliest_time": "-6h",
 "app": utils.getCurrentApp(),
 "auto_cancel": 0,
 "preview": true
}, {tokens: true, tokenNamespace: "submitted"});

29. Locate the VIEWS: VISUALIZATION ELEMENTS section of the JavaScript (close to
the bottom of the page) and add the following code:
var forcegraph = new ForceDirected({
 'id' : 'fd1',
 'managerid' : 'search1',
 'el' : $('#fd-chart')
 }).render();

Above and Beyond – Customization, Web Framework, REST API, and SDKs

366

30. Click on Save, and you will be taken back to the dashboard.

31. After a short while, you should see the force-directed graph load on your dashboard.
This shows the relationships between pages and page transitions.

How it works...
Splunk provides the Web Framework Toolkit app to help demonstrate how different libraries
can be used to create visualizations such as the force-directed graph. This app comes
with prebuilt D3.js visualizations that we can use in our own apps. Force-directed graphs
are visualizations that render the connectivity and clustering between objects. The typical
force-directed drawing algorithm places similar objects in closer proximity to each other and
unrelated objects farther apart.

In order to use the toolkit and FDG, you first had to install the necessary app and then copy
the required libraries over to the Operational Intelligence application. This is useful if your app
is going to be distributed as it reduces the dependency on the other apps being installed.

The dashboard needs to be in the HTML format for the FDG to be inserted, so you created an
empty dashboard in SimpleXML and then converted it to HTML. You then added the HTML
code that will hold the FDG and ensured that it was set with all the correct CSS classes, in
order to ensure that the formatting matches the app.

The majority of the dashboard functionality comes in the JavaScript section. You first added
references to the libraries that you copied into the Operational Intelligence app from the Web
Framework Toolkit. You then added a search manager object that controls the searching
functionality and returns the data to the graph object. Finally, you added an object that will
hold the FDG and told it which HTML entity it is to be put in.

Chapter 10

367

A good walkthrough of HTML can be found on the Splunk
developer website at http://dev.splunk.com/view/
webframework-htmldashboards/SP-CAAAETK.
Additionally, to learn more about D3.js and the types of visualizations
that you can create with it, visit http://d3js.org/.

There's more…
Splunk is very flexible, and there are a few tweaks we can make to improve or modify the
behavior of the dashboard.

Changing the time range on the search manager
The search manager JavaScript object controls and co-ordinates the search requests, and as
such, it can be modified with different settings to control the different aspects of its behavior.

One of the parameters that can be easily modified is the time range. This can be done by
hardcoding a new value or linking it with other controls such as dropdowns or textboxes.

To change the search time range from the previous 6 hours to the current business week,
update the search manager attributes of latest_time and earliest_time as shown in
the following code:

var search1 = new SearchManager({
 "id": "search1",
 "status_buckets": 0,
 "latest_time": "+7d@w6",
 "search": "index=main sourcetype=access_combined | rex
field=referer \".*(?<sourcepage>\/.*?)$\" | stats count by sourcepage,
uri_path",
 "cancelOnUnload": true,
 "earliest_time": "@w1",
 "app": utils.getCurrentApp(),
 "auto_cancel": 0,
 "preview": true
}, {tokens: true, tokenNamespace: "submitted"});

http://dev.splunk.com/view/webframework-htmldashboards/SP-CAAAETK
http://dev.splunk.com/view/webframework-htmldashboards/SP-CAAAETK
http://d3js.org/
http://dev.splunk.com/view/webframework-htmldashboards/SP-CAAAETK

Above and Beyond – Customization, Web Framework, REST API, and SDKs

368

See also
 f The Adding a calendar heatmap of product purchases recipe

 f The Remotely querying Splunk's REST API for unique page views recipe

 f The Creating a Python application to return unique IP addresses recipe

Adding a calendar heatmap of product
purchases

As we saw in the Adding a force-directed graph of web hits recipe, using the D3 visualizations
that come included in the Splunk Web Framework Toolkit app allow for more creative and
unique representations of our data.

This recipe will show you how to create a new dashboard containing a calendar heatmap of
product purchases for the past week and place it into the Operational Intelligence application.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar
with navigating the Splunk user interface and using the Splunk search language. You must
also have completed the Adding a force-directed graph of web hits recipe in this chapter, as
the Web Framework Toolkit app will be leveraged for this recipe. Some basic knowledge of
JavaScript is recommended.

How to do it...
Follow the steps in this recipe to create a new dashboard that contains a calendar
heatmap of purchases:

1. Log in to your Splunk server.

2. Select the Operational Intelligence application.

Chapter 10

369

3. Click on the Administration menu and then click on the Dashboards menu item.

4. Click on the Create New Dashboard button.

5. In the Create New Dashboard window, enter Purchase Volumes in the Title field
and select Shared in App in the Permissions field.

6. Click on Create Dashboard.

Above and Beyond – Customization, Web Framework, REST API, and SDKs

370

7. Click on Done.

8. Click on the Edit button.

9. Click on the Convert to HTML menu item.

10. Click on the Replace Current option.

Chapter 10

371

11. Click on Convert Dashboard.

12. Click on the Edit HTML button.

13. In the dashboard editor form, locate the HTML <div> tag with the data-
role="main" value and update it to look like the following lines of code:
<div class="dashboard-body container-fluid main-section-
body" data-role="main">
 <div class="dashboard-header clearfix">
 <h2>Purchase Volumes</h2>
 <p class="description"></p>
 </div>

Above and Beyond – Customization, Web Framework, REST API, and SDKs

372

 <div class="dashboard-row dashboard-row1">
 <div class="dashboard-cell" style="width: 100%;">
 <div class="dashboard-panel clearfix">
 <div class="panel-element-row">
 <div class="dashboard-element chart"
id="element1" style="width: 100%">
 <div class="panel-head">
 <h3>Volumes</h3>
 </div>
 <div class="panel-body">
 <div id="cal-chart"></div>
 </div>
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

14. Locate the require.config statement and add the additional path that will help
Splunk find the toolkit components. Add the app path as follows (remember to add a
comma to the preceding item after 0):
require.config({
 baseUrl: "{{SPLUNKWEB_URL_PREFIX}}/static/js",
 waitSeconds: 0, // Disable require.js load timeout
 paths:
 {
 "app": "../app"
 }
});

15. Locate the require portion of the JavaScript and add this item to the array
(remember to add a comma to the preceding array item):
"app/operational_intelligence/components/calendarheatmap/
calendarheatmap"

16. Below the function statement, add CalendarHeatmap (remember to add a
comma to the preceding array item):
PostProcessManager,
UrlTokenModel,
CalendarHeatmap

Chapter 10

373

17. Locate the SEARCH MANAGERS section of the JavaScript and add the following code:
var search1 = new SearchManager({
 "id": "search1",
 "status_buckets": 0,
 "latest_time": "now",
 "search": " index=main sourcetype=log4j requestType=checkout |
timechart span=1h sum(total) as purchase_total",
 "cancelOnUnload": true,
 "earliest_time": "-7d",
 "app": utils.getCurrentApp(),
 "auto_cancel": 0,
 "preview": true
}, {tokens: true, tokenNamespace: "submitted"});

18. Locate the VIEWS: VISUALIZATION ELEMENTS section of the JavaScript and add
the following lines of code:
var calendarheatmap = new CalendarHeatmap({
 'id' : 'fcal',
 'managerid' : 'search1',
 'domain' : 'day',
 'subDomain' : 'x_hour',
 'el' : $('#cal-chart')
 }).render();

19. Click on Save, and you will be taken back to the dashboard.

20. You should see a dashboard rendering the amount of product purchases each hour
for the past 7 days as a calendar heatmap visualization. The scroll arrows allow you
to scroll to different days in the calendar.

Above and Beyond – Customization, Web Framework, REST API, and SDKs

374

How it works...
The calendar heatmap visualization is a way to represent and render the magnitude of time-
series data as a heatmap. In this case, we represented the amount of purchases per hour for
each given day over the past 7 days. This visualization can be used to spot trends or patterns
in purchasing either by time of day, day of the week, or week of the year.

As we saw in the Adding a force-directed graph of web hits recipe, the calendar heatmap is a
prebuilt component that is available when you install the Splunk Web Framework Toolkit app.

The dashboard needs to be in HTML format, so you created an empty dashboard in
SimpleXML and then converted it. You then added the HTML code that will hold the heatmap
visualization and set the correct CSS classes to ensure that it is formatted with the right look
and feel to match the Operational Intelligence app.

The majority of the dashboard functionality comes in the JavaScript section. You first added
references to the libraries you copied into the Operational Intelligence app from the Web
Framework Toolkit app so that the Operational Intelligence app can see them. Next, you added
a search manager object that controls the searching functionality and returns the data to the
heatmap object. Finally, you added an object that will hold our heatmap and tell it which HTML
entity it will be put into.

To learn more about D3.js and the types of visualizations that you
can create with it, visit http://d3js.org/.

See also
 f The Adding a force-directed graph of web hits recipe

 f The Remotely querying Splunk's REST API for unique page views recipe

 f The Creating a Python application to return unique IP addresses recipe

Remotely querying Splunk's REST API for
unique page views

Web services have become the technology of choice for most of the applications that we use
daily. By leveraging the connections that we use for regular web browsing, we can transfer
data in a more programmatic fashion; this allows for easy integration between applications.

In this recipe, you will learn how to use Splunk's REST API to return unique IP addresses from
the web server logs of our application.

http://d3js.org/

Chapter 10

375

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar
with navigating the Splunk user interface and using the Splunk search language. This recipe
will use the open source command-line tool, curl. There are also other command-line tools
available, such as wget. The curl tool is usually installed by default on most Mac and Linux
systems but can be downloaded for Windows systems as well.

For more information on curl, visit http://curl.haxx.se/.

How to do it...
Follow the steps in this recipe to remotely query Splunk for unique page views using the REST
API. Note that you will need to change admin and changeme throughout this recipe to the
Splunk username and password you have configured:

1. Open a console or command-line window on your Splunk server.

2. Create an initial request to ensure that the authentication works correctly. If it is
successful, it will return a list of Splunk apps installed in an XML format:
curl -k -u admin:changeme
https://localhost:8089/servicesNS/admin

3. Update the REST endpoint in the request. This will return a fatal error as we have not
defined a search:
curl -k -u admin:changeme
https://localhost:8089/servicesNS/admin/search/search/jobs/
export

4. Add the search to be executed to the request. This will return the results of the search
in XML over the past 7 days, as we are including the earliest field value:
curl -k -u admin:changeme --data-urlencode search="search
index=main sourcetype=access_combined earliest=-7d status=200 |
dedup clientip uri_path | stats count by uri_path"
https://localhost:8089/servicesNS/admin/search/search/jobs/
export

In all of the curl examples, the username admin and password
changeme were used. This is the default username and password
set in a new installation of Splunk, and it is recommended that
you update it with a more secure password.

http://curl.haxx.se/

Above and Beyond – Customization, Web Framework, REST API, and SDKs

376

How it works...
In this recipe, you executed a Splunk search using the REST API to look for unique page views
over the past 7 days. On every Splunk installation, Splunk opens port 8089 by default to listen
for REST requests. The requests can be sent using command-line tools such as curl, as seen
in our examples, or they can be called using the browser directly.

Splunk supports GET, POST, and DELETE requests. You use a GET request to retrieve or view
data, a POST request to update data, and a DELETE request to remove data. Also, results can
be returned in various formats such as XML, JSON, and CSV.

The type of operation you are looking to perform will change the value of the URL you are
accessing. In this recipe, we are using an endpoint that allows for an export job, and as such,
the URL included search/jobs/export.

As with all of Splunk, the access controls and permissions that you set up in Splunk are
enforced in the REST API as well. This ensures that your users can't get around any security
restrictions using tools other than the normal web interface. All requests to the REST API
are also encrypted using SSL. Self-signed SSL certificates are created by default but can
also be replaced with the ones signed by your own certificate authority.

Even the Splunk Web GUI uses the Splunk REST API behind the scenes
when performing operations such as searching. For more information on
REST, check out the REST Wikipedia page at http://en.wikipedia.
org/wiki/Representational_State_Transfer.

There's more…
The REST API in Splunk is very flexible, and there are a few tweaks we can make to improve
or modify the behavior of the API calls.

Authenticating with a session token
Instead of having to pass the username and password on every request to the API, as we saw
by setting the –u parameter, we can create a session token and then pass this on subsequent
requests. The advantage of this is that it reduces the load on your Splunk server, as it does
not require to authenticate every request.

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer

Chapter 10

377

First, create the session token by calling the auth/login endpoint:

curl -k https://localhost:8089/servicesNS/admin/search/auth/login/ -d"
username=admin&password=changeme"

This will return a token such as the following:

<response>
<sessionKey>XzcmjvXT4SKL6loDHx6dsGxFCrQNENwlWoKraskF_yQbvDyQ47zIl9
icR1VUzA6dX8tGbKiCMghnhKfbPslKuzSaV4eXLioKwo</sessionKey>
</response>

Then, use the value contained in the session key tags as an authentication header in the
subsequent requests:

curl -k --data-urlencode search="search
index=main sourcetype=access_combined status=200 latest=now
earliest=-15m | dedup clientip uri_path | stats count by uri_path"
-H "Authorization: Splunk
XzcmjvXT4SKL6loDHx6dsGxFCrQNENwlWoKraskF_yQbvDyQ47zIl9icR1VUzA6dX8tGb
KiCMghnhKfbPslKuzSaV4eXLioKwo"
https://localhost:8089/servicesNS/admin/search/search/jobs/export

See also
 f The Adding a calendar heatmap of product purchases recipe

 f The Creating a Python application to return unique IP addresses recipe

 f The Creating a custom search command to format product names recipe

Creating a Python application to return
unique IP addresses

The Splunk Python SDK was one of the first SDKs that Splunk developed and has since been
used to integrate Splunk's ability to process and analyze large streams of data into custom
applications. By leveraging the ability to integrate directly with your applications, you can see
immediate results and fully leverage your operational intelligence capabilities.

In this recipe, you will learn how to use Splunk's Python SDK to create a custom Python
application that will return unique IP addresses from the web server logs of our application.

Above and Beyond – Customization, Web Framework, REST API, and SDKs

378

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar with
navigating the Splunk user interface and using the Splunk search language. Some basic
knowledge of Python is recommended. The Splunk Python SDK should also be downloaded
and available on your Splunk Enterprise server.

The Splunk Python SDK can be downloaded from
http://dev.splunk.com. For this book, v1.2.3
of the Splunk Python SDK was used.

How to do it...
Follow the steps in this recipe to create a Python application that returns unique IP addresses:

1. Open a console window on your Splunk server.

2. Execute the following command to export the Python SDK directory location as an
environment variable. Update the value of PYTHONPATH with the actual path where
you have installed the SDK:
export PYTHONPATH=~/splunk-sdk-python

3. Create a new file called uniqueip.py and open it for editing.

4. To the uniqueip.py file, add the import statements that are needed to load the
correct Splunk libraries that we will be using:
import splunklib.client as client
import splunklib.results as results

5. Add constants to hold the values of the Splunk server we are connecting to and
the credentials we are connecting with. You will likely need to change the Splunk
username and password credentials from the default ones:
HOST = "localhost"
PORT = 8089
USERNAME = "admin"
PASSWORD = "changeme"

6. Define the service instance we will be using to connect and communicate with our
Splunk Enterprise server:
service = client.connect(
 host=HOST,
 port=PORT,
 username=USERNAME,
 password=PASSWORD)

http://dev.splunk.com

Chapter 10

379

7. Define a dictionary of search arguments that will be used with our search that will
modify its behavior:
kwargs = {"earliest_time": "-15m",
 "latest_time": "now",
 "search_mode": "normal",
 "exec_mode": "blocking"}

8. Add a variable to hold the search query we will be using to return our list of unique IP
addresses. Any double quotes in the search query need to be escaped:
searchquery = "search index=main
sourcetype=\"access_combined\" | stats count by clientip"

9. Create the job request and print out to the console when it has been completed:
job = service.jobs.create(searchquery, **kwargs)
print "Job completed...printing results!\n"

10. Create a reference to the search results as follows:
search_results = job.results()

11. Add a ResultsReader object, iterate through the results, and print out the IP
address and the associated count:
reader = results.ResultsReader(search_results)
for result in reader:
 print "Result: %s => %s" % (result['clientip'],result['count']
)

The completed program code should look as follows:
import splunklib.client as client
import splunklib.results as results

HOST = "localhost"
PORT = 8089
USERNAME = "admin"
PASSWORD = "changeme"

service = client.connect(
 host=HOST,
 port=PORT,
 username=USERNAME,
 password=PASSWORD)

kwargs = {"earliest_time": "-15m",
 "latest_time": "now",
 "search_mode": "normal",

Above and Beyond – Customization, Web Framework, REST API, and SDKs

380

 "exec_mode": "blocking"}

searchquery = "search index=main sourcetype=\"access_combined\" |
stats count by clientip"

job = service.jobs.create(searchquery, **kwargs)
print "Job completed...printing results!\n"

search_results = job.results()

reader = results.ResultsReader(search_results)
for result in reader:
 print "Result: %s => %s" % (result['clientip'],result['count']
)

12. To execute your program, run:
python uniqueip.py

The output of the program should look like this:

Result: 106.207.151.69 => 1
Result: 107.220.112.174 => 12
Result: 12.181.33.129 => 12
Result: 120.76.179.40 => 1
Result: 128.180.195.184 => 10

The program output details the number of events in the web access logs by the client IP over
the last 15-minute timeframe specified in the Python code.

In all of the curl examples, the username admin and password
changeme were used. This is the default username and password
set in the new installation of Splunk and it is recommended that
you update it with a more secure password.

How it works...
At the core of working with Splunk is the REST API. The REST API is used by Splunk to do
everything from authenticating to searching to configuration management. As we have seen in
the Remotely querying Splunk's REST API for unique page views recipe of this chapter, we can
interact with the REST API very easily with simple command-line tools.

Chapter 10

381

Organizations that maintain their own line of business applications and are looking to
integrate the operational intelligence they can get out of Splunk can do so by leveraging the
SDK for the language that their application is written in. Splunk has created SDKs for many of
the mainstream programming languages.

The SDK is a wrapper around calls to the REST API and helps abstract the details by providing
easy-to-use objects that can be interacted with. Most of the same REST endpoints available
natively can be created as objects from the SDK.

As seen in the recipe, the majority of functionality that is used is assisting with the creation of
a connection and management of the authentication, creation of a search job, and processing
of the results. There are also objects that can be created to manage users and roles, getting
data into Splunk, and working with saved searches.

There's more...
In this recipe, we began to scratch the surface of utilizing the Python SDK. We also saw how
you can extend your own applications to leverage Splunk data. As with most of Splunk, there
are many different ways to manipulate and view your data.

Paginating the results of your search
Leveraging the program created in this recipe, you can modify it as follows to paginate through
your results:

import splunklib.client as client
import splunklib.results as results

…

job = service.jobs.create(searchquery, **kwargs)
print "Job completed...printing results!\n"

total = job["resultCount"]
offset = 0;
count = 10;

while (offset < int(total)):
 page_args = {"count": count,
 "offset": offset}

 search_results = job.results(**page_args)

Above and Beyond – Customization, Web Framework, REST API, and SDKs

382

 reader = results.ResultsReader(search_results)
 for result in reader:
 print "Result: %s => %s" %
 (result['clientip'],result['count'])
 offset += count

See also
 f The Remotely querying Splunk's REST API for unique page views recipe

 f The Adding a calendar heatmap of product purchases recipe

 f The Creating a custom search command to format product names recipe

Creating a custom search command to
format product names

Sometimes, you just need that extra bit of logic or custom processing of data that might be
very unique to your line of business. You might also simply be in the position where you have
picky executives who like to see their data formatted in a very specific manner.

In this recipe, you will learn how to use Splunk's Python SDK to create a custom search
command that you can use to apply consistent formatting to product names or any other
string field by capitalizing the first letter of each word in the string.

Getting ready
To step through this recipe, you will need a running Splunk Enterprise server, with the
sample data loaded from Chapter 1, Play Time – Getting Data In. You should be familiar
with navigating the Splunk user interface and using the Splunk search language. Some basic
knowledge of Python is recommended. The Splunk Python SDK should also be downloaded
and available on your Splunk Enterprise server.

The Splunk Python SDK can be downloaded from
http://dev.splunk.com. For this book,
v1.2.3 of the Splunk Python SDK was used.

How to do it...
Follow the steps in this recipe to create a custom search command to format product names:

1. Open a console terminal on your Splunk server.

2. Change to the directory where you downloaded the Splunk Python SDK.

http://dev.splunk.com

Chapter 10

383

3. Expand the ZIP file using an appropriate tool located on your Splunk server.

4. Create a splunklib directory inside the $SPLUNK_HOME/etc/apps/
operational_intelligence/bin directory.

5. Copy the splunk-sdk-python/splunklib/searchcommands directory to
$SPLUNK_HOME/etc/apps/operational_intelligence/bin/splunklib.

6. Create and add the following code to commands.conf located in the $SPLUNK_
HOME/etc/apps/operational_intelligence/local directory:
 [fixname]
filename = fixname.py
supports_getinfo = true
supports_rawargs = true
outputheader = true
requires_srinfo = true

7. In $SPLUNK_HOME/etc/apps/operational_intelligence/bin, create
fixname.py and add the following code:
#!/usr/bin/env python
import sys
from splunklib.searchcommands import \
 dispatch, StreamingCommand, Configuration, Option, validators

@Configuration()
class FixNameCommand(StreamingCommand):
 """ Takes the first letter of each word in the field and
capitalizes it
 ##Syntax
 .. code-block::
 fixname fieldname=<field>
 ##Description
 Takes the first letter of each word in the field and
capitalizes it

 ##Example
 Uppercase the first letter of each word in the message field
in the _internal
 index

 .. code-block::
 index=_internal | head 20 | fixname fieldname=message
 """

Above and Beyond – Customization, Web Framework, REST API, and SDKs

384

 fieldname = Option(
 doc='''
 Syntax: **fieldname=***<fieldname>*
 Description: Name of the field that will be
capitalized''',
 require=True, validate=validators.Fieldname())

 def stream(self, records):
 self.logger.debug('FixNameCommand: %s' % self)
logs command line
 for record in records:
 record[self.fieldname] =
record[self.fieldname].title()
 yield record

dispatch(FixNameCommand, sys.argv, sys.stdin, sys.stdout, __
name__)

8. Ensure that the fixname.py script is marked as an executable by executing the
following command:
chmod a+x fixname.py

9. Restart Splunk.

10. Log in to Splunk.

11. Select the Operational Intelligence application.

Chapter 10

385

12. In the search bar, enter the following search over Last 24 hours:
index=main sourcetype=log4j | eval
ProductName=lower(ProductName) | fixname
fieldname=ProductName

You should see that despite forcing the ProductName field values to be all
lowercase, the fixname command has now capitalized each value.

How it works...
The Splunk Python SDK can allow us to not only get information out of Splunk in an easy,
programmatic way, but also manipulate the processing of events as they move through
your search.

Originally, custom search commands could be created using Python and added to Splunk,
but they were difficult to debug and had no logging mechanism. With the Python SDK,
you can now create your own custom search commands in a quicker and easier way
with better tools for troubleshooting.

Custom search commands come in three different flavors.

Command type Description
Generating commands This type of command generates new events that are inserted into

the results. Examples include commands that read from lookup
files, such as inputcsv.

Reporting commands This type of command takes incoming events and generates a new
set of outgoing events usually based on some sort of processing or
analysis. Examples include commands that do statistics, such as
stats and top.

Streaming commands This type of command takes incoming events and modifies or filters
the outgoing events. Examples include commands that add or
replace fields or eliminate events based on some calculation, such
as eval, rename, and where.

Let's explain how the fixname.py script works.

Script fragment Description
#!/usr/bin/env python

import sys

from splunklib.searchcommands
import \
 dispatch, StreamingCommand,
 Configuration, Option,
 validators

Import the necessary modules and libraries.
This includes the Splunk library that has to be
copied into the bin directory of the Splunk
app.

Above and Beyond – Customization, Web Framework, REST API, and SDKs

386

Script fragment Description
@Configuration() Here, we apply any configuration options

that need to be specified to Splunk when the
command is executed.

class FixNameCommand
(StreamingCommand):

This line defines the class name of the
command as well as any class inheritance
that might be required. In this case, our
FixNameCommand class is to inherit from,
the StreamingCommand class.

""" Takes the first letter of
each
word in the field and
capitalizes
it

 ##Syntax

 .. code-block::
 fixname
fieldname=<field>

 ##Description

 Takes the first letter of
each
 word in the field and
 capitalizes it

 ##Example

 Uppercase the first letter
of
 each word in the message
field
 in the _internal
 index

 .. code-block::
 index=_internal | head
20 |
 fixname
fieldname=message

 """

Here, we outline all of the help information
that Splunk will present through the Splunk
Web interface in the search bar.

Chapter 10

387

Script fragment Description
 fieldname = Option(
 doc='''
 Syntax:

fieldname=*<fieldname>*
 Description: Name of
 the field that will be
 capitalized''',
 require=True, validate=
 validators.Fieldname())

This section defines the various options that
the custom command will accept or is required
to accept. The format as well as any validation
that is required is also specified here.

def stream(self, records):
 self.logger.debug
 ('FixNameCommand: %s'
 % self) # logs
 command line
 for record in records:
 record[self.
fieldname]

 = record[self.
fieldname].title()

 yield record

This section implements the stream function.
The stream function is called when records
are to be processed. In this example, we
iterate through each of the records, and
depending on the field that was defined in the
options, we execute the title method on
that value.

dispatch(FixNameCommand, sys.
argv,
sys.stdin, sys.stdout,
__name__)

Finally, we dispatch the command, passing in
the required arguments.

The fixname command is a straightforward command that leverages the title method of
a String object in Python. When the title method is called, it will uppercase the string for
which it is called for. It is a streaming command, as it is manipulating a field within an event as
it moves through the command.

By leveraging the SDK, any number of commands can be developed that integrate with third-
party systems or apply proprietary algorithms or logic to implement business rules that give
organizations better visibility into their operations.

For more information on how to create custom search commands,
check out the documentation at http://dev.splunk.com.

http://dev.splunk.com

Above and Beyond – Customization, Web Framework, REST API, and SDKs

388

See also
 f The Remotely querying Splunk's REST API for unique page views recipe

 f The Creating a Python application to return unique IP addresses recipe

Summary
The key takeaways from this chapter are as follows:

 f Splunk provides methods to customize the user experience within an application
through the use of navigation menus, CSS templates, and much more

 f Use advanced visualizations to expose even more operational intelligence

 f Use command-line tools to make simple integrations possible

 f Leverage Splunk SDKs to create deep integration with your own applications

 f Extend Splunk with custom search commands to add value directly into your searches

Index
A
abnormally-sized web requests

anomalies command 231
anomalousvalues command 232
cluster command 232
finding 227-231

accelerated report
status, viewing 348

acceleration, data model
advanced configuration 178

acceleration summary information,
data model

viewing 177
activity reports

drilling down on 132-136
alert actions

about 288
alert manager, displaying in 288
e-mail notification 288
RSS notification 288
script execution 288
summary indexing 288

alerts
about 286
building, via configuration file 302
creating, on abnormal user behavior 303-306
creating, on abnormal user purchases

without checkouts 307
creating, on abnormal web page response

times 289-293
creating, on errors during checkout in real

time 294-301
creating, on predicted sales exceed

inventory 312-318

per-result alert 286
rolling-window alert 287
RSS feed notification action, adding 318, 319
scripted response, on failure 308-312
scripted response, on triggering 308-312
scheduled alert 286
triggered alert, viewing in alert manager 293

American Registry for Internet Numbers
(ARIN)

searching, for given IP address 259-264
anomalies command 231
anomalousvalues command

about 232
URL 232

append command
URL 211

application
creating, from another application 119, 120
functional performance, charting 67-69
memory usage, charting 70-72

application errors
ticket, creating for 269-273

application logs
data model, creating for 168-173

application navigation
customizing 353-358

area chart
about 77
creating, of application's functional

statistics 105-107
associate command 222
automatic product code lookup

creating 241-247
average amount spent by category

displaying, bar chart used 108-110

390

average execution time
calculating, for multi-tier web

requests 205-211
calculating, without using join 211, 212

average response time, of function calls
predicting 227

average session time
calculating, on website 199-203

B
backfilling

number of purchases, by city 332-338
summary index 339, 340
summary index, from within search 341

bar chart
about 77
using, to display average amount spent

by category 108-110
Boolean operators

AND 43
NOT 43
OR 43

C
calendar heatmap

of product purchases, adding 368-373
cart additions

percentage from product views, searching 66
chart command 43
chart drilldown options

Google search, triggering from 269
charts

drilldown feature, disabling 136
checkout errors

real-time alert, creating on 294-301
checkout, transaction 204
child object constraint 158
child objects 158
CLI

directory data input, adding via 13
file data input, adding via 13
network input, adding via 18
URL 13

cluster command
about 232
URL 232

column chart 77
command-line interface. See CLI
commands

generating 385
reporting 385
streaming 385

Common Information Model (CIM) 159, 211
completed transactions

versus hourly count of sessions,
calculating 325-331

concurrency command
URL 217

configuration file
alerts, building via 302
URL 13, 17

curl
URL 375

custom search command
creating, to format product names 382-387
generating 385
reporting 385
streaming 385

D
D3.js

URL 367, 374
dashboards

adding 121-125
for operational intelligence 76
organizing 127-129
PDF delivery, scheduling 152-155
URL 156

data
enriching, with visualizations 76, 77
gathering, Universal Forwarder used 26-29
getting, through network ports 15-17

database connections
counting 72-74

data files
one-time indexing, via Spunk CLI 14

391

data model
accelerating 173-177
acceleration, advanced configuration 178
acceleration summary information,

viewing 177
acceleration, URL 176
creating, for application logs 168-173
creating, for web access logs 160-166
searching, search interface used 167, 168
viewing 177

datamodel command
URL 168

data sources
converging 198
URL 45

data summarization
about 322
methods 323

data summarization, methods
about 323
data model acceleration 323
report acceleration 323
summary indexing 323

DB actions
relationships, analyzing to memory

utilization 222
DB Connect

about 240
URL 274
using, for direct external DB

lookups 281-283
dedup command 43
Developing Views and Apps for Splunk

Web manual
URL 26

directories
indexing 8-12

directory data input
adding, via CLI 13
adding, via inputs.conf 14

distributions
mapping, by area 152

DNS lookups
enabling 259

drilldown feature
adding, on activity reports 132-136
disabling, in charts 136
disabling, in tables 136
options, URL 136

driver
URL, for installing 279

E
eval command 43
event object constraint 158
event objects 158
events

defining, in transaction 204
event types

about 36-38
adding, via eventtypes.conf 39
defining 37, 38
URL 37
workflow actions, limiting by 264

existing saved search
modifying, to populate lookup table 252

external database
inventory, looking up from 274-281

external field lookups
automatic external field lookups,

enabling 259

F
field extractions

defining 33-36
fields

relationships, identifying 198
removing 49
working with 44
tabulating 49

fields command 43
file data input

adding, via CLI 13
adding, via inputs.conf 14

files
indexing 8-12

filter gauge 77

392

force-directed graph (FDG)
adding 358-366

form
creating, to search web activity 137-142
Submit button, adding 143
web page activity reports, linking to 143-147

form inputs
dropdown 116
radio 116
text 116
time 116

function calls
average response time, predicting 227

future values
predicting 199

G
gauge

using, to display number of errors 92-95
geographical map

displaying 148-151
geographical location

purchases, pivoting by 184-188
geostats command 152
Google search

triggering, for given reason 264-268
triggering, from chart drilldown options 269

graphical user interface (GUI) 44

H
head command 43
heat map 78
High Performance Analytics Store (HPAS) 159
host

number of method requests, charting 96, 97
hostnames

adding, to IP addresses 257-259
hourly count of sessions

summary index gaps, avoiding 331
summary index, generating frequently 331
summary index, generating search 330
summary index overlaps, avoiding 331
summary index, reporting off 330
versus completed transactions,

calculating 325-331

I
inputs.conf

directory data input, adding via 14
file data input, adding via 14
network input, adding via 18

inventory
looking up, from external database 274-281

IP addresses
ARIN, searching for 259-263
hostnames, adding 257-259
malicious IP addresses, lookup table

creating for 248-251
suspicious IP addresses, flagging 248-251

item views
line chart, creating 111, 112

J
Java Bridge Server 281
Java Virtual Machine (JVM) 281
join

URL 211

K
Knowledge Manager

URL, for documentation 159

L
labels

adding, to single value pack 91
line chart

about 77
creating, of item views 111, 112
creating, of purchases over time 111, 112

logic
creating, for urgency 237

lookups
about 240
adding, manually to Splunk 247

lookup table
creating, of malicious IP addresses 248-251
populating, existing saved search used 252

393

M
map 78
map panel

adding, SimpleXML used 152
marker gauge 78
maximum concurrent checkouts

displaying 212-217
maximum number of concurrent sessions

over time
displaying 342-347

maximum pause
defining 204

method requests
by host 101
timechart, creating 98-101

modular inputs
using 22-26

monitor input type 13
multi-tier web requests

average execution time, calculating 205-211

N
NAT (Network Address Translation) 91
network input

adding, via CLI 18
adding, via inputs.conf 18

network ports
data, getting through 15-18

number of errors
displaying, gauge used 92-95

number of method requests
charting, by host 96, 97
charting, by type 96, 97

number of purchases
backfilling, by city 332-340
summary index, generating search 339

O
object attributes

Auto-Extracted 159
Eval-Expression 159
Geo IP 159
Lookup 159
Regular Expression 159

object constraint
child object constraint 158
event object constraint 158
search object constraint 158
transaction object constraint 158

object types
child objects 158
event objects 158
search objects 158
transaction objects 158

one-time indexing
of data files, via Spunk CLI 14

OpenStreetMap service
URL 151

Operational Intelligence application
creating 117-119
creating, from another application 119, 120

Operational Intelligence dashboard
creating 79-81
permissions, changing 82

outputlookup command
<filename> 251
<tablename> 251
append 251
create_empty 251
createinapp 251
max 251

outputs.conf
receiving indexer, adding via 29

overlay
adding, to Sessions Over Time chart 147

P
PDF delivery

scheduling, of dashboard 152-155
permission

changing, of saved reports 126
URL 272

per-result alert 286
pie chart

about 77
using, to show most accessed

web pages 82-86
pivot charting

top error codes 194-196

394

pivot command
using 183

Pivot search
pivot command used 183
search interface used 183

pivoting
slowest responding web pages 189-194
total sales transactions 178-182

potential session spoofing
identifying 233-236
logic, creating for urgency 236

predict command
URL 227

product code descriptions
looking up 241-247

product names
formatting, custom search command

created 382-387
product purchases

calendar heatmap, adding 368-373
pivoting, by geographical location 184-188

purchases over time
line chart, creating 111, 112

Python application
creating, to return unique IP

addresses 377-381

R
radial gauge 77
ranges

value based on, coloring 92
rare command 43
raw event data

making, readable 45-48
real-time alert

creating 294-301
URL 301

real-time searches
identifying 302

receiving indexer
adding, via outputs.conf 29

regular expression (regex) attribute 170
relationships

between fields, identifying 198
rename command 43

replace command 43
report acceleration

about 323, 324
ease 324

reports
about 45, 324
adding 121-125

response codes
error web page response codes, totaling 60
success web page response codes,

totaling 60
web page response codes, charting 58, 59

response times
by host 101
scatter chart, using to identify discrete re-

quests 102-104
timechart, creating 98-101

response time statistics, web page
displaying 60-63

REST API
about 352
querying remotely, for unique page

views 374-376
REST Wikipedia page

URL 376
rolling-window alert 287
RSS feed notification action

adding, to alert 318, 319

S
sales

predicted sales exceed inventory,
alerting on 312-316

sample data
loading 30-33

saved reports
permissions, changing 126

saved searches 324
scatter chart

about 77
time series data points, using 104
using, to identify discrete requests by

response time 102-104
using, to identify discrete requests by

size 102-104

395

scheduled alert 286
scripted inputs

using 19-21
scripted response

failure, alerting on 308-312
triggering 308-312

search results
paginating 381

search command 43
searches

about 42
saving 45

search interface
used, for Pivot searching 183
used, for searching data model 167, 168

search manager
time range, changing 367

search object constraint 158
search objects 158
Search Processing Language

(SPL) 42, 76 157
Sessions Over Time chart

overlay, adding 147
session state table

creating 252-257
session token

authenticating with 376, 377
SimpleXML

about 117
modifying 130, 131
URL 131
used, for adding map panel 152

single value panel
labels, adding to 91

single value visualization
about 77
URL 95

slowest responding web pages
pivoting 189-194

software development kits (SDKs) 352
sort command 43
span

defining 204
sparkline 78

Splunk
about 7
alerts 286
applications 115, 116
dashboards 76, 117
dashboards, for operational intelligence 76
developer website 367
documentation, URL 358
lookups, adding manually 247
URL, for documentation 264
workflow action, adding manually 273

Splunk Answers
URL 42

Splunk app
about 116
downloading 120
form inputs 116
installing 120, 121
store, URL 116, 276
URL 120

Splunk Enterprise 8
Splunk Python SDK

URL 378, 382
Spunk CLI

data files, one-time indexing 14
stats command

about 44
URL 52

Submit button
adding, to form 143

summary index
backfilling 339, 340
backfilling, from within search 341
backfilling, from within search directly 341
gaps, avoiding 331
generating, frequently 331
generating search 330, 339
overlaps, avoiding 331
reporting off 330, 340

summary indexing
about 323
benefits 323, 324

396

T
table command 44, 48
tables

drilldown feature, disabling 136
tags

about 36
adding, via tags.conf 39
defining 37, 38
URL 37

tail command 44
Technical Add-Ons (TAs) 45
ticket

creating, for application errors 269-273
timechart

creating, of method requests 98-101
creating, of response times 98-101
creating, of views 98-101

timechart command 43
time modifiers 44
time range

changing, on search manager 367
time series data points

using, with scatter chart 104
top command 44
top error codes

pivot charting 194-196
top-referring websites

identifying 55-57
searching, stats command used 57

top viewed products
listing 64-66

total number of items purchased
predicting 226

total sales transactions
pivoting 178-182

transaction
events, defining 204
grouping 198
identifying 198
maximum pause, defining 204
span, defining 204

transaction command
about 44, 69
URL 205

transaction object constraint 158
transaction objects 158
transforming command 348
trigger conditions

about 287
custom 287
number of hosts 287
number of results 287
number of sources 287
per-result 287

triggered alerts
viewing, on Splunk's Alert manager 293, 294

U
unique IP addresses

returning, by creating Python
application 377-381

search results, paginating 381
unique number of visitors

displaying 87-91
unique page views

REST API, querying remotely 374-376
Universal Forwarder (UF)

using, to gather data 26-29

V
value

based on ranges, coloring 92
views

by host 101
timechart, creating 98-101

visitors
geographical map, displaying 148-151
unique number of visitors, displaying 87-91

visualizations
about 76, 77
best practices 78, 79
data, enriching with 76, 77
URL 78

397

W
web access logs

data model, creating for 160-166
web activity

searching, form created 137-142
web browsers

data for most used OS types, searching 54
most used web browsers, finding 52-54
response codes, charting 58, 59

web framework 352
web hits

force-directed graph, adding 358-366
web page activity reports

linking, to form 143-147
web pages

most accessed pages by user, finding 52
most accessed web pages displaying, pie

chart used 82-86
most accessed web pages, finding 49-51
response time by action, displaying 63
response time statistics, displaying 60-63
top 10 accessed web pages, searching for 86

web requests
abnormally sized web requests,

finding 227-231
relationship, analyzing 217-221

website
average session time, calculating 199-203

website-traffic volumes
predicting 222-226

wget 375
Windows event logs

indexing 15
workflow action

adding manually, in Splunk 273
limiting, by event types 264

workflows 240

Thank you for buying
Splunk Operational
Intelligence Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

400

Implementing Splunk: Big Data
Reporting and Development for
Operational Intelligence
ISBN: 978-1-84969-328-8 Paperback: 448 pages

Learn to transform your machine data into valuable
IT and business insights with this comprehensive and
practical tutorial

1. Learn how to search effectively, create fields, build
dashboards, reports, and package apps, manage
your indexes, integrate into the enterprise, and
extend Splunk.

2. Start working with Splunk fast, with a tested set of
practical examples and useful advice.

3. Step-by-step instructions and examples with a
comprehensive coverage for Splunk veterans
and newbies alike.

Pentaho for Big Data
Analytics
ISBN: 978-1-78328-215-9 Paperback: 118 pages

Enhance your knowledge of Big Data and leverage the
power of Pentaho to extract its treasures

1. A guide to using Pentaho Business Analytics for
Big Data analysis.

2. Learn Pentaho's visualization and reporting tools
with practical examples and tips.

3. Precise insights into churning Big Data into
meaningful knowledge with Pentaho.

Please check www.PacktPub.com for information on our titles

401

Getting Started with
Greenplum for Big Data
Analytics
ISBN: 978-1-78217-704-3 Paperback: 172 pages

A hands-on guide on how to execute an analytics
project from conceptualization to operationalization
using Greenplum

1. Explore the software components and appliance
modules available in Greenplum.

2. Learn core Big Data architecture concepts and
master data loading and processing patterns.

3. Understand Big Data problems and the data
science lifecycle.

Talend for Big Data
ISBN: 978-1-78216-949-9 Paperback: 96 pages

Access, transform, and integrate data using Talend's
open source, extensible tools

1. Write complex processing job codes easily with the
help of clear and step-by-step instructions.

2. Compare, filter, evaluate, and group vast
quantities of data using Hadoop Pig.

3. Explore and perform HDFS and RDBMS
integration with the Sqoop component.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Play Time – Getting Data In
	Introduction
	Indexing files and directories
	Getting data through network ports
	Using scripted inputs
	Using modular inputs
	Using the Universal Forwarder to gather data
	Loading the sample data for this book
	Defining field extractions
	Defining event types and tags
	Summary

	Chapter 2: Diving into
Data – Search
and Report
	Introduction
	Making raw event data readable
	Finding the most accessed web pages
	Finding the most used web browsers
	Identifying the top-referring websites
	Charting web page response codes
	Displaying web page response time statistics
	Listing the top viewed products
	Charting the application's functional performance
	Charting the application's memory usage
	Counting the total number of database connections
	Summary

	Chapter 3: Dashboards and Visualizations – Make Data Shine
	Introduction
	Creating an Operational Intelligence dashboard
	Using a pie chart to show the most accessed web pages
	Displaying the unique number of visitors
	Using a gauge to display the number of errors
	Charting the number of method requests by type and host
	Creating a timechart of method requests, views, and response times
	Using a scatter chart to identify discrete requests by size and response time
	Creating an area chart of the application's functional statistics
	Using a bar chart to show the average amount spent by category
	Creating a line chart of item views and purchases over time
	Summary

	Chapter 4: Building an Operational Intelligence Application
	Introduction
	Creating an Operational Intelligence application
	Adding dashboards and reports
	Organizing the dashboards more efficiently
	Dynamically drilling down on activity reports
	Creating a form to search web activity
	Linking web page activity reports to the form
	Displaying a geographical map of visitors
	Scheduling the PDF delivery of a dashboard
	Summary

	Chapter 5: Extending
Intelligence – Data Models and Pivoting
	Introduction
	Creating a data model for web access logs
	Creating a data model for application logs
	Accelerating data models
	Pivoting total sales transactions
	Pivoting purchases by geographic location
	Pivoting slowest responding web pages
	Pivot charting top error codes
	Summary

	Chapter 6: Diving
Deeper – Advanced Searching
	Introduction
	Calculating the average session time on a website
	Calculating the average execution time for multi-tier web requests
	Displaying the maximum concurrent checkouts
	Analyzing the relationship of web requests
	Predicting website-traffic volumes
	Finding abnormally sized web requests
	Identifying potential session spoofing
	Summary

	Chapter 7: Enriching Data – Lookups and Workflows
	Introduction
	Looking up product code descriptions
	Flagging suspect IP addresses
	Creating a session state table
	Adding hostnames to IP addresses
	Searching ARIN for a given IP address
	Triggering a Google search for a given error
	Creating a ticket for application errors
	Looking up inventory from an external database
	Summary

	Chapter 8: Being Proactive – Creating Alerts
	Introduction
	Alerting on abnormal web page response times
	Alerting on errors during checkout in real time
	Alerting on abnormal user behavior
	Alerting on failure and triggering a scripted response
	Alerting when predicted sales exceed inventory
	Summary

	Chapter 9: Speed Up
Intelligence – Data Summarization
	Introduction
	Calculating an hourly count of sessions versus completed transactions
	Backfilling the number of purchases by city
	Displaying the maximum number of concurrent sessions over time
	Summary

	Chapter 10: Above and Beyond – Customization, Web Framework, REST API, and SDKs
	Introduction
	Customizing the application's navigation
	Adding a force-directed graph of web hits
	Adding a calendar heatmap of product purchases
	Remotely querying Splunk's REST API for unique page views
	Creating a Python application to return unique IP addresses
	Creating a custom search command to format product names
	Summary

	Index

