

Splunk Developer's Guide
Second Edition

Learn the A to Z of building excellent Splunk
applications with the latest techniques using this
comprehensive guide

Kyle Smith

BIRMINGHAM - MUMBAI

Splunk Developer's Guide
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2015

Second edition: January 2016

Production reference: 1190116

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-237-1

www.packtpub.com

www.packtpub.com

Credits

Author
Kyle Smith

Reviewer
Marco Scala

Commissioning Editor
Veena Pagare

Acquisition Editor
Vinay Argekar

Content Development Editor
Amey Varangaonkar

Technical Editor
Taabish Khan

Copy Editor
Trishya Hajare

Project Coordinator
Suzanne Coutinho

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Kyle Smith is a self-proclaimed geek and has been working with Splunk
extensively since 2010. He enjoys integrating Splunk with new sources of data and
types of visualization. He has spoken numerous times at the Splunk User Conference
(most recently in 2014 on Lesser Known Search Commands) and is an active contributor
to the Splunk Answers community and also to the #splunk IRC channel. He was
awarded membership into the SplunkTrust as a founding member. He has published
several Splunk Apps and add-ons to Splunkbase, the Splunk community's premier
Apps and add-ons platform. He has worked in both higher education and private
industry; he is currently working as an integration developer for Splunk's longest
running professional services partner. He lives in central Pennsylvania with
his family.

I'd like to thank my wife who most graciously put up with all
my BS during the writing of this book. Without her, this effort is
meaningless.

About the Reviewer

Marco Scala has been working for more than 15 years delivering solutions to large
enterprise customers, first in the APM and J2EE fields and, since 2009, in the fields
of operational intelligence and Splunk. He has provided consultancy for big Splunk
installations for major customers, focusing on the best and most effective solutions
for each different customer's needs. Since 2012, he's also a certified Splunk trainer.

In the last few years, Marco's major focus has been to get Splunk customers to
gain the maximum value from their IT data and provide the business a better view
and insight. Big Data is another major field of interest, and his next challenge is
using Splunk to give customers useful insights and a practical implementation and
exploitation of Big Data.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 v
Chapter 1: Application Design Fundamentals	 1

What is a Splunk application?	 1
Why applications?	 2

Definitions	 2
Designing the App	 4

Identifying the use case	 5
Identifying what you want to consume	 5
Identifying what you want to brand	 6
Identifying what you want to display	 6

Installing Apps	 7
Splunk Web	 7
The Splunk command line	 8

Unzipping using the command line	 8
Summary	 9

Chapter 2: Creating Applications	 11
A brief clarification	 11
Methods of creating applications	 12

GUI	 13
CLI	 15
FreeForm	 15

Basic application structure	 18
appserver	 18
bin	 19
default	 19
local	 19
lookups	 19

Table of Contents

[ii]

metadata	 19
static	 20

Application data	 20
Indexes	 20
Source types	 23
Sources	 23

Available Splunk knowledge objects	 23
Macros	 24
Event types	 24
Tags	 25
Saved searches	 25
Dashboards	 26
Lookups	 26
Configurations	 27

Object permissions	 27
The setup screen	 29

The endpoint	 30
The setup file	 31

Summary	 32
Chapter 3: Enhancing Applications	 33

Workflows	 33
Custom alert actions	 37
Enriched data	 39

Event types	 39
Tags	 44
Macros	 46
Lookups	 48
Common Information Model	 53

Branding your App	 53
Logos	 54
Navigation	 56
CSS	 58
JavaScript	 58

Acceleration	 58
Summary indexing	 58
Accelerated reports	 60

Summary	 61

Table of Contents

[iii]

Chapter 4: Basic Views and Dashboards	 63
Knowing your data	 63

Available modules	 64
SimpleXML dashboard	 65

SimpleXML forms	 68
Custom JavaScript, CSS, and Tokens	 72
HTML dashboards	 73
Summary	 75

Chapter 5: The Splunk Web Framework	 77
The HTML dashboard	 77
SplunkJS Stack	 81

Search-related modules	 82
SearchManager	 82
SavedSearchManager	 83
PostProcessManager	 84

View-related modules	 85
ChartView	 85

Display-related modules	 90
CheckboxView	 91
CheckboxGroupView	 91
DropdownView	 92
EventsViewerView	 93
FooterView	 94
HeaderView	 94
MultiDropdownView	 95
RadioGroupView	 95
SearchBarView	 96
SearchControlsView	 97
SimpleSplunkView	 97
SingleView	 97
MapElement	 98
TableView	 99
TextInputView	 100
TimeRangeView	 100
TimelineView	 101

Tokenization	 101
Customizing Splunk dashboards using CSS	 102
Customizing Splunk dashboards using JavaScript	 105
Custom D3 visualization	 109
External data and content	 112

Data	 113
Content	 113

Summary	 114

Table of Contents

[iv]

Chapter 6: Advanced Integrations and Development	 115
Modular D3 visualization	 115
Modular inputs	 122

The spec file	 124
Testing modular inputs	 129
Configuring modular inputs	 129

The App Key Value Store	 131
When would you use the KV Store?	 131
Configuring the KV Store	 133

Data models	 136
Version control and package managers	 140

npm	 141
Bower	 141
Gulp	 142
Git	 142
Tying them all together	 142

Summary	 146
Chapter 7: Packaging Applications	 147

Naming guidelines	 147
Dos and don'ts	 150

Packaging the App	 151
The App packaging checklist	 154
Summary	 155

Chapter 8: Publishing Applications	 157
Self-hosting your App	 157
Splunkbase	 158

Certified Applications	 160
Splunk Cloud applications	 162

Community	 162
Answers	 163
dev.splunk.com	 163
Internet Relay Chat	 163
Wiki	 163
User groups	 164
The SplunkTrust	 164

Summary	 165
Index	 167

[v]

Preface
Splunk is awesome. Not only can you consume virtually any data with it, you can
also extend and integrate Splunk with virtually any external system. Splunk uses sets
of configurations that are referred to as applications or add-ons, which is the primary
focus of this book. Leveraging these applications and add-ons is what gives Splunk
its unique ability to extend, learn, analyze, and visualize information.

Splunk helps users to determine the root cause of a failure, a quick overview of
system health, and dive deep into SQL statements and messages, just to name a
few. The aggregation and centralization of log and event management is a growing
trend in the Big Data space. By leveraging the combined intelligence gathered
from correlating disparate sets of data, businesses or individuals can make
data-based decisions. This book will help a Splunk developer, or even just a
curious end user, to develop different methods of consuming new data, design
new types of visualization, or even just offer tips and tricks that help the software
development lifecycle.

Overview of what this book isn't
Most developer guides will tell you what their book is and/or does. We aim to
explain what this book isn't, and allow you to fill in the rest with your imagination!
Thus, proceed to this list:

•	 Will not cover Splunk basics
•	 Will not cover creating dashboards via the GUI (other than HTML)
•	 Will not discuss how to code in Python
•	 Will not discuss statistics
•	 Will not cover SDKs
•	 Will not discuss making beer

Preface

[vi]

Splunk basics will not be covered. These include concepts such as searching (finding
data, using timecharts, stats, some eval commands, and so on), reporting (making
basic pie charts or line charts via the GUI), data inputs (basic file monitoring, TCP
and UDP inputs, Splunk forwarders, and so on), and configurations (GUI and web-
based configuration editing), to name a few. Creating dashboards via the GUI?
Nope. Python will be discussed and sample code will be provided, but this book will
not cover the nuances of the code, nor will it teach you Python syntax. We will not
cover statistical computation, other than how to practically apply some basic math
to create value-based visualizations. We will not cover using the SDKs (software
development kits) being used in custom Splunk applications that are external to
Splunk (for example, Angular, PHP, .NET, and others). These are out of the scope of
this book. Free as in beer? Nope, the choice of hops, starch, and oak-barrel aging for
the creation of beer will not be discussed, but rather consumed during the writing
and/or reading of this book.

Unless otherwise stated, this book uses Splunk version 6.3 as the
development environment.

What this book is
This book will guide you through many the different areas of Splunk App and add-
on creation. We will start by looking at the design aspects of an App or add-on, how
to create them, what knowledge objects are available for use within the App, ways
to enhance your App with metadata and external data, and some basic views and
dashboards. From there, we will move into the Splunk Web Framework, modular
inputs, jQuery, web framework programs, and then packaging and publishing Apps
and add-ons. At the tail end, we will highlight some areas of the Splunk community
that prove to be very useful.

Assumptions
There are a few basic assumptions that we are going to make. Having purchased or
otherwise obtained this book, we assume that you are interested in developing with
Splunk, and have a basic understanding of Splunk and how to navigate around the
software. Knowledge of saving searches, reports, and basic dashboarding is a must,
since most concepts and examples will be built upon the basics. We also assume
that you have basic knowledge of HTML, CSS, JS, and some XML. Here, XML will
be limited to the Splunk XML framework specifically. We would also recommend
you to have knowledge of, or proficiency in, Python, RequireJS, and other web
technologies such as Bower, npm, and Gulp. We will demonstrate how to use these
web technologies within a Splunk application.

Preface

[vii]

What this book covers
Chapter 1, Application Design Fundamentals, discusses fundamental questions and
considerations before diving into an App or add-on configuration.

Chapter 2, Creating Applications, discusses the basic methods of App and add-on
creation, along with an explanation of the structure of an App or add-on.

Chapter 3, Enhancing Applications, discusses a few different configurations that help
to enrich your data with Splunk knowledge objects, along with some basic App and
add-on branding guidelines.

Chapter 4, Basic Views and Dashboards, goes through the basics of SimpleXML
dashboard creation and development.

Chapter 5, The Splunk Web Framework, details the various SplunkJS Stack components
and shows examples of how to use them within an HTML dashboard.

Chapter 6, Advanced Integrations and Development, reviews modular inputs, data
models, the KV Store, and modular D3 visualizations.

Chapter 7, Packaging Applications, lists the items needed to package an App or add-on,
in order to get it ready for publishing.

Chapter 8, Publishing Applications, explains step by step how to upload an App to
Splunkbase, and includes some information on the great support community.

What you need for this book
To take full advantage of all the examples and code contained within this book, you
should have the following items:

•	 An installed and running instance of Splunk.
•	 Basic knowledge of how Splunk works, including searching, basic panels,

and dashboards.
•	 An understanding of the various technologies that Splunk uses. These

include the following:

°° Python
°° JavaScript
°° HTML
°° CSS

Preface

[viii]

Who this book is for
This book will benefit both the casual Splunker and the experienced professional
alike. Whether you are just starting Splunk Apps or add-on development, or have
been developing for years, this book has tips and tricks to help with developing new
integrations and Splunk Apps and add-ons. Even for quick modular input, this book
provides quick tutorials on common integration techniques and code examples.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Copy the file to $SPLUNK_HOME/etc/apps."

A block of code is set as follows:

[splunk_developers_guide]
coldPath = $SPLUNK_DB\splunk_developers_guide\colddb
homePath = $SPLUNK_DB\splunk_developers_guide\db
thawedPath = $SPLUNK_DB\splunk_developers_guide\thaweddb

Any command-line input or output is written as follows:

cd $APP_HOME/default

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Simply
click on the Browse button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[ix]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[x]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Application Design
Fundamentals

Hello there, Splunk developer! If you are like us, we know you have a love of Splunk
and all of the endless possibilities that present themselves! The Big Data world is
exploding around us, and it always feels like a tireless battle when keeping up to
date with advances in technologies, platforms, and concepts. Here, we will discuss
none of those. This book is dedicated solely to Splunk and the development of
applications for Splunk. Onward and upward!

What is a Splunk application?
All that being said, let's talk Splunk applications. A Splunk application is nothing
more than a structured set of configurations and assets used to achieve an end goal
of data collection, indexing, and visualization. Furthermore, in order to create a
valid Splunk application, you must include the ability to navigate. Without
navigation within the application, you would be working on an add-on.
According to Splunk, applications:

•	 Contain at least one navigable view
•	 Can be opened from the Splunk Enterprise home page, from the App menu,

or from the Apps section of Settings
•	 Focus on aspects of your data
•	 Are built around use cases
•	 Support diverse user groups and roles
•	 Run in tandem

Application Design Fundamentals

[2]

•	 Contain any number of configurations and knowledge objects
•	 Are completely customizable, from frontend to backend
•	 Can include Web assets such as HTML, CSS, and JavaScript

This is taken from http://docs.splunk.com/Documentation/
Splunk/latest/AdvancedDev/AppIntro.

Why applications?
Applications allow us to quickly share configurations, focus on the context of
available data, limit data access to specific individuals or groups, and organize
similar dashboards and views into a cohesive presentation of data within Splunk.
Sharing applications can be as easy as just zipping it up and sending it out. Splunk
applications could be said to be open source, due to the fact that almost all of the
configurations, custom scripts, and any other knowledge object contained within
the applications, are readable on the filesystem. This allows for customization for an
individual instance while maintaining an overall master configuration.

Definitions
To get started, we should define a few naming conventions typically used when
naming applications. Note that while we will use these naming conventions as
the best practice, your application can really be named anything at all, which
may conflict with other applications of the same name, or violate Splunk usage
agreements or publishing guidelines. In particular, the name Splunk cannot be
present in your application or add-on name. Additionally, in the past, Splunk has
referred to add-ons as technology add-ons, and has since moved to just add-ons.
The following list of add-on types is our way to distinguish the different uses
of each add-on:

•	 Applications: Applications could be named anything, as long as they are
relevant to the content of the application and don't contain the name Splunk.

•	 Domain add-ons (DA): Domain add-ons are not full applications, rather
they contain the visualizations and presentation of the data for a broader
application. No other configurations should be included (extracts, tags, event
types, macros, line breaking configurations, and so on). Dashboards and
views are the primary objects contained within this type of add-on.

http://docs.splunk.com/Documentation/Splunk/latest/AdvancedDev/AppIntro
http://docs.splunk.com/Documentation/Splunk/latest/AdvancedDev/AppIntro

Chapter 1

[3]

•	 Supporting add-ons (SA): Supporting add-ons are also not full applications;
these contain data definitions, such as macros, saved searches, event types,
and tags. These describe how to correlate the data, normalize the data, and
consolidate the data to be usable in the domain add-on.

•	 Technology add-ons (TA): Technology add-ons provide extraction, data
massage, and index-time configurations. These can also be referred to as
technical add-ons. These contain the configuration options required to
properly break events, extract search fields, and create timestamps, among
other functions. These are the building blocks for the SA and DA add-ons,
as well as full-blown applications.

Follow the Splunk application design guidelines. Using a custom
naming scheme may cause conflicts.

Thus end the official naming conventions as normally seen in a Splunk installation.
We will now discuss some other naming conventions that have been found to help in
the wild west of various Splunk installations. These two naming conventions are of
the author's own design, which have helped in some of his deployments:

•	 Input add-ons (IA): Input add-ons are just that—configurations that assist
in the collection of data, known as inputs. These add-ons are most likely
found on a deployment server and are used to collect data from universal
forwarders. One of the advantages to splitting your IAs from your TAs is
a reduced size in the add-on being sent to the universal forwarder. This
is especially useful if your TA contains lookups that aren't needed on the
universal forwarder but are several megabytes in size.

•	 Admin add-ons (ADMIN): This add-on is a very special add-on. It would
typically contain administrative configurations that might be needed in a
variety of locations. Such configurations could be the web server SSL port,
deployment client information, or anything in web.conf or server.conf
format. It can be used to send index information to a set of non-clustered
indexers, or possibly to scale the addition of more search heads by setting
all relevant settings from a central location.

Application Design Fundamentals

[4]

While this may not be a complete list of naming conventions, it should be enough
to recognize any that are seen in the wild. An additional aspect of the naming
conventions that we recommend is the addition of company information. This will
help your Splunk admins differentiate between Splunk add-ons and custom add-ons.
Just as an example, let's say you built a TA for Cisco, specific to your company (the
ACME company). Splunk's provided add-on is entitled TA-cisco, but you don't want
to modify a vendor's offering. So, your new add-on's name could be A-ACME-TA-
cisco. This gives you two things: an easy-to-see custom TA that relates to Cisco and
the ability to override any TA-cisco settings based on application precedence.

Let's discuss application precedence for a moment. Splunk uses a merged configuration
when applying configurations that are installed via the applications. The
methodology that Splunk chose to implement conflict resolution is pretty simple.
There are two different methods of precedence. The first is directory structure. If you
have an input located in the default folder of an application (more on default in
the later chapters), you can place a matching configuration in the local folder of the
application to override the default configuration. The same method is applied to
the applications themselves. Splunk uses the ASCII values of the names to determine
precedence. On *nix, you can sort the applications in the apps folder of Splunk using
the LC_COLLATE=C ls command. This will show you the ASCII-sorted order of the
applications, and the first in the list will be highest priority. A has a higher priority
than Z, but Z has a higher priority than a. So, the A at the beginning of the add-on
name gives your add-on the highest precedence, so you can override any setting
as needed.

From this point forward, both Splunk applications and add-ons
will be referred to formally as Apps purely as a convenience.

Designing the App
So you've decided that you need an App? Congratulations! Now that you know that
you need one, you need to decide on a few more items as well. It is important to do
a little bit of planning, as even the simplest Apps can evolve into super-complicated
Apps, with dashboards, saved searches, workflows, and more. Never assume "well,
this'll just be a quick development", as, most of the time, it is not.

Chapter 1

[5]

Identifying the use case
First and foremost, try to determine the scope of your App. Once you have the scope
planned out, try to limit the amount of scope creep that occurs, if possible. You may
just be trying to perform extractions on your data, and if that is your current end
goal, stop there. Don't try to build a full-blown suite on your first attempt. Build the
IA, then the TA, and then move on from there. Ask yourself these questions as you
try to determine your scope:

•	 What am I trying to accomplish? Search-time extractions? Index-time
parsing? Dashboards to share?

•	 What users need access to my App? Everybody? Specific roles?
•	 What kind of information will I be presenting? Server based? Metric based?
•	 Who is my target audience? Business users who don't understand Splunk

Search Processing Language (SPL), or technical users who will notice that I
didn't convert MB to GB properly?

These questions can help you spark an idea of what internal resources would need to
be engaged, as well as any kind of documentation and educational requirements.

Identifying what you want to consume
Once you have determined the scope of the App, you will need to decide how and
from where you will consume the data. Getting data into Splunk can happen in a
very wide variety of ways. There is no set manner of input that will work on all data
sources. You may have to develop a new script or modular input. Being aware of
where your data is coming from is the key to getting it consumed correctly the first
time. A few questions you may ask yourself could be:

•	 Why do I need this data? Is it all completely relevant to my use case?
•	 Where is the data? Cloud, SaaS provider, internal network?
•	 How do I get the data? Do I already have a collector script, or do I need to

engage an internal resource to write a collector/modular input?
•	 What format is the data? Is it already extracted (or well known, like syslog),

or do I need to write custom extractions?

There is a lot of data out in the wild, but not all of it may be relevant to your use case.
You may find that of a service that has 100 endpoints available for data collection,
you only need 10. Not only will you save on license usage, but your indexers will
thank you for it as well.

Application Design Fundamentals

[6]

Identifying what you want to brand
Another key thought process in App development is how far you want to brand your
App. Splunk has a very robust architecture and framework, providing you with the
ability to customize your Apps extensively. You can override any individual piece of
CSS and extend SplunkJS Stack to include any number of different visualizations or
third-party libraries. Additional questions you might ponder on would include:

•	 Do I want to brand anything at all, or just stay with native Splunk?
•	 Do I need to engage an internal graphics resource to design and create App

icons? App logos?
•	 Am I going for mobile or static desktops? What desktop size is typical of

incoming users?
•	 To what extent should I customize my App? Do I just change a few colors

using native Splunk options or do I override CSS?
•	 Do I need to engage a web designer to build custom CSS or HTML layouts?

There are so many options available to brand your App, but all customizations
should conform to the Splunk branding guidelines for developers. Visit http://
www.splunk.com/view/SP-CAAAFT9 to read through Splunk's guidelines.

Identifying what you want to display
Once you have the whats and hows of the data you're going to collect, you need
to figure out visualizations. How you display the information is just as important
as what data you collect. Splunk comes with a variety of graphs and displays
right out of the box, and can be extended quite easily to include some really cool
presentations. Some of the questions posed to you might be:

•	 Do you need a programmer to write custom modules or extend SplunkJS
views and managers?

•	 What third-party graphing or graphic libraries do you need to document,
develop, or get permission to use?

•	 Do you need to engage a statistician to determine the best and most effective
way to display your data? Some stats (such as max, mean, and min) are easy,
others (such as confidence intervals and trendlines) are not.

http://www.splunk.com/view/SP-CAAAFT9
http://www.splunk.com/view/SP-CAAAFT9

Chapter 1

[7]

Such a small list of questions hardly precludes any other relevant discussion within
your organization. The more internal discussion that can take place, the better and
more thought-out your App may turn out.

Installing Apps
As a Splunk developer, you should be aware of the three methods to install Apps.
There are advantages and disadvantages to each method, but no required method.
It is mostly personal preference as to which method is used by the end user, but,
typically, newer Splunk users will use the Web interface, while advanced users
will use the command line. Let's review those methods, just to keep them fresh in
your mind.

Splunk Web
Installing Apps via Splunk Web is simple. Once you have downloaded the App from
its source, you navigate to the Manage Apps section of Splunk. You will find this at
the top-left of Splunk Web, as shown in the following screenshot:

Once you have clicked on Manage Apps, you will see a button to install the app
from a file. You can also browse the Splunk App store, using the first button:

Application Design Fundamentals

[8]

This brings you to a form that you can use to actually install the App. Simply click on
the Browse button, select the file you downloaded, check the Upgrade button if this
App has already been installed, and then click on Upload. That's it! Splunk takes the
App, installs it, and prompts to restart if needed:

The Splunk command line
CLI holds a special place in many *nix admins' hearts. It is entirely possible to install
Apps via the command line alone. Doing so requires having the following: access to
the physical (or virtual) server and enough permissions to perform CLI commands
with Splunk. All commands are going to be executed from $SPLUNK_HOME, which
normally defaults to /opt/splunk. Follow these steps to install an App via CLI:

1.	 Copy the App file (either a *.tgz or *.spl file) to the filesystem.
2.	 Run the ./bin/splunk install app <path_to_file> command.

Splunk will install the App. You may be prompted to restart, depending on the
contents of the App. Index-time configurations require a restart, whereas search-time
configurations do not.

Unzipping using the command line
The final methodology is to perform an unzip/untar. If the App was constructed
properly, the only steps you need to perform are as follows:

1.	 Copy the file to $SPLUNK_HOME/etc/apps.
2.	 Change the file extension from .spl to .zip.
3.	 Use your favorite utility and unzip the file into the folder.

Chapter 1

[9]

Caution! This will overwrite any other settings you have
configured, including local configurations (if present in the zip
file). We will cover directory structure in the next chapter.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Summary
In this chapter, we covered the basic fundamentals of designing and installing
Splunk Apps. Apps can be broken down into domains, each with a naming
convention that allows you to quickly determine what the App can do, and what is
contained within it, so that new users to your environment don't have to look for
configurations. We learned how to approach App design to make sure that the App
is planned beforehand, which will eliminate the need to refactor major portions of
the App later, when it may already be in production. We also went over the three
different methodologies available to install Apps to give a basic understanding of
user experience related to the installation of any App you may build.

Now that you've acquired an understanding of what an App consists of, in the
coming chapters, we will discuss creating, enhancing, and customizing them.

http://www.packtpub.com
http://www.packtpub.com/support

[11]

Creating Applications
In this chapter, we will begin covering how to build an actual application. There are
many different ways to create an App, ranging from GUI creation to manual editing
of configuration files. We will cover the structure of an application, what each folder
should contain within the application, and why this is important. Another aspect
that will be touched on will be the data that your application will consume. Setting
up the data structures beforehand may save you time and energy later on if you have
to refactor. It is crucial to get the data in correctly the first time, as any subsequent
release of your app will need to make use of the data. We will cover various methods
for data consumption, as well as the types of Splunk knowledge objects that can be
included in your application. Restricting access to your application may be a priority,
so we will also cover metadata and object permissions. Getting your application
installed may require your end user to perform some additional configuration before
it can be used, so we will review how to configure the setup screen as well.

A brief clarification
As we continue to progress through this book, we will create an App from the
ground up. The App's name is SDG (from a filesystem perspective) and the App label
will be Developer's Guide for Splunk. It will be available in its entirety on Splunkbase
at https://splunkbase.splunk.com/app/2693/. Additionally, we will be using
an API provided by meh.com, a daily deal site that was kind enough to build an API
to their website. They were chosen primarily because they fit the geek culture pretty
well, and provide a very simple-to-consume API. The data that will be consumed is
pulled from their website's API using scripted inputs located in the bin folder of the
sample SDG application.

https://splunkbase.splunk.com/app/2693/

Creating Applications

[12]

Let's recall the questions from Chapter 1, Application Design Fundamentals, that revolve
around App creation. We should answer some of them in preparation for building
our demo App:

•	 Identifying the use case:
°° We are building this App as a learning experience for the reader. By

providing an App at the end of this book, with all the examples from
the book contained within the App, we will give you a means to see a
final product, as well as how it was created, step by step.

°° We are building an App with visualizations and modular inputs that
will be shared with everybody—no need for role-based access.

°° The data will primarily consist of daily deals information, along with
polling information.

•	 Identifying what you want to consume:
°° The data is needed as an event generator for our App building demo,

and is located at an API provided by meh.com. I will consume the
data with a modular input from the API, which outputs its data
in JSON.

•	 Identifying what you want to brand:
°° For demonstration purposes, we will brand the App with custom

icons and some custom CSS and JavaScript. No external resources
will be needed.

•	 Identifying what you want to display:

°° We will be using a box plot graphic, which needs to be transformed
into a modular Splunk JavaScript library. The statistics will be
simplistic, so a mathematician is not required.

Now that we have answered some preliminary questions, we are ready to begin
creating our App. We can clearly see what is needed at the very basic level, and can
continue to add to the specification as we go ahead.

Methods of creating applications
There are two basic ways of creating applications. They are as follows, in order of
difficulty (not that any of them are hard): Splunk Web (we will call this the GUI),
and handwritten (henceforth to be recognized as FreeForm). In order to
create Apps, you, the developer, must have specific permissions within the
Splunk instance.

Chapter 2

[13]

Pro tip
Set up a brand new instance of Splunk with a dev license to make sure
that you have all the proper permissions to develop an App.

For the GUI method, the user must be an admin within Splunk; additionally, for the
FreeForm method, the user must have server access to the command line with as
many permissions as required by the user that runs Splunk.

GUI
We will start with the GUI method. This is the simplest of the methods, since access
to this feature can be granted via an external authentication system (if authorization
is configured within the Splunk instance), or with the built-in role-based access
measures. The first step is to log in. Once you've logged in to your development
instance, you need to navigate to the Manage Apps section. Once you are inside the
Manage Apps dashboard, there will be button that says Create app:

Once this button has been pressed, you will be taken to the Create app manager
page. This page contains a form with the attributes required to start an App. For the
rest of this book, we're going to use the sample App SDG and, from there, we will
build the entire App:

Creating Applications

[14]

The following screenshot shows the Create app form. Each field has a description
below it that provides information pertaining to that field. This allows you to fill
in the form quickly and efficiently. If you are planning on releasing this App into
the wild on Splunkbase, be sure to maintain consistent version numbers (http://
semver.org has a good specification on versioning). Another gotcha is the Visible
toggle. If you are writing an App that will extract data, input data, or otherwise show
no forms of dashboards or data visualizations, select that as No. This will prevent
users from being confused when it shows up in the Apps menu list.

http://semver.org
http://semver.org

Chapter 2

[15]

The Template drop-down menu will be either the barebones or sample_app
option. The barebones template will create a very basic structure, with the fewest
configurations required to support an App. The sample_app template generates
some sample configurations (searches, views, and other knowledge objects) inside
the generated app. In most cases, you will want to use barebones, as using the
sample_app template will require you to delete the generated searches, extractions,
inputs, and visualizations, and it is not intended for distribution. You can also
upload assets using this form (but more can be added later). Once your form is
complete, hit Save. Your App will be generated, and placed in $SPLUNK_HOME/etc/
apps. This is the default location for Apps. The $SPLUNK_HOME (which defaults to /
opt/splunk on *nix and C:\Program Files\Splunk on Windows) is typically your
installation directory, but will vary depending on where you specify the installation
to be performed. The default folder structure will be created under the folder name
you provided on the form (we'll cover more on that later).

CLI
You may be wondering, "Can I create an app via the command line?" The answer
to this question is, Yes! As of Splunk version 6.3, Splunk has the ability to create an
App via the CLI. The command is $SPLUNK_HOME/bin/splunk create app APP_
NAME–template TEMPLATE_NAME, where APP_NAME will be the name of the app you
want to create, and TEMPLATE_NAME will be either barebones or sample_app
(as mentioned earlier).

FreeForm
Another method of creating Apps is FreeForm, otherwise known as by hand. This is
where you can navigate to the $SPLUNK_HOME/etc/apps folder and create the folder
structure and configurations directly, through a text editor of your liking, whether
that be Vim, Emacs, or Notepad. An App contains at least a minimal structure of
folders and files in order to be functional, so it is suggested to keep a template copy
of your App in hand. By keeping the template copy in hand, you can quickly build
new Apps using the base template, and speed up development without having to
recreate all of the different configurations, and risk mistyping the configurations.
The following list shows the configurations and folders required for an App:

•	 $APP_HOME/default/app.conf

•	 $APP_HOME/local

•	 $APP_HOME/metadata/default.meta

•	 $APP_HOME/default/data/ui/views/*.xml

Creating Applications

[16]

The only difference in the requirement for an application versus an add-on is
the exclusion of the $APP_HOME/default/data/ui/views/*.xml files. Without
dashboards and views, an application is reduced to an add-on.

Let's step through creating a basic App by hand, shall we? Of course, that's why you
bought the book, unless you like conversational coffee books or beer coasters!

The $SPLUNK_HOME refers to the installation folder of your Splunk. In
this case, it will be on a *nix system, at the default location. Therefore,
references to $SPLUNK_HOME will refer to /opt/splunk.
The $APP_HOME refers to the App folder that you will be creating. This is
located under the $SPLUNK_HOME/etc/apps folder.

So here we go! Please take note of the following caveat.

The author of the book works primarily in *nix world, so all commands
and editing will be done via the CLI on a *nix machine. Non-*nix users
can use the Windows GUI to implement pretty much the same concepts.
The Windows command will also work for those who wish to use it.

Let's start! Follow these steps:

1.	 Change the directory to the Splunk Apps folder:
cd $SPLUNK_HOME/etc/apps

2.	 Create a folder for the SDG App:
mkdir SDG

3.	 Create the default folder:
mkdir SDG/default

4.	 Edit the app.conf file:
vi SDG/default/app.conf

Chapter 2

[17]

5.	 Add the following content to app.conf:
SDG Application app.conf
 [install]
 is_configured = 0

 [ui]
 is_visible = 1
 label = Splunk Developer's Guide

 [launcher]
 author = Your Name
 description = A Sample Description
 version = 1.0

6.	 Create the local folder:
mkdir SDG/local

7.	 Create the metadata folder:
mkdir SDG/metadata

8.	 Edit the default.meta file:
vi SDG/metadata/default.meta

9.	 Add this content to default.meta:

Application-level Permissions
 []
 access = read : [*], write : [admin, power]
 export = system

That's it! These are the very barebones of the App, providing only the smallest
amount of configuration required. We will use this as a starting point, and continue
adding configurations throughout the book.

Creating Applications

[18]

Now that we've walked through creating the App via the two available methods,
we will take a quick peek at the folder structure to give a point of reference for the
definitions of the structure. The App Splunk Developer's Guide was created through
the GUI, and has the following structure:

indexes.conf

$APP_HOME
(SDG)

appserver/ bin/ default/ local/ metadata/

static/

Resource.jpg

README app.conf

data/

ui/

nav/

default.xml

views/

README

app.conf default.meta

local.meta

Basic application structure
Now that the App has been created, let's take a look at some of the folders that were
created, what they may contain, and how they are used with the App. The folders we
are going to look at come from the App that was created via Splunk Web.

appserver
The appserver folder contains configurations and other files that relate to some of
the inner-workings of the App. In extremely advanced Apps, additional modules
and MVC controllers (controllers provide the link between you and the system) are
inserted into this folder. For the purpose of this book, we will focus on the static
directory, which contains the JavaScript, CSS, and other assets required by the App.

Chapter 2

[19]

bin
The bin folder contains binary assets, such as those used for modular inputs, scripted
inputs, or custom commands. These are most likely Python files, shell scripts, or
PowerShell scripts.

default
The default folder contains all the App publisher's configurations and views. When
packaging Apps for publishing, you should move any configurations from your
local folder to the default folder. This will help prevent overwriting any local
changes that the end user might make to the configurations. This folder also contains
the default navigation and dashboard files.

local
The local folder contains all the end user configuration and view changes that are
made. App developers should not publish Apps with configurations in this folder,
as they may overwrite changes that the end user has made.

lookups
The lookups folder contains all the CSV files that are used as lookups in your
configurations. As a general principle, as an App developer, you should include only
those lookup files that won't change. These are lookups such as HTTP status codes,
or Windows Event ID lookups. Including lookups that are generated from saved
searches is not good practice, as when you deploy an updated App, the lookups that
were generated from the end users' data will be overwritten.

metadata
The metadata folder houses the permissions for the App. All Splunk knowledge
objects have permissions as to who can view, edit, and use the objects, and these
permissions are contained in two files in the directory: default.meta and local.
meta. The default.meta file contains the basic options, as the App developer wants
to control the permissions. The local.meta file allows the end user to change the
permissions to be suitable for their environment.

Creating Applications

[20]

static
The static folder has the static assets used by the App. This folder contains the
App icons, which are displayed on Splunkbase, as well as inside Splunk in the
App's menu.

Application data
Now that we have created a new App, we can start working on how we need our
data indexed. Typical Apps may contain configurations for their own indexes,
source types, and other input methods.

Indexes
Indexes are very useful in a new App as they allow you to physically separate the
data on the disk on the indexers. This helps speed up searches and optimizes macros
and event types, since only a smaller subset of data will be searched within the App.
The configurations of the indexes are in the indexes.conf file, in the default folder.
For our App, let's add an index. The configuration looks like this in the indexes.
conf file, located at $APP_HOME/default/indexes.conf:

[splunk_developers_guide]
coldPath = $SPLUNK_DB\splunk_developers_guide\colddb
homePath = $SPLUNK_DB\splunk_developers_guide\db
thawedPath = $SPLUNK_DB\splunk_developers_guide\thaweddb

Chapter 2

[21]

That's it! Defining indexes is a quick way of optimizing your App's data. You can
also create indexes using the GUI. To make sure that you are configuring your index
within your App, ensure that you are within the context of your App. To be in context
of an App only requires you to navigate to your App in the Web interface. Once
there, click on the Settings menu and then on the Indexes manager:

Creating Applications

[22]

Locate the New button, and click on it to go to the setup page. Once there, you will
fill in any required fields (the index name being the only required field) and update
any others to match your environment. This is shown in the following screenshot:

Once you've created the index, you can start adding data to it. A full restart of
Splunk is not needed for the index to be active.

Once you have created the index, move the configuration from the
local folder to the default folder, and sanitize any special path names
(remove all special characters or custom locations). This will help end
users with the installation of your App.

Chapter 2

[23]

Source types
Source types are important within an App because they allow quicker searching,
since they are an indexed field. If the scope of your Splunk App is a certain
technology (TA) or customer use case (such as the application management of some
custom application) and you have to analyze, provide KPIs, and so on, then source
types will be a great focus to work on with your App.

If you are developing your App for a specific technology, then naming source types
to match your App is a good idea, as this will help reduce any conflicts with existing
source types when your App is installed on an end user's environment. This also
allows you to break down the incoming data into specific groupings, contained
within your App, and gives a finer level of control to the App developer. In
general—this is a guidance, not a requirement—the proper format for naming source
types related to a technology is vendor:product:feature:format. For example, let's say the
vendor that we are developing for is Cisco. We are using their Access Control Server
(ACS) with TACACS logging enabled. The proper source type for this data input
would be cisco:acs:tacacs. Source types should always be lowercase in order to keep
things consistent.

Sources
Sources are a field for the place from which the data is collected. Sources are
identified within an App's inputs, which are generally controlled by the
App developers.

Available Splunk knowledge objects
There are many different Splunk knowledge objects (SKOs) that can be used within
an App. The only required SKO for an App is the addition of views that can be
displayed to the end user. We will briefly cover the different types of SKOs that you
can include within your App. To avoid any issues with author interpretation of the
definitions of these SKOs, we will use the definitions and references from the official
Splunk documentation.

Creating Applications

[24]

Macros
noun

A parameterized portion of a search such as an eval statement or a search term
that can be reused in multiple places, including saved and ad hoc searches, and
which is used in a manner similar to a search command. Search macros can contain
arguments, but they are not required.

This is taken from http://docs.splunk.com/
Splexicon:Searchmacro.

Macros are configured through the Advanced Configuration section of the GUI, or
via the macros.conf file located within the App. They are advantageous by allowing
bits of SPL to be used as code, and can even be parameterized to make them usable
in a variety of situations. They are also very useful for building dashboard searches,
as a dashboard needs to be refreshed (when editing from the command line or
Notepad) when the searches change, but the macros do not. Therefore, you can
rapidly build dashboards by referencing macros and then editing the macros quickly.

Event types
noun

A type of knowledge object that enables you to categorize and label all the indexed
events that match a specified search string. An event type has a name and an
associated search.

This is taken from http://docs.splunk.com/
Splexicon:Eventtype.

Event types are configured through the Advanced Configuration section of the GUI,
or via the eventtypes.conf file located within the App. They are very useful for
classifying types of data, such as authorized login or failed login, based on a Splunk
search. The assigned event types for any data that you search for within the search
bar are displayed as a field to the left-hand side of the search results area.

http://docs.splunk.com/Splexicon:Searchmacro
http://docs.splunk.com/Splexicon:Searchmacro
http://docs.splunk.com/Splexicon:Eventtype
http://docs.splunk.com/Splexicon:Eventtype

Chapter 2

[25]

Tags
noun

A knowledge object that enables you to efficiently search for events that contain
particular field values. You can assign one or more tags to any field/value
combination, including event types, hosts, sources, and source types.

This is taken from http://docs.splunk.com/
Splexicon:Tag.

Tags are another way of enriching, normalizing, and segregating data. They allow
you to classify data across different source types, sources, hosts, event types, and so
on. They offer a very granular approach to searching data; tags are created through
the GUI, or are present within tags.conf.

Saved searches
noun

A search a user has made available for later use. Searches can be saved as reports,
alerts, or dashboard panels.

This is taken from http://docs.splunk.com/
Splexicon:Savedsearch.

These are particularly useful, especially when used in conjunction with macros
and dashboards. A saved search can be shared among team members, can be used
repeatedly within a dashboard, and can be used externally from Splunk via the API
(for example, Tableau uses saved searches as part of its connection). Saved searches
can also be used in dashboards, which allow the dashboard to be loaded quickly by
using the saved search artifacts from the last run. This prevents massive load when
multiple users load the same dashboard at the same time. Saved searches can be
created through the GUI, or by editing savedsearches.conf.

http://docs.splunk.com/Splexicon:Tag
http://docs.splunk.com/Splexicon:Tag
http://docs.splunk.com/Splexicon:Savedsearch
http://docs.splunk.com/Splexicon:Savedsearch

Creating Applications

[26]

Dashboards
noun

A type of view associated with an App. A dashboard contains one or more
searches that display data in visualizations. Panels in the dashboard contain
the visualizations.

This is taken from http://docs.splunk.com/
Splexicon:Dashboard.

Dashboards are critical to Apps, as they show all the data visualizations that are
relevant to an App. Without dashboards, your App is an add-on. Dashboards
have a specific place within the App, and this will be discussed later.

Lookups
noun

A knowledge object that enables the addition of fields and related values to search
results based on field matching with a CSV table or a Python script. For example,
you can use a lookup to perform DNS or reverse DNS lookups on IP addresses or
host names in your data.

This is taken from http://docs.splunk.com/
Splexicon:Lookup.

Lookups help to enrich your indexed data with static data or state data. You can use
Splunk to generate a state of your hosts, applications, and so on, and place them in
a lookup file. This allows quicker loading of a state dashboard. Lookups are in the
lookups folder of the App, and are generally CSV files.

http://docs.splunk.com/Splexicon:Dashboard
http://docs.splunk.com/Splexicon:Dashboard
http://docs.splunk.com/Splexicon:Lookup
http://docs.splunk.com/Splexicon:Lookup

Chapter 2

[27]

Configurations
noun

A file (also referred to as a conf file) that contains Splunk configuration
information. Splunk writes configuration settings into configuration files.
Configuration files are stored in a number of directories, including $SPLUNK_
HOME/etc/system/default (these are preconfigured and not to be edited),
$SPLUNK_HOME/etc/system/local, and $SPLUNK_HOME/etc/apps/. You can
configure Splunk settings and processes by editing configuration file stanzas.

This is taken from http://docs.splunk.com/
Splexicon:Configurationfile.

Configuration files are the meat and potatoes of your application. They decide how
all of your SKOs get defined, how fields are extracted, and more. Almost everything
that needs to be done can be done within a configuration file.

Object permissions
Object permissions are an integral part of securing Apps and their knowledge
objects. After all, we don't want the user causing issues in an App you spent hours
tweaking, do we? No, that's what I thought. This is where permissions come into
play. Splunk permissions are role-based, meaning that a user needs a specific
role (either assigned by Splunk or via external authentication and authorization
systems) to read or write the knowledge object. Permissions are controlled within
the default.meta and local.meta files in your metadata folder in the App, and, as
per normal Splunk precedence, the local.meta file will override any setting with a
matching stanza in the default.meta file.

The configuration structure within the corresponding file is as follows:

[<object_type>/<object_name>]
access = read : [<comma-separated list of roles>], write : [comma-
separated list of roles>]

This structure is taken from http://docs.splunk.com/
Documentation/Splunk/latest/AdvancedDev/SetPermissions.

http://docs.splunk.com/Splexicon:Configurationfile
http://docs.splunk.com/Splexicon:Configurationfile
http://docs.splunk.com/Documentation/Splunk/latest/AdvancedDev/SetPermissions
http://docs.splunk.com/Documentation/Splunk/latest/AdvancedDev/SetPermissions

Creating Applications

[28]

Let's explain this a little bit. Nothing says "clear" like mud sometimes:

•	 object_type: This is the type of SKO that you are securing. Some examples
are savedsearches, eventtypes, tags, macros, and views.

•	 object_name: This option is not required. So, if you include it, it will apply
only to the URL-encoded object name, and nothing else. Omit this option and
the permission will apply to all values of object_type. Here is an example:
let's say your search name is My First Search. Then, this parameter will be
My%20First%20Search. Do you see what we did there?

•	 access: You can go with this, or you can go with that. Either read or write,
that is. Simply place the name of a Splunk role in a comma-separated list
within brackets, and that is the person who gets to read and write the
knowledge object. If a role is in neither the read nor write stanza, then the
user will not have any visibility to the object.

Now, for you non-CLI folks, let's see some screenshots. You would want to start
out in the area you want to modify the permissions for, which can be something
such as tags, event types, or macros, to name a few. Once you have had a look at the
objects you want to change, you should see the Sharing column, with the current
permissions and a link. Click on the link.

This will bring you to the Permissions page for the object. Using the checkboxes
and radio buttons, define the level of access you want each role to have. Leave the
checkbox empty for none:

Chapter 2

[29]

Once you have completed the configuration, click on the Save button, and your
settings will be saved. This is how simple permissions can be in an App.

The setup screen
So let's say that your App is more advanced than some others, or that you need to
have the user supply OAuth credentials to connect to a service, but you don't want
them messing about in your filesystem. Oh! What to do? Well, the answer is a setup
screen. Setup screens allow you to configure a form that can interact with endpoints
and SKOs in your App. End users can enable or disable saved searches if they don't
apply, enter credentials, or interact in a number of ways with configuration files. In
the following example, we are going to first create a REST endpoint (CLI required),
and then the setup file to interact with the endpoint. Allons-y!

Creating Applications

[30]

The endpoint
First, let's see the endpoint. The endpoint we will write will be used to create and
interact with a custom configuration file for our application. We will then use this
configuration file later, when we create a modular input for the App. Let's do it step
by step from the command line. Windows users can use Notepad and the GUI to
achieve the same results:

1.	 Navigate to $APP_HOME/default and then execute the following command:
vi restmap.conf

2.	 Enter this content:
[admin:sdg]
 match=/sdgep
 members=conf

 [admin_external:conf]
 handlertype = python
 handlerfile = sdgHandler.py
 handleractions = list, edit

This file controls the REST endpoint. Our endpoint will be located at
https://splunk.my.domain:8089/services/sdgep/. Notice that the
match parameter matches with the endpoint named sdgep in the URL.
Next, the members parameter defines which other stanzas are children of
the endpoint and can be accessed under it. The external stanza defines each
handler for the endpoint (Python only, at this moment in time) and the
associated actions and Python file.

3.	 Now, execute the following command:
vi sdgsetup.conf

4.	 Enter this content:
[sdg_config]
apikey =

This sets up the default configuration file for the endpoint.

5.	 Now, navigate to $APP_HOME and execute the following commands:
mkdir bin

cd bin

vi sdgHandler.py

6.	 Enter the following content (this is Python, so make sure that all your
indentations are correct):

Chapter 2

[31]

7.	 This Python code is a simple file editor script. It will open the sdgsetup.
conf file and modify it, according to the Splunk rules of precedence and
default/local. The user will use a form (setup.xml) that will have the content
of the file. It supports two actions, list and edit (the functions are named
accordingly).

The setup file
Now that we have a custom endpoint, let's review and write the setup.xml file. The
setup.xml file lives in the default folder. For now, our setup page will include only
the setup for the API key that we will use later in the modular input, but keep your
eyes open for updates to this file throughout the book.

1.	 Execute the following commands:
cd $APP_HOME/default

vi setup.xml

2.	 Enter this content:

<setup>
 <block title="Authentication" endpoint="sdgep/conf"
entity="sdg_config">
 <input field="apikey">
 <label>The APIKey for meh.com api</label>
 <type>text</type>
 </input>
 </block>
 </setup>

Creating Applications

[32]

Let's explain this little bit of code. The setup.xml file must start with <setup>.
Once that is in place, you will be able to add additional blocks of configuration
settings, each with different endpoints and entities. In this case, the entity we want is
our custom one (from the sdgHandler.py file). So, in this file, the endpoint should
be the same as match in the restmap.conf file, with the additional specification
of matching the member config. Thus, the endpoint attribute of the block tag is
generalized as endpoint/member. The entity (in this case) is the stanza within that
file that you wish to target, which is config in this App. The input tag allows you
to then specify which configuration option under that stanza you want to modify.
There you go—a setup.xml file that will prompt the user to enter an API key on first
navigation to the App:

Once the user fills out this form and submits it, the App is considered to be
configured, and the local/app.conf file will be updated to reflect this.

Summary
In this chapter, we looked at a few different methods of creating Splunk Apps.
There are two basic methods of creating Apps: via the Web and via the CLI. We
looked at the structure of the App and what each folder may contain. We also
covered what kinds of objects (in a non-exhaustive list) can be included in a Splunk
App. We discussed permissions, and how to assign them in two different ways. We
then went over how to set up a REST endpoint to control configuration, as well as a
setup screen to allow the user to update credentials within the App.

Up next, we will discuss the different aspects of enhancing your App with event
types, workflows, and some acceleration techniques.

[33]

Enhancing Applications
In this chapter, we will focus on enhancing your App with branding elements,
workflows, event types, tags, macros, data models, and more. None of these items
are a strict requirement. However, they will definitely increase your appeal to end
users and customers alike. Choosing elements that are memorable will cement your
App in the minds of your users and will make your App shine. We will start with
working with your data, and then move on from there to presenting your App
with custom logos, navigation, CSS overrides, and other stock modifications of the
SimpleXML dashboards. We will end this chapter by seeing how to use Splunk
acceleration technologies and methods to speed up searches in large datasets. As we
move into working with actual data, we will be using example data and real data.
Some of the data here was consumed from the https://meh.com/ website. They
have an API, and the data was collected every five minutes using a scripted input.
This data will be the basis for some examples and some dashboards that highlight
various features. More important than the data is to grasp the concept. Grasp the
concept; rule the software.

Workflows
Workflows integrate with your data and are designed to help you move quickly
through your data, or help you to integrate easily with other services. They can
be used to drill down to another Splunk dashboard with prepopulated data in
the request, perform an nslookup on an IP address in an event, open a ticket in
an external ticket tracking system, or even launch an external search-all based on
data found within the event. Workflows are displayed inline with the events you
are working with. They don't have to apply for every single event. You can restrict
a workflow to be revealed only when target events are listed, or a set of fields are
listed. Workflows can be configured via the Web or configuration files.

https://meh.com/

Enhancing Applications

[34]

Building a workflow in the web interface is straightforward. As part of our Splunk
Developer's Guide (SDG) App, we will create a workflow that will interface with the
http://mxtoolbox.com/ website to perform a reverse DNS lookup based on an IP
address in the src_ip field found in some sample data. The first step is to navigate
to the configuration area for workflows. This is found in the top-right corner
of the screen. Navigate to Settings | Fields | Workflows, as seen in the
following screenshot:

http://mxtoolbox.com/

Chapter 3

[35]

Click on Workflows to be taken to the correct manager. Now you have a form to fill
in, as shown in the following screenshot. Don't we all just love paperwork? So, let's
walk through it:

Enhancing Applications

[36]

Give it a name, something descriptive. The name won't show up in the Web
interface; that is the purpose of the Label field. In the Label field, you can place
variables that are relevant to the data. So, for example, if you have an event with
src_ip=75.75.75.75, then the Label will expand to Lookup 75.75.75.75. The next
field details which fields are mandatory in the event in order for the workflow to
be visible. Do the same for the event types textbox. The Show action in drop-down
dictates where the clickable menu item will be shown. The Action type drop-down
menu can have a link or a search option. The only time it won't be a link is when you
want Splunk to perform a new search based on that data. Once those are set, you
can configure the actual action. In this case, the URL we need is http://mxtoolbox.
com/SuperTool.aspx?action=ptr%3asrc_ip, which will automatically expand
to http://mxtoolbox.com/SuperTool.aspx?action=ptr%3A75.75.75.75
based on the sample data. Finish it off with the New window option and a get
configuration, and you are done! Note that after creating the workflow, the
permissions are changed to be App only, where everyone can read but only
admins can write, as shown in the following screenshot:

Setting up a workflow via a configuration file is just as easy. Let's make a Google
search for a specific field. Navigate to $APP_HOME/default and edit the workflow_
actions.conf file. Insert the following content into this file as a new stanza:

[Google Search]
display_location = event_menu
fields = site, topic
label = Google $topic$, restrict to $site$
link.method = get
link.target = blank
link.uri = https://www.google.com/?q=site:$site$+$topic$
type = link

This will do exactly what the DNS lookup workflow does, except that it is a Google
search restricted to the $site$ website, as found in your sample data. This workflow
will apply only to events that have the site and topic fields.

http://mxtoolbox.com/SuperTool.aspx?action=ptr%3asrc_ip
http://mxtoolbox.com/SuperTool.aspx?action=ptr%3asrc_ip
http://mxtoolbox.com/SuperTool.aspx?action=ptr%3A75.75.75.75

Chapter 3

[37]

Custom alert actions
New in Splunk Enterprise 6.3, custom alert actions (also called modular alerts)
allow a developer to define an integration that can be reused multiple times and in
different ways based on the data being presented to it. Custom alert actions interact
specifically with the alerts that were already present in Splunk. There are a few new
components that go into making a custom alert action (let's call this a CAA). We will
discuss the various components of a CAA and build a very simple CAA that will
output the results of the search into a file within the App.

The first step in the creation of a CAA is to determine what your alert is intending
to do. While it is possible for your alert to do multiple actions, do not try and
combine multiple technologies unless necessary. For example, you wouldn't want to
combine a Facebook action with a Twitter action, since both actions require separate
authentication and authorization methodologies and credentials. Once you have
narrowed the scope of your CAA, we can proceed with the very basics of a CAA.
We won't dive into the full implementation of a CAA, due to the fact that Splunk has
a set of really nice documentation. The full documentation of CAAs can be found
at http://docs.splunk.com/Documentation/Splunk/latest/AdvancedDev/
ModAlertsCreate.

For a very simple CAA, the basics that are required are as follows:

•	 A CAA configuration (this is stored in alert_actions.conf)
•	 A script (this is stored in the bin folder of the App)
•	 User interface (UI) definition (this is stored in default/data/ui/alert_

actions of the App)

There are many more options available; we would suggest you read the
documentation to get the full effect. Let's start with the name of our CAA. Let's call it
file_write. Once we have our name, we will update alert_actions.conf to have
the following information:

[file_write]
is_custom = 1
label = File Writer
alert.execute.cmd = caa_file_write.py
payload_format = JSON
param.res_link = $results_link$

http://docs.splunk.com/Documentation/Splunk/latest/AdvancedDev/ModAlertsCreate
http://docs.splunk.com/Documentation/Splunk/latest/AdvancedDev/ModAlertsCreate

Enhancing Applications

[38]

Break it down now! The first line, the stanza heading, is the name of the CAA. The
first attribute (is_custom) allows Splunk to know that the CAA is a custom alert, not
a typical alert. The second attribute is label, which will show in the Splunk UI, so
make it pretty and clear to understand. The third attribute (alert.execute.cmd) is
the $APP_HOME/bin relative filename for the alert script that you are implementing.
The fourth attribute (payload_format) specifies how you want to pass in data
(JSON is very nice, but there are instances where XML might be preferred). The final
attribute (param.res_link) is a custom parameter that will get sent to the script each
time it is called.

Once you have the configuration stanza in place, you can place the script into
the bin folder of $APP_HOME. Let's place the following code in a file called
caa_file_write.py:

import sys, json, urllib2
def write_file(settings):
 f = open('myfile','w')
 f.write("%s"%json.dumps(settings))
 f.close()
if __name__ == "__main__":
 caa_config = json.loads(sys.stdin.read())
 write_file(caa_config)

Let's break it down. The first line is import statements. Pretty typical of Python, am
I right? Then, we define a write_file function that will take the settings passed to
the alert and write out the settings to a file. Then, our main code block pretty much
just reads the config from the standard in, and passes it to the write_file function.
Then, save it. Once we finish creating the custom alert (we need to add an HTML file
first), and then create an alert, you will see a file with the settings written to it.

The user interface portion of the CAA is required in order to provide an interface for
the end user to place configuration settings. This file, which should be named the
same as the CAA (in this case, file_write.html), should be placed in $APP_HOME/
default/data/ui/alerts. For example, let's take a look at the expected code:

<form class="form-horizontal form-complex">
 <div class="control-group">
 <label class="control-label" for="file_name">file_name</label>

 <div class="controls">
 <input type="text" name="action.file_write.param.file_name"
 id="file_name" />
 File name to write to (located in
 the local folder)
 </div>
 </div>
</form>

Chapter 3

[39]

As you can see, the UI HTML for CAAs is pretty simple. The HTML doesn't have to
be a full HTML-spec page, it can be partial HTML, as long as it validates. It can also
contain Bootstrap CSS classes and formatting. There are a few special bits. Located in
the input tag above, the name attribute of the input correlates to the parameter name
of the CAA. This allows Splunk to tie the two together, allowing custom settings.
For each parameter, you would, in the same way, put the HTML into that file. Once
these are in place, restart Splunk to pick up the changes. Once you have logged back
in, open a search and search for anything. Save that search as an alert, choose the
File Write alert, and give it a filename (if you wish). After that, sit back and enjoy the
file on the server. Of course, this is a super easy example, and you probably would
want your CAA to do something useful. It's all in your hands now. For a more
technical and in-depth read, consult the documentation, as it goes far deeper into
requirements for App certification.

Enriched data
Naturally, when we talk about enriched data, we are talking about separating
the isotopes of our data and storing them in secure storage, right? Nope! No
weapons-grade data here! The term enriched data refers to adding extra context
to raw data. Therefore, the data is then enriched. We will now cover event types,
tags, and macros.

Event types
Event types are used to classify similar events into categories. Categorizing events
is important because it can help you search through a large amount of data quickly,
find patterns, or create specific alerts and searches. They are defined by users via the
GUI or via the command line, or they are part of a prepackaged app. Event types can
have permissions assigned to them so that only specific roles can view or edit them.
Defined event types will show up in the user's Field List during a search in the GUI
and, as such, can be modified and searched just as a normal field can be. Event types
are defined by a Splunk search. Let's create an event type, shall we? The data we are
going to use is consumed from the meh.com API, as mentioned earlier. The data is in
JSON format.

At the time of writing this section, the deal for the day was a JBL speaker dock
with sunglasses. There is a running gag on meh.com that on Fridays, they only sell
speaker docks. So, let's categorize this deal as speaker_dock. Then, as additional
speaker docks are sold, we can quickly exclude only those categorized as speaker_
dock—really, who wants a speaker dock?

Enhancing Applications

[40]

There are three ways of creating an event type. The first is directly from the event.
So, using our search, we pull the events into the Events tab. To the left of the Time
column, there is an arrow that expands the event. Once expanded, there is a button
labeled Event Actions with Build Event Type as an option:

Clicking on it will open the event type builder. Splunk will automatically try and
suggest some field values for you to include as part of the event type, and will also
include some sample events. At the top, you can see an Edit button. This will allow
you to define explicitly what you want to use as the event type. Alternatively, you
can use the checkboxes to the left. Each click on the textbox will regenerate the
sample events list, which now matches the generated event type at the top. Since
we already know that we are looking for speaker boxes, let's edit the event type
to the following:

index=splunk_developers_guide sourcetype=meh "speaker dock"

After clicking on Save, you will get a chance to name it and set the style or priority.
Then, click on Save again. This saves the event type in your App, as shown in the
following screenshot:

Chapter 3

[41]

Once you have saved the event type, rerun the search and you will see the event type
listed in the fields list. Clicking on that field will show you some statistics about the
field values:

Every event that matches that search will count as one event type of that
value. So, if you are running an input every five minutes, you will have a
new event type every five minutes.

A second way to create an event type is directly through the manager. Navigate
to Settings | Event types and then click on New. Meh also has roombas (robot
vacuums) from time to time, so let's create an event type for those, just in case we
spot one. Once you have clicked on the New button, you will have a form to fill in.
Fill in the details, as shown in the following screenshot, and click on Save. You can
ignore the Tags field for now; we will discuss that shortly.

Enhancing Applications

[42]

There is also a third option, and it is probably the most popular. Start with a simple
search. Once you have narrowed the search down to only the events you want in
the event type, find the Save As button to the right of the search bar. Click on it and
choose Event Type:

Once you select this, another dialog will pop up. Simply fill out the fields and click
on Save:

And that is how you create event types using the web interface. The other option
available is to use a configuration file (which is where the configurations from
the Web are stored). The file is called eventtypes.conf, which makes complete
sense. Here, you define the event type in the same way as you would for any other
configuration. There is a stanza that holds the name of the event type, and then an
attribute that holds the Splunk search that matches the new event type.

Chapter 3

[43]

Let's create one for a Eureka vacuum. Edit the eventtypes.conf file by adding the
following to the content:

[eureka]
search = index = splunk_developers_guide sourcetype = meh eureka
vacuum

Save the file and reload the configuration.

Whenever you edit the configuration by hand, you should reload the
debug endpoint.

This is as easy as hitting a URL in a browser. The URL is https://<yourSplunk>/
en-US/debug/refresh. Be careful—this might take a while on large installations.

You can specify which endpoint you want to refresh by adding
?entity=<entity> to the URL, where <entity> is the one in the
supported list. See the list simply by loading the debug/refresh endpoint.
For only event types, your URL will be https://<yourSplunk>/en-
US/debug/refresh?entity=admin/eventtypes.

Once the reload completes, navigate to the event types manager in the Web. You
will see all the three event types we just created. Did you notice how the permissions
are different? If you create knowledge objects via the web interface, the objects will
inherit your user-level permissions. If created on the command line, the objects will
inherit the default permissions for the App (located in default.metadata). Don't
worry about this for now; those permissions will change when we package the App
for publishing:

Enhancing Applications

[44]

And there we have it! Event types will help you categorize and classify your data
to allow faster searching and statistics. Make them as granular or broad as your
situation and App require. Now, defining event types in this manner requires that
we know our own data. But, what if you don't? If the data is new to you, or is a new
type of data in the environment, you can use Splunk to discover event types for you.
We won't go into the details of the semantics of how to use it, but there is a command
that will generate the results with some sample data and some suggested tags:

index=splunk_developers_guide sourcetype=meh | typelearner

The typelearner command will output a table with your data, information on
existing event types, and suggested tags, which brings us to... tags!

Tags
Tags are knowledge objects that help categorize and normalize your data. Tags
can be applied to any combination of the <field>=<value> definitions. They
are particularly useful when used in combination with the Splunk Common
Information Model (CIM). The CIM contains a standard set of tags and definitions
that define and categorize data. Most Splunk-provided apps are CIM compliant, and
any App created should also be CIM compliant.

CIM compliant refers to the Common Information Model, provided by
Splunk as a normalization technique. For more details on this, check out
https://apps.splunk.com/app/1621/.

Tags are created in a few different ways. Splunk 6.2 allows you to create tags right
from the search results, as well as with the manager. We won't revisit the manager
for tags, since that is a standard methodology of creating knowledge objects (the tag
manager is located at Tags under Settings). Let's instead look at how to create them
from the command line and the search results. We've loaded our meh.com search
results and expanded one of the events for a speaker dock. Navigating the field
list shows drop-down arrows to the right of each field, since tags can work on any
field-value combination. Clicking on an arrow reveals Edit Tags, which then opens
another dialog:

https://apps.splunk.com/app/1621/

Chapter 3

[45]

Tags can be virtually any text, with individual tags separated by commas or spaces.
In this example, let's tag the event type we just created—speaker_dock. Firstly,
we will tag it with speaker. This is an abstract tag that could refer to any type of
speaker, not just a speaker dock. Secondly, we will tag it with useless, because they
don't really serve a purpose. I mean really, a single place to play music?

Once you have saved the tags, they will show up within the search results next to the
value. This is a quick way for you to see what tags have been assigned to each field-
value combination:

The structure in the configuration file is slightly different for tags. The stanza consists
of the field-value pair, and the attributes are the tag names that are enabled. Let's
take a look and make one for the roomba. A roomba is a type of robot, so let's tag it
with robot. The configuration is stored in the tags.conf file. Edit that file (in the
default folder) by adding this:

[eventtype=roomba]
robot = enabled

Don't forget to refresh the endpoint; this will pick up the change from the
configuration file. Now, if you are interested in products that are robots, you
can simply search for the robot tag:

index=splunk_developers_guide sourcetype=meh tag=robot

This search will look for any field-value combinations that have been tagged as
robot. So, as you begin to tag more and more products, your searches, alerts, and
dashboards will begin to include those items automatically.

Enhancing Applications

[46]

Macros
Next up are macros. Macros are sections of reusable searches that can be used
whenever a Splunk search is done. Macros can contain any part of a search,
including evals, other pipe commands, or search terms. They can also accept
arguments. Arguments passed can be strings or fields. If a field is passed, its value is
used in the macro when it is expanded. Macros can also be evaluation macros. In this
case, they strictly perform an evaluation and return the result as a string to the search
that called it. This is useful for calculating bandwidth, for example. Macros are also
useful for setting the base search of your App. By setting a base macro and using it
in subsequent searches, reports, event types, and so on, your end users can quickly
adapt your App to their environment with a simple macro update. We will create a
base macro for meh.com data as an example. The manager for macros can be found
by going to Settings | Advanced Search | Search Macros. Once you are in the
manager, click on the New button. This brings you to a *gasp* form that you
have to fill in! Starting to see a pattern? Let's fill it:

Chapter 3

[47]

The Name field is self-explanatory, except when arguments are involved. When
naming a macro, if you are using arguments, the name must contain the number of
arguments in parentheses. For example, if meh_base had one argument, its name
would be meh_base(1). The Definition field is the search string subset that you
want to execute when the macro is called. In this case, the macro definition points to
the base data for meh.com. Simple, yeah? The rest of the fields are for an evaluation-
based definition. We will define that directly in the configuration file. When you click
on Save, then, once again, you will have successfully saved a knowledge object. You
will see the saved macro in the manager. Once a macro is created, you can call it in
a search object. The syntax is like this: enclose the name of the macro in backticks
(`). Henceforth, this macro will be referenced as `meh_base`. That's it! The macro is
expanded and added to the search you are performing.

Use the job inspector (Activity | Jobs | Job Inspector) to see the full
expansions of macros to help troubleshoot problems.

Macros are expanded in place, so the position within your search will matter.
The 'meh_base' earliest=@d macro definition is different from earliest=@d
'meh_base', depending on the definition of the macro. For example, if your macro
contains any additional commands, you will need to place the macro after the
search terms. Our second method will create an evaluation-based macro in the
configuration file. This macro will take the price of the current item for sale from the
consumed data and convert it into Canadian dollars (based on the current exchange
rate at the time of writing this chapter)—let's face it, the Canadians are pretty cool!
I mean, hockey, maple syrup, curling, and Chris Hadfield. Need I say more? Macro
configurations are stored in the macros.conf file. Note that the definition has quotes
around it. This tells Splunk to return the result as a string, which is a requirement for
evaluation-based macros:

[mehToCA(1)]
iseval = true
args = price
definition = "$price$ * 1.24"

Again, don't forget to reload the configuration, since you've changed a configuration
file. The endpoint for this change is admin/macros. Once the endpoint is reloaded,
you can use it in a search, as follows:

'meh_base' earliest=@d | rename deal.items{}.price AS price | eval
canadianPrice = `mehToCA(price)`

Enhancing Applications

[48]

The resulting field based on the sample data at the end of this chapter will be
canadianPrice = 22.32. Macros are very powerful and can compress your massive
40-page-long search into a much, much smaller version, making them very simple to
read and edit. By combining various aspects of data transformation and extraction
within a macro, you can quickly share parts among your team, or within your App.
One change to the macro and all instances using that macro will also change. One
additional best practice should also be mentioned. While it is possible to place a
macro into an event type, it is not recommended. The expansion of the macro in the
event type is not possible in a distributed architecture, unless an additional flag is set
in the configurations for the App.

Lookups
How can one overlook lookups? Lookups are just that—lookups. They can be either
file-based or external scripts. They provide a means of looking up static data that is,
data that doesn't change very often or is simply too massive to index continuously.
For instance, Active Directory user information, HTTP status codes, Oracle action
IDs and descriptions, and so on, could be in a lookup. The example lookup we are
going to create will be generated from existing code. This particular lookup will be
used as a state table. A state table is a lookup that stores the state of objects that you
specify. This can be things such as port status (is it up or down?), last price (stocks
perhaps), or anything that has a constantly evolving status. This will show you how
to configure, read, and write a lookup. We will discuss external lookups, but we will
use a built-in to Splunk, as it is often overlooked, and asked about often on https://
answers.splunk.com/.

First, we have to decide what we are going to store in our lookup. We want to be
able to quickly get statistics about products from https://meh.com/ for the last 30
days. Searching each individual event over 30 days might take a while, especially for
large datasets. So, we want to create a lookup (state table) from the existing data, and
use it later in a dashboard. We won't create the dashboard now, but we will create
a saved scheduled search. Let's start by defining the lookup. There are two ways to
create a lookup: one via the Web and the other via configuration files. We will run
through the Web interface and then we will look at the configuration file for the
created lookup. Start by navigating to Settings | Lookups. Once there, you will see
three options. If you have existing lookups, or you want to upload a new file, you
should choose Lookup table files:

https://answers.splunk.com/
https://answers.splunk.com/
https://meh.com/

Chapter 3

[49]

Automatic lookups are used to add configuration to allow you to automatically
look up data based on fields in events. For example, if you are looking at an IIS log,
you can automatically look up the status code description of the event and have it
prepopulated in the field list. The first thing we need to do for a lookup is to create
a file for the information to reside in. Click on the Lookup table files item and click
through to the new table manager. You will have to choose a file to start with. Here,
we used a simple CSV file with the following content in it:

product_id,product_price\r\n

The \r\n part shouldn't be visible. We just need to make sure that there is a line
break inside the lookup file. This filename is called meh_products.csv:

Choose that file and give it a destination name, which should be the same as the
source file name. Then, click on Save. This uploads the file to the filesystem and
makes it available for the lookup definitions manager.

Enhancing Applications

[50]

As always, we need to set the permissions to the App level so that the
configurations aren't stored within the user's folder.

Now, head over to the lookup definitions manager and click on the New button.
As with other knowledge objects, we want to make sure that we are placing them
within the SDG App context. Give it a name—we used meh_products:

This is the name that you will use within the saved search. You will need to choose
the file that you just uploaded. Then, click on Save. This creates and reloads the
configuration for your product's lookup.

You might want to create this from the command line; it is actually pretty simple.
Navigate to your $APP_HOME/lookups folder and then create the meh_products.csv
file within that folder. Lookup configurations are stored in the transforms.conf file,
so head over to the default file and place the following configuration:

[meh_products]
filename = meh_products.csv

Pretty simple, right? As far as the configuration is concerned, we have now
completed that. Next, we have to use it. Firstly, we need to generate the lookup daily
using the existing lookup, add new data, and then output the new data. We will
show you the search first and then explain each part:

`meh_base` earliest=@d | inputlookup meh_products append=t | stats
latest(deal.items{}.condition) as product_condition latest(deal.
items{}.price) as product_price latest(deal.title) as product_title
latest(eventtype) as product_type earliest(timestamp) as product_
date by deal.id | rename deal.id as product_id | dedup product_id |
outputlookup meh_products

Chapter 3

[51]

Let's break it down. This search is scheduled for 1:00 a.m. every day. This will
cause the lookup to be generated based on when the daily deal rotates, which
is every midnight:

`meh_base` earliest=@d

This section of the search uses a macro from before and then restricts the data to only
the day of execution:

stats latest(deal.items{}.condition) as product_condition latest(deal.
items{}.price) as product_price latest(deal.title) as product_title
latest(eventtype) as product_type earliest(timestamp) as product_date
by deal.id | rename deal.id as product_id

This elongated stats command simply takes the raw JSON fields (which we are
interested in collecting) and turns them into a standard set of fields. Note that we
are using deal.id as the by clause, since that should always be unique. Then, we
rename deal.id to be product_id. Much cleaner!

inputlookup meh_products append=t

This portion of the search pulls in the data that has already been saved. It is
important to note the append attribute of the inputlookup command. Without this
attribute set to t (or true), the lookup data will overwrite the pulled data from the first
part of the search. When used as the first command in the search string, this attribute
can be dropped:

dedup product_id | outputlookup meh_products

Very simply, this will first deduplicate the results based on product_id, since we are
only interested in having a single product_id listed. Secondly, we output the results
of the stats command to the meh_products lookup, as we have it configured. This
writes the data to the disk, which overwrites the existing file in the process, so make
sure that your search is correct before executing the search.

The deduplication may cause you to lose records from your lookup, most
notably when the field has a many-to-one relationship!

Now that you have a saved search generating the lookup file, you can use the file!
Very simply, execute the following search:

|inputlookup meh_products

Enhancing Applications

[52]

Since this is the first command in the search string, it will pull in the content of the
CSV into a table. From here, you can modify the data, add more data, or use it in a
subsearch. You can even use this lookup to add fields to your existing data. Based
on our example data, we have deal.id as a field in the raw event. To enrich the raw
data, execute a search like this:

`meh_base` earliest=-3h@h | lookup meh_products product_id AS deal.id
| …

The lookup command is used to pull in lookup data based on existing data in the
raw event. First, you specify which lookup you want to use. In this case, we are using
meh_products. The next part of the command states: look up the data in the file by
product_id, with the raw field name of deal.id. This maps deal.id to product_id
and then looks for the value of product_id within the text file. Now, in the field list,
there are the product_date and product_title fields, to name a few. The same
thing applies here; you can use these new fields in the rest of the search as any other
field. The really magical part with lookups is that these are replicated to the search
peers as part of the search bundle. These files don't necessarily need to exist on
the search peers. However, be aware that the larger the lookup files, the larger the
bundles, and the bundles will need extra time to be transmitted to the search peers.
Keep them small, or replicate the lookups to the indexers locally using rsync. This
will help keep things smooth and fast.

External lookups are scripts that are executed during the search command execution.
Instead of looking for data from a flat file, the external lookup executes a command,
or series of commands, and returns the data from that execution. The example we
will look at is the DNS lookup provided with Splunk. To configure an external
lookup, we need to edit the transforms.conf file once again. The Splunk-provided
file has this configuration, which can be found at http://docs.splunk.com/
Documentation/Splunk:

[dnslookup]
external_cmd = external_lookup.py clienthost clientip
fields_list = clienthost,clientip

The external_lookup.py Python script is located at $SPLUNK_HOME/etc/system/
default/bin. This script connects to a DNS server and performs a lookup based on
whether a host name or an IP address was passed to the script. The lookup is called
right in a search bar, just like other lookups:

index=_internal | head 1 | lookup dnslookup clienthost AS host | …

This search pulls the first event from the internal index, performs a DNS lookup on
the host name, and returns the IP address. This can be very useful for determining
attacking IPs in a security App, or for looking up a web visitor's country to perform
further analytics.

http://docs.splunk.com/Documentation/Splunk
http://docs.splunk.com/Documentation/Splunk

Chapter 3

[53]

Common Information Model
No discussion on data enrichment is complete without at least mentioning the
Common Information Model. The CIM within Splunk helps define a least common
denominator when it comes to your data. It allows you to normalize your data
and use a common set of fields across all data of the same type. For example, in
your environment, let's assume that you have an IIS web server and an Apache
web server. You are indexing the access logs from each server using the iis and
access_combined source types respectively. The iis defines a cookie field as
cs_Cookie, whereas access_combined uses the cookie field. Without the CIM,
when you do a search for a dashboard or a view, or do just ad hoc searching, you
might specify this: sourcetype=iis OR sourcetype=access_combined | rename
cs_Cookie AS cookie | stats count by cookie. This might seem simple for
two source types, but it doesn't scale to, say, 50 different types of web server logs.
This is where the CIM is extremely valuable. By field aliasing the cs_Cookie field to
cookie, you will have two different fields show up, but both will contain the cookie
data. The advantage here is that by using the common field, you can quickly bring
a new source type online, without having to edit your searches and dashboards. In
this case, you might also tag source types to get web_log or something descriptive
that will help identify the different source types. Now, with tagging and CIM, your
search will be more like this: tag=web_log | stats count by cookie—much
simpler to read, and it scales effectively. Splunk provides a CIM App (https://
apps.splunk.com/app/1621/) that contains data models for 21 different domains
of data. A domain of data is simply a category that reaches a subset of data. For
example, you may have a certificates domain, or perhaps an e-mail domain. For
the most up-to-date information on the CIM, refer to the Splunk documentation at
http://docs.splunk.com/Documentation/CIM/latest/User/Overview. Planning
your inputs and applying CIM from the beginning will help you scale and search
effectively after the initial consumption of data. The CIM is based more on concepts
and abstraction of data, and while it shines in theory, the practical implementation
and debugging can be time consuming. Start small and work your way up, one
source type at a time.

Branding your App
Branding your App allows end users to know who you are and provides them with
a consistent representation of your brand. Splunk offers almost limitless options
for customization and brand creation within a Splunk App. SimpleXML provides a
small subset of customization, and if you employ the full Splunk Developer's Kit
(SDK), you will get limitless control over presentation and branding. There are a
few guidelines for rebranding your App, and the most up-to-date information can be
found at http://www.splunk.com/view/SP-CAAAFT9.

https://apps.splunk.com/app/1621/
https://apps.splunk.com/app/1621/
http://docs.splunk.com/Documentation/CIM/latest/User/Overview
http://www.splunk.com/view/SP-CAAAFT9

Enhancing Applications

[54]

The guidelines are as follows:

•	 Keeping the Splunk logo in place and adding their text to the right of it,
for example, Splunk> Foo where their add-on is named Foo. This is the
recommended action when Splunk's visual elements are left mostly intact.

•	 Replacing the Splunk logo with the developer's logo and then slotting in the
Splunk-Powered logo to the right. This is the recommended action when the
developer creates a branded UI with a different look and feel from the usual
visual experience of Splunk. The Splunk-Powered logo must remain in its
original state, including size and color.

•	 When exporting Splunk's visual elements, such as a chart, graph, map, or
other data visualization to another web page, App, or platform, the Splunk-
Powered logo must be visible somewhere within the page that displays
the Splunk visual element. Because of space consideration, the logo need
not be original size, but must remain the same color and be legible to the
human eye.

These are the official guidelines from Splunk and are subject to change at
any time. We recommend referring to Splunk's website, at http://www.
splunk.com/, for the latest and most up-to-date information.

Logos
Logos are a visual representation of your App. A well-thought-out and well-
executed icon and logo can help your App be quickly identified from a larger list
of Apps, specifically on Splunkbase. Most companies and organizations, and some
individuals, have their own icon. Apps definitely support icons and display them
in a few different areas. App icons are stored in a special folder named static
within the App. There are requirements for each size of an icon and logo, as shown
in the following table. This table can be found at http://docs.splunk.com/
Documentation/Splunk/6.2.1/AdvancedDev/AddConfigurations.

Filename Total image
size*

Suggested use area Placement**

appIcon.png 36 x 36 36 x 36 or less. If the box
is totally filled, it may feel
too big.

App list on the
Splunk home page
(standard-resolution
displays)

http://www.splunk.com/
http://www.splunk.com/
http://docs.splunk.com/Documentation/Splunk/6.2.1/AdvancedDev/AddConfigurations
http://docs.splunk.com/Documentation/Splunk/6.2.1/AdvancedDev/AddConfigurations

Chapter 3

[55]

Filename Total image
size*

Suggested use area Placement**

appIcon_2x.png 72 x 72 72 x 72 or less. App list on the
Splunk home page
(high-resolution
displays)

appIconAlt.png 36 x 36 36 x 36 or less. App menus
for Splunk Bar
and Search Bar
(standard-resolution
displays)

appIconAlt_2x.
png

72 x 72 72 x 72 or less. App menus for
Splunk Bar and
Search Bar (high-
resolution displays)

appLogo.png 160 x 40
(maximum
size)

160 x 40 (maximum
size; leave some vertical
margin).

App Bar on standard
resolution displays

appLogo_2x.png 320 x 80
(maximum
size)

320 x 80 (maximum
size; leave some vertical
margin).

App Bar on
high-resolution
displays

*The image sizes are in pixels

**High-resolution displays include MacBook Pro with retina display

So now that you know the requirements, let's create an icon and logo for our Splunk
Developer's Guide App. Very simply, we want to use a gear icon. This was found via
Google Image search and is free for use anywhere. The important part to note is that
it is an SVG image. This allows us to create PNG graphics that scale correctly. Here,
we will use the GIMP photo editing software, as it is free for anybody to use. In order
to create the icon, we open the SVG in GIMP, which asks us to scale the image. We
started with 36 x 36 pixels and then created the 72 x 72 pixel image.

Enhancing Applications

[56]

Both of these are placed in the static folder within the root of the App, or in other
words, $APP_HOME/static. We copied them both again and renamed them to fit the
appIconAlt.png images, so either way, our images are the same. To create the logos,
we opened the gear in the correct height and then resized the image to get the correct
width. We added some text and exported the images to a PNG file. The final logo
outcomes are as follows; notice how well they scaled:

You don't always have to use SVG, but it will definitely help when resizing to
match the size requirements. The images have had a border placed around them to
show the actual size, and although you can't see it, they actually have transparent
backgrounds so that our navigation bar can contain a color without having to change
the icons. Once you have placed your App icon and logo images in the static
folder, they will appear in the Splunk interface. The logo is situated in the top-right
corner of the page, underneath the web interface menus. The App icon shows up in
the App menu on the left-hand side of the screen, as well as on the left-hand side of
the launcher App:

Using an icon and logo is a quick way to personalize your App and make it easily
recognizable to end users and new users alike.

Navigation
Navigation is paramount in directing your end users to the different dashboards in
your App. Splunk comes with default navigation, but you will most likely want to
customize it for your App. This will help remove unnecessary views, dashboards,
and reports from your App, and include only those things relevant to your App
and in the structure you define. Let's build a SimpleXML file for your first bit of
navigation. Since we don't have any views or dashboards yet, it will be really simple.
We will simply link to the default search view and modify the color of the navigation
bar. The file for this is located in $APP_HOME/default/data/ui/nav/ and is titled
default.xml. Therefore, the full path to edit will be $APP_HOME/default/data/ui/
nav/default.xml. Edit this file by adding these lines to it:

Chapter 3

[57]

<nav search_view="search" color="#355e3b">
 <view name="search" default="true" label="Search"/>
 <view name="pivot" />
 <view name="reports" />
 <view name="alerts" />
 <view name="dashboards" />
</nav>

Let's break it down. Firstly, we start with the special nav xml tag. The search_view
and color attributes control the default search view to use and the color of the
navigation bar respectively. In this App, our search bar will be hunter green, which
is #355E3B in hex. Once you have those attributes filled in, you can start adding
content into the navigation bar. Each item becomes nested underneath the other
items in the typical XML fashion. Since we currently need only the search bar to be
shown, we enter a view tag, with some attributes.

The name attribute refers to the name of the view to use, not what will be shown on
the page; that is the label attribute's job. The default attribute sets this view item as
the first to be shown when an end user enters the App. The resulting rendering of the
navigation bar looks pretty nice. Do you see where the logo shows up?

This is the most basic navigation menu you can create. You can also create and edit
this navigation configuration via the web interface. Simply navigate to Settings |
User Interface | Navigation menus and edit the default configuration. You will still
have to enter the XML by hand; there isn't a prebuilt manager here to take care of it
for you. Let's leave the navigation alone for now. Once we have some dashboards
and views, we will add them at that time.

If you define a view within your navigation XML but that view doesn't
exist within Splunk, that section of the menu will not show up in the
navigation bar.

Enhancing Applications

[58]

CSS
Cascading Style Sheets (CSS) have become an integral part of HTML and web
presentations. Splunk takes advantage of this, and by providing your own CSS, you
can rebrand a large chunk of the web interface. HTML and SimpleXML views are
different in the ways in which the CSS is called. Your CSS files for the App need to
be stored within the App, notably in $APP_HOME/appserver/static. These files
are then called from the SimpleXML and HTML dashboards and included in the
rendered pages. We will cover this in more depth when we begin building our
views and dashboards.

JavaScript
JavaScript is an integral part of the Splunk web interface. Even SimpleXML is
controlled (behind the scenes) by JavaScript frameworks. This flexibility gives you
many options for customizing the interface, and much like the custom CSS, the
custom JS is stored under $APP_HOME/appserver/static. You can use subfolders
to keep things organized, but the basic dashboard.js file should be kept under the
base folder. We will dive head first into some custom JavaScript in a moment.

The default search view does not load custom JavaScript or CSS.
Therefore, it cannot have customized CSS or JavaScript. You will have to
build your own view for customizing.

Acceleration
Splunk searches are fast. They can pull millions of events in a relatively small
amount of time. However, what happens when you need to search billions of
events? Also, what if you want the daily statistics of a website over 5 years? This
is where some methods of acceleration will give you an advantage over raw data.
Acceleration summarizes your data and provides you with aggregated statistics that
can be looked up faster. If your App doesn't collect that much data, or you don't care
about long-term statistics, you might not need any form of acceleration.

Summary indexing
Summary indexing is a tested but true method of collecting aggregated data.
One way is to set up the summary fields and place them in the index using the
collect command.

Chapter 3

[59]

Summary indexing does not count towards your daily license usage, so
feel free to summarize as much data as you wish!

Let's start with the report manager. Before we begin configuring the summary index,
we have to decide what we want to summarize. Looking at the sample data at the
end of this chapter, we can see that meh has included information regarding their
daily poll. Our script polls the API every 5 minutes, which gives us 288 events per
day. Over a span of a year, that's a total of 105,120 different events with poll data.
This is still not a huge amount for Splunk to handle, but for the sake of argument,
let's say we want to speed up the reports that are using this data. By summarizing
the poll data every hour, we will have 24 events per day, or 8,760 events per year.
This is a significant reduction in the number of events we need to search for, and
since they will be collected within a specific summary index, we will also optimize
the search at the same time. In dealing with the poll data, we created a macro to
correlate the answers to their values. We call it pollExtraction and use it in the
summary creation search.

To create the summary search, we start with the base search for gathering poll data:

'meh_base' earliest=-1h@h latest=@h |'pollExtraction' | stats
max(votes) as votes latest(timestamp) as PollDate latest(PollId) as
PollId by answer PollTitle | collect index=summary

Let's break it down. We've seen meh_base before; it pulls data from the scripted
input. Since we want to summarize the previous hour, we will restrict the time range
and run the search at 1 minute past the hour. The pollExtraction macro performs
various mvzip and mvexpand commands that correlate the data correctly. Next, we
perform a statistic report and pull the maximum number of votes by each answer.
Since our data increases over time, we only need the highest number of votes per
hour. We add the PollTitle, PollId, and PollDate attributes to the by clause
so that when we load the report later, we will have the data we need to display it
properly. The final command, collect, takes the results from the statistic report and
puts the event into the index defined in the command, summary in this case. Now
that we have created the search, we can save it and schedule it to run at 15 minutes
past the hour. Here is a sample of what the resulting summary event looks like:

01/30/2015 21:00:00 -0500, info_min_time=1422669600.000, info_max_
time=1422673200.000, info_search_time=1422676498.182, PollDate="Fri,
30 Jan 2015 21:59:39 EST", PollId=a6li0000000PCCCAA4,
PollTitle="Who's going to win the Super Bowl?", answer="Some other
team you'll bet on in the forum!", votes=23

Enhancing Applications

[60]

To pull the summary events in a search, you can target the index and the other fields
in the event to get the correct data:

index=summary earliest=-2h@h PollTitle=*

This will pull only as many events as there are in the last 2 hours in the index
summary. This speeds up the creation of dashboards and other reports based on
the aggregated data. If the need arises, you can also add markers to the data. For
example, if you add | eval marker=meh_poll to the summary-generating search
before the collect command, you can then search for your data like this:

index=summary earliest=-2h@h marker=meh_poll

This methodology will work for any type of statistic aggregation of values, including
averages, minimums, maximums, and other functions supported by the statistic
command. This style of summary indexing is decidedly old school in its approach and
doesn't take advantage of any of the newer si- commands.

Accelerated reports
Splunk 6 offers a new kind of acceleration. This type of acceleration applies to saved
reports (previously known as saved searches). It can only be used on transforming
searches, or searches that use transforming commands within them. Additionally, if
there are any other commands prior to the transforming command, they must also
be streaming commands. Transforming commands are those similar to timechart,
stats, chart, or top. Streaming commands are those similar to where, eval,
regex, bin, or any others that can run on the indexer. This is an important note to
make, as when approaching summary indexing the old school way, you can use any
command to generate the table of results that is placed in the summary index. Report
acceleration is different. Report acceleration stores the summarizations parallel to
the buckets that hold the raw data. Splunk will also automatically regenerate any
missing summaries, which is something an administrator would have to do using
the old school method. Another caveat of the accelerated report is that the summaries
are not replicated within a cluster, so if an indexer in a cluster goes offline, the
summaries that were housed in those buckets need to be regenerated, which draws a
load off of the remaining indexers. Report acceleration can be very useful over large
datasets, and requires very little human interaction to get them working. Simply
create a qualifying search and enable acceleration, and off Splunk goes to provide
you with those summaries. The full documentation for report acceleration is very
in-depth and can be found at http://docs.splunk.com/Documentation/Splunk/
latest/Knowledge/Manageacceleratedsearchsummaries.

http://docs.splunk.com/Documentation/Splunk/latest/Knowledge/Manageacceleratedsearchsummaries
http://docs.splunk.com/Documentation/Splunk/latest/Knowledge/Manageacceleratedsearchsummaries

Chapter 3

[61]

Summary
In this chapter, we went through various methods of enriching data. By adding
more tags, event types, and workflow actions to your App, you can provide various
enhancements for your end users, creating a unified and seamless environment.
We showed you how using lookups provides a means of enhancing data, and how
you can start branding your App according to your specifications. We will elaborate
on these customizations as we move forward. We also looked at some methods of
accelerating data and provided an example of how to do so.

In the next chapter, we will start covering the use and configuration of SimpleXML
views and dashboards. We won't delve extensively into SimpleXML, but will cover
some basic visualizations and how to create and use a SimpleXML form.

[63]

Basic Views and Dashboards
In this chapter, we will use a web interface to start creating basic views and
dashboards that will help visualize the data we have been collecting and enhancing.
Knowing what data you have and how it is arranged is paramount for quickly
building views and dashboards. It also gives you a place to start, and shows which
parts of your data get displayed on which dashboard. Yeah, you can go ahead and
just start creating dashboards, views, and saved searches, but with a little bit of
planning, you can avoid refactoring multiple times. As with any project, setting the
scope of what your App is going to address is a key factor in its making. After we
tackle the broad questions on what to include and how, we will cover the following
topics: using a saved search in a panel and the different types of visualizations
available by default in Splunk. We will use some of these saved searches and
visualizations to create a SimpleXML dashboard, and then convert that dashboard
into a SimpleXML form. We will also briefly discuss HTML dashboards, but those
will be covered in depth in the next chapter. Therefore, we will only show you how
to convert existing dashboards and create new ones from scratch.

Knowing your data
Knowing your data is paramount when creating dashboards and views. Being
familiar with your data gives you a deeper understanding of the context and a
greater insight into the different nuances of data visualization. For example, you
will never use time series data in a pie chart, right? Knowing that you have time
series data before trying to create a chart will speed up the process of designing and
creating the dashboards you will need in your App. Another very valid thought
process entails you to think about which data fits which data visualization; it's more
than just the typical pie versus time-based line charts. This can include such things as
choosing between bar and column charts, when to use stacked bars, or whether you
should use 100 percent stacked bars. Some of these will be answered only once you
work with the visualization previews available in Splunk.

Basic Views and Dashboards

[64]

Let's start with a quick exercise. Let's assume that you are collecting Kbps metrics
for your Internet connection. You collect these metrics every five minutes and index
them in Splunk. What kind of graph would best leverage time-based statistics? A line
graph? Area graphs? Yes! Bar graphs? Pie graphs? No! Bar and pie graphs do not
adequately show time-based data. However, on the other hand, if you were trying
to determine the percentage of users using the Internet who were in specific ranges
of age, should you use a line graph? Probably not, as this type of data will fit better
within a pie graph or bar graph. This is because you are interested in statistics over
all your time range, not just in specific time intervals (such as five minutes).

Available modules
Let's get a quick overview of the types of charts available in Splunk 6.2 and beyond.
These are charts that can be used directly from the dashboard editor. The built-in
visualizations are as follows: Line, Area, Column, Bar, Pie, Scatter, Bubble, Single
Value, Radial Gauge, Filler Gauge, Marker Gauge, and Map. Each of these displays
data differently, and, obviously, not all data will fit into all types of visualizations.
Splunk helps you know your data and offers recommendations based on the search
you have completed, as shown in the following screenshot. The example search used
a timechart command, so the recommended charts were those that deal well with
time-based data—Line, Area, and Column:

Chapter 4

[65]

As you can see, these are the native charts in Splunk. Additional modules are
available or can be created, but these are the basic visualizations.

SimpleXML dashboard
Okay, so now we get to play around with some visualizations. Let's create a
dashboard with some visualizations of our data from https://meh.com/. For now,
we will limit ourselves to the native visualizations. We will start with the meh_
products lookup that we have generated. Each product is listed as either New or
Refurbished, so let's see how that makes a chart:

| inputlookup meh_products | top product_condition

This will be our basic search that pulls the meh_products lookup, which is kept
populated by the saved search we had written earlier. We are only interested in
knowing the distribution of product conditions over the entire time range, so we will
choose a pie chart from the drop-down menu. This gives us a pie chart like this one:

As you can see, at the time of writing this book, and with the amount of data
collected, the top condition at 90.909% is New. Now, let's save this as a panel in a
new dashboard. We will call the dashboard Overview. We do this by clicking on
the Save As drop-down menu in the top-right corner of the screen. You would want
to save it as Dashboard Panel. This pops up a dialog to create a new dashboard,
or append this visualization to an existing dashboard. We want to create a new
dashboard. Fill in the form, as shown in the following screenshot, and then click
on Save.

https://meh.com/

Basic Views and Dashboards

[66]

Since we are developing a full-blown App, we want to make sure that this dashboard
is created in the App, and not in our user folder. So, make sure that the Shared in
App option is selected:

This will create the dashboard and place that pie chart on it. Once you have this
created, you need a way to quickly get to the dashboard. Let's edit the default.xml
file (located in default/data/ui/nav) and add the name of this dashboard. Add
the following line to the XML file, right under the nav tag of the file. Hit the debug/
refresh endpoint to load the change:

<view name="overview" default="true" />

When you navigate to the app, this Overview dashboard will be the first to load.
Let's add some more data visualizations, shall we? You can add as many as you
want, but keep in mind that if more visualizations are added, more searches will
need to be dispatched, and this may decrease search performance of the search head.

Chapter 4

[67]

This is what we came up with; isn't it pretty?

All these data points are calculated from the meh_products lookup file, and they
cover all the items located therein. However, what if we want time-based data? Let's
create another dashboard. This one will use the summaries of the https://meh.com/
polls that we have been collecting. We won't go step by step as we create the time
poll data dashboard; the steps are fairly similar to before. Don't forget to add your
new dashboard to the navigation! The following screenshot gives us the poll results:

https://meh.com/

Basic Views and Dashboards

[68]

Wow! That was quick. Do you see how we are using line charts and bar charts
to display time-based data? But wait! The data looks funny. That is because this
dashboard is showing everything over all the time for which we collected data. A
new poll starts every day, with new answers, so this dashboard currently shows the
aggregate of the entire collection. Not really useful in the grand scheme of things,
which leads us to… SimpleXML forms!

SimpleXML forms
A SimpleXML form allows you to convert a SimpleXML dashboard into a dashboard
with inputs. This allows you to narrow down the set of information from all time to
a defined range of time. Let's go ahead and convert this dashboard into a form. Find
the Edit drop-down menu in the top-right corner of the dashboard, and then choose
Edit Panels. Here, you will see Add Input. Click on this and select Time. There are
also other options available, as you can see in this screenshot:

Clicking on Time will add a drop-down in the top-left corner of the dashboard.
Now, it is considered a form. While still in edit mode, select the time range picker
and set the value to Today. This will load only today's data into the form that was
created. To leverage this new restriction, you must update each panel. Edit each
panel search, click on the Edit Search String item and update Time Range Scope to
Shared Time Picker (field1). This will allow each panel to use the time range picked
in the drop-down at the top of the form. Once you have edited all the panels, click on
the Done button in the top-right corner, and then refresh the page. You will notice
that the data is cleaner and displays only a single poll's information. This allows the
information to be displayed cleanly and with context. Remember that chart from the
bottom of the dashboard? Ugly, wasn't it? Very cluttered and not useful; now that
same chart is nicely clean and displays data in two dimensions.

Chapter 4

[69]

The data here uses a bar chart, with each answer as a different color (and column).
This chart gives you a time-based representation of poll results. Time is shown from
top (midnight) to bottom. Each different color represents a different poll response,
and from left to right is the calculated difference in the number of votes (essentially,
it is the distance from one data point to the next in the summary), which shows the
number of additional votes that that answer received from the previous time frame
in the summary:

Let's look a little closer at a few bars. The following screenshot shows a close-up of
the far left answer. As you can see, there is a lot of activity in the first few hours of
the day, and it steadily decreases over the course of the day:

While this might not be a common use for bar charts, it represents the data
differently, while giving context to each data point.

Basic Views and Dashboards

[70]

Now that we have the form responding to a specific time range, let's clean up the
search activity. As it currently stands, each panel in this form executes a new search.
That's not very effective, especially when the dataset could be massive. So, let's talk
about post-processing. What is post-processing? Essentially, we will define a single
search element for the dashboard. Then, we will use those search results in every
other panel of the dashboard—one base search transformed and processed multiple
times. We start by editing the source of the form, located under the Edit drop-down
(find the Edit Source option). Now, add in this XML code, right before the first
<row> tag:

<search id="baseSearch">
 <query>
 index=summary category=meh_poll | bucket span=1h _time | stats
count avg(votes) as votes by _time PollTitle answer | fields - count
 </query>
 <earliest>$field1.earliest$</earliest>
 <latest>$field1.latest$</latest>
</search>

This sets up the base search for all other panels that reference the baseSearch ID.
Did you notice the $field1.earliest$ token? It refers to the time picker drop-
down that was added earlier in the section where we converted this dashboard into
a form. Don't worry about it for now; just add it in there, as shown. Now find your
first panel. You will see a <search> tag underneath the <title> tag.

Add base="baseSearch" to the <search> tag and change the <query> tag to have
only the stats command. You should end up with something like this:

<search base="baseSearch">
 <query>stats values(PollTitle)</query>
</search>

Do this for each panel in the form. Once you're done, click on the Save button. Now
each panel within your form will load as soon as the main search is done. In this
way, you can speed up the rendering of the form without extolling a huge search
cost on your infrastructure.

Post-processing should only be used on data that has been transformed in some way.
It is not a best practice to use raw events, mainly due to the 500,000 event limitation
and restriction of the post processing module. There is also a timeout in Splunk Web
that may be reached if you are searching for large datasets. In our example, we used
the stats command to transform the data into a table with only a selected number of
fields and already calculated hourly votes. This helps to optimize the base search and
prevents us from reaching the limit.

Chapter 4

[71]

Another great optimization trick is to use a scheduled search, summary index, or
data model as the base search.

Warning
Dashboards with an excessive number of searches can cause the
search performance to degrade, causing issues within a production
environment. Use optimization tricks and configurations to keep
the searches running clean.

Let's circle back to that $field1.earliest$ item we saw earlier. This is a tokenized
field. Splunk tokenizes the variable, allowing dynamic drill-downs and conditional
displays and capturing inputs. You can then reference the tokenized element using
the $variable$ name. We are going to implement one of these to dynamically limit
the results shown, based on the number of votes for an answer. Firstly, click on the
Add Input button (after entering edit mode, of course), and add a Text box. Once it
is placed in the field set in the top-left corner, click on the little pencil icon to edit the
field. Enter the values shown in this screenshot:

Basic Views and Dashboards

[72]

Click on the Apply button and then on the Done button to finish creating the panel.
Now, you would want to add that limitation to your searches, so pick a search that
you want to restrict. Add the token name (surrounded by $) to the search as if you
were specifying a field. For example, we might only want the answers with more
than 100 votes to be displayed on our time-based line chart. The original post
process query is this:

where isint(votes) | timechart span=1h max(votes) as Votes by
answer useother=f

We will update it to the following:

where isint(votes) AND votes > min_votes| timechart span=1h
max(votes) as Votes by answer useother=f | eval threshold =
min_votes.

Save the panel and refresh the form. The default value is 0, which is meant to include
all results, but once it is changed to 100, the chart displays only the answers that have
more than 100 votes, in effect, showing when each answer crossed the threshold:

Custom JavaScript, CSS, and Tokens
There will be times when you will want to integrate custom visualizations, custom
CSS, or helper JavaScript into a SimpleXML dashboard. Thankfully, we have been
provided a way to do so. At the very top of the dashboard/form source code, you
will either see the <dashboard> or <form> tag. Within those tags, as attributes, is
where you will declare what scripts should be included in your dashboard:

<dashboard script="my_script.js" stylesheet="my_style.css">

Chapter 4

[73]

This allows the loading of custom scripts and CSS from the $APP_HOME/appserver/
static folder. Placing these files into that folder gives the dashboard access to them.
From here, you can interact with the dashboard using jQuery, or another framework,
and make it bend to your will.

Another feature of SimpleXML is the ability to manipulate tokens. Let's take,
for example, the text input. Let's define it like this in the source code:

<input type="text" token="foo">
 <label>Input</label>
 <change>
 <set token="my_new_token">"$value$, Rose!"</set>
 </change>
</input>

What does this do? Firstly, it is a text input, so the user will just place whatever they
are searching for within that input, and then when it changes, it will update the my_
new_token token to have a new value. For example, if the user places fantastic into
the input box, the resulting value of the my_new_token token will be fantastic,
Rose! This is a very simple modification of a token; there are other methods and
conditions that can be set on different tags within the SimpleXML. You can find them
very nicely documented at http://docs.splunk.com/Documentation/Splunk/
latest/Viz/tokens.

There are many, many other options available for SimpleXML forms and
dashboards. Since the use cases far outweigh the space required to detail them, we'll
let you discover and explore the specifications for SimpleXML yourself, and instead
turn towards HTML dashboards.

HTML dashboards
HTML dashboards are simply that. These are dashboards that have been either
written from scratch in HTML and JavaScript, or converted from a SimpleXML
dashboard. The primary purpose of an HTML dashboard is to give the developer
the greatest degree of freedom possible. Anything that you can do in HTML with
CSS and JavaScript can most likely be done in an HTML dashboard as well, with the
added benefit of being able to use the entirety of Splunk information.

http://docs.splunk.com/Documentation/Splunk/latest/Viz/tokens
http://docs.splunk.com/Documentation/Splunk/latest/Viz/tokens

Basic Views and Dashboards

[74]

Let's go ahead and convert a SimpleXML dashboard into an HTML dashboard. Let's
use the Overview dashboard we created earlier. To convert an existing dashboard,
simply navigate to it in the web UI, then click on the Edit dropdown, and then click
on Convert to HTML. A dialog will show up, and you will want to click on Replace
Current in this instance. If you're creating HTML dashboards for the first time, you
may want to use Create New until you feel comfortable with the process:

Warning
Replacing a dashboard is permanent; there is no undo feature. You will
also lose the ability to edit the panels directly in the editor, and you will
not be able to generate a PDF file from the dashboard.

If you are ready, click on Convert Dashboard. You can then click on View to view
the dashboard. What has changed? Nothing visually, really. The real magic happens
behind the scenes, and we will delve into this in the next chapter. However, say you
wanted to create a new HTML dashboard from scratch. The easiest way is to create
a blank SimpleXML dashboard and then convert it inline. This will prepopulate all
of the HTML and JavaScript you will need to get started with building a dashboard
from scratch.

Chapter 4

[75]

Summary
In this chapter, we covered some basic aspects of dashboards and view creation.
Making sure you know your data is paramount for successful execution in data
visualization. Splunk helps you discover your data, but you need to understand your
data to display it properly. Not all data types and results fit into all chart types.

We also covered creating a SimpleXML dashboard and then converting that
dashboard into a form. SimpleXML dashboards give you ease of creation and
allow you to manipulate them within the web interface. This is an excellent option
for quick displays of data, without diving too deep into the code. We also briefly
introduced HTML dashboards. There are several advantages of HTML dashboards,
especially the added benefits of using the entire HTML, CSS, and JavaScript stacks.

In our next chapter, we will start the joys of HTML dashboarding and see how to use
the SplunkJS Stack effectively.

[77]

The Splunk Web Framework
In this chapter, we will dive directly into HTML dashboards and the Splunk Web
Framework. This won't be just an overview, this is some serious coding. This is the
nuts and bolts for all the newer apps being written and produced, as it provides the
best options for customization and visualization. There is a basic structure, and some
rather important points that need to be made, and some additional information on
how to brand using custom CSS and JavaScript. We will explore the SplunkJS stack,
and go over how the objects are used in their native form, and show how you can
customize them. We will add a custom visualization using a D3 chart and place it
in the dashboard. Using D3 charts allows for so much additional extensibility and
presentation. We will also cover adding external data sources (via REST APIs and
other methods) using the jQuery library.

The HTML dashboard
The HTML dashboard can either be generated from an existing SimpleXML
dashboard, or it can be written by hand. We recommend creating a SimpleXML
dashboard and then converting it. This ensures that the most up-to-date code
is generated from the version you are using. For a refresher on how to convert
a SimpleXML dashboard to an HTML dashboard, see Chapter 4, Basic Views and
Dashboards. The Splunk Web Framework is built into the HTML dashboard and into
the core programming of Splunk. The framework is designed to allow maximum
extensibility and versatility in the development of dashboards.

The basic code of the previously generated dashboard (see Chapter 4, Basic Views
and Dashboards—the dashboard is called Overview) contains various items that are
consistent across dashboards. Generally, all of the HTML and CSS definitions are
placed within the dashboard code first, with the JavaScript portion at the end. This
is a pretty standard best practice, as this allows the page to load most of the way
through without hitting a loading problem because of the data.

The Splunk Web Framework

[78]

The first important bit of the HTML dashboard is the inclusion of the Bootstrap CSS,
as shown in the following code:

<link rel="stylesheet" type="text/css"
href="/en-US/static/@237341/css/build/bootstrap.min.css" />
<link rel="stylesheet" type="text/css"
href="/en-US/static/@237341/css/build/pages/dashboard-simple-
bootstrap.min.css" />

Bootstrap (http://getbootstrap.com/) is a popular framework aimed at helping
designers create robust and responsive web pages and projects. We won't dive into
Bootstrap too much, but it is important when working with the default grid patterns
in the dashboard. The first line includes the base Bootstrap CSS file. The second line
includes the Splunk-specific Bootstrap CSS file. These configurations give Splunk its
native branding and presentation. Let's dissect href for the include file:

•	 /en-US: This is the locale for your installation. By default, it is en-US, but can
be configured to be different.

•	 /static: This indicates that the files are static and are cached appropriately.
•	 /@237341: This is your Splunk-specific build number. This number is

updated every time you upgrade core Splunk. The idea behind changing the
number in include href is simple: it breaks the cache on that object during
core Splunk upgrades.

•	 /css/build/pages/: This is the path to the CSS files for pages.
•	 dashboard-simple-bootstrap.min.css: This is the filename that contains

the Splunk-native CSS.

If you need to bust the cache to load new files from disk, you can use
the bump URL. Navigate to http://<your host and port>/en-
US/_bump and click on the Bump Version button. This will update your
version number by 1, so the version number may look like @237341.2
and increment from there with each click.

You will find this convention multiple times throughout the dashboard. You will
have the ability to include custom CSS files, but let's look at the next important part
of the dashboard, the navigation.

http://getbootstrap.com/

Chapter 5

[79]

As you can see from the code in the next code block, the page is designed to be
compliant to section 508. If you aren't familiar with it, section 508 refers to the
laws and regulations that web pages should comply with that allow universal
accessibility. Using a typical browser, the first <a> tag won't appear; it only appears
if the user is using a screen reader. Following this tag, the next <div> tag gives a
place for the Splunk header to be placed. This header includes the administrative
navigation Settings, Messages, Activity, and more such options as well as the
application navigation. Notice the special code piece located in the placeholder-
Splunk-bar div tag. The {{SPLUNKWEB_URL_PREFIX}} is a placeholder for the user's
locale information and is generated on the fly when rendered in the browser. The
generated HTML is shown here:

Screen reader
users, click here to skip the navigation bar
<div class="header splunk-header">
 <div id="placeholder-splunk-bar">
 <a href="{{SPLUNKWEB_URL_PREFIX}}/app/launcher/home"
class="brand" title="splunk > listen to your
data">splunk>
 </div>
 <div id="placeholder-app-bar"></div>
</div>

This HTML, when rendered, appears as shown in the following screenshot:

This piece is important because without it, the navigation bars would not work
correctly. As we progress further, you will see where the SplunkJS stack makes its
mark on the dashboard and navigation. Next up in the progression down the page,
we enter the actual HTML layout of the panels. These panels are the generated code
from the SimpleXML that we converted earlier, as you can see in the following result:

<div id="row1" class="dashboard-row dashboard-row1">
 <div id="panel1" class="dashboard-cell" style="width: 20%;">
 <div class="dashboard-panel clearfix">
 <div class="panel-element-row">
 <div id="element1" class="dashboard-element single"
style="width: 100%">
 <div class="panel-head">
 <h3>Total Revenue</h3>
 </div>
 <div class="panel-body"></div>

The Splunk Web Framework

[80]

 </div>
 </div>
 </div>
</div>

This HTML, when rendered, appears as shown in the following panel:

There are currently seven panels on the overview page, each one using similar
HTML. All of the CSS for these panels can be overridden using custom CSS files,
along with most other styling on the page.

As we progress even further into the rabbit hole, we are now at the JavaScript
portion of the page. Splunk uses the RequireJS framework to include many different
modules to be used on the page. Each different visualization has its own require
module and needs to be included if it is going to be used on the page. Let's start with
the basic configuration statement:

require.config({
 baseUrl: "{{SPLUNKWEB_URL_PREFIX}}/static/js",
 waitSeconds: 0 // Disable require.js load timeout
});

This is the configuration for the RequireJS framework. The baseUrl variable
points to the static JavaScript location for the native Splunk libraries. Later on, we
will use a modified require configuration to include custom modules and help
resolve dependencies. When you convert a SimpleXML dashboard into an HTML
dashboard, Splunk very helpfully includes comments in the JavaScript code to guide
you into the proper configuration of the RequireJS framework. The next part of the
code requires the libraries that are needed to load the page:

require([
 "splunkjs/mvc",
 "splunkjs/mvc/utils",
 ...
],

Chapter 5

[81]

 function(
 mvc,
 utils,
 ...
) { ...

Each item in this require statement is appended to baseUrl in the configuration.
The JavaScript file is then included and placed into the variable located in the
following function. So the {{SPLUNKWEB_URL_PREFIX}}/static/js/splunkjs/
mvc.js file is then stored in the mvc variable. These variables are then used within
the main function to perform the actual tasks needed to collect and display the data.

Due to the complex nature of the HTML dashboard, it is recommend that
you create a blank SimpleXML dashboard, and then convert it, before
building out the searches and visualizations. This ensures that you have
all the basic libraries you need, cutting down on development time.

Following the require statement, and the start of the function, we can now move
into defining what the SplunkJS stack interacts with on the page and how it creates
the different elements.

SplunkJS Stack
SplunkJS Stack contains a few frameworks to help web developers build Splunk
applications in a familiar JavaScript environment. The first is Backbone.js, which
provides the MVC framework as building blocks for your dashboards. The second
is RequireJS, which helps to manage dependencies. The third is jQuery, which helps
to manage the document objects within the dashboard. Finally, Splunk provides a
large library with views and managers that help you interact with Splunk. We would
be remiss if we didn't take some time and review the different views and managers.
Each of these is implemented within the JavaScript code of the RequireJS function.

The Splunk Web Framework

[82]

As we start looking into each item of the Splunk library, we will present
the native module path and the default variable name. These get placed in
the RequireJS function call as noted earlier. This can be abstracted in the
following manner:

require(["<splunk module path>"],
 function(<splunk variable name>) {
 var example_1 = new <splunk variable name> ({
<options> });
 });

After the defaults are given, a sample instantiation will be displayed,
with some basic options. These options will be explained at a higher level,
and a link to the documentation will give you the detailed view of each
option.

Search-related modules
Let's talk JavaScript modules. For each module, we will review their primary
purpose, their module path, the default variable used in an HTML dashboard, and
the JavaScript instantiation of the module. We will also cover which attributes are
required and which are optional.

SearchManager
The SearchManager is a primary driver of any dashboard. This module contains an
entire search job, including the query, properties, and the actual dispatch of the job.
Let's instantiate an object and dissect the options from this sample code:

Module Path: splunkjs/mvc/searchmanager
Default Variable: SearchManager
JavaScript Object instantiation
 Var mySearchManager = new SearchManager({
 id: "search1",
 earliest_time: "-24h@h",
 latest_time: "now",
 preview: true,
 cache: false,
 search: "index=_internal | stats count by sourcetype"
 }, {tokens: true, tokenNamespace: "submitted"});

Chapter 5

[83]

The only required property is the id property. This is a reference ID that will be
used to access this object from other instantiated objects later in the development
of the page. It is best to name it something concise yet descriptive with no spaces.
The search property is optional and contains the SPL query that will be dispatched
from the module. Make sure to escape any quotes properly, if not, you may cause
a JavaScript exception. The earliest_time and latest_time are time modifiers
that restrict the range of the events. At the end of the options object, notice the
second object with token references. This is what automatically executes the search.
Without these options, you would have to trigger the search manually. There are
a few other properties shown, but you can refer to the actual documentation at the
main documentation page at http://docs.splunk.com/DocumentationStatic/
WebFramework/1.1/compref_searchmanager.html.

SearchManagers are set to autostart on page load. To prevent this,
set autostart to false in the options.

SavedSearchManager
The SavedSearchManager is very similar in operation to the SearchManager, but
it works with a saved report, instead of an ad hoc query. The advantage to using a
SavedSearchManager is in performance. If the report is scheduled, you can configure
the SavedSearchManager to use the previously run jobs to load the data. If any other
user runs the report within Splunk, the SavedSearchManager can reuse that user's
results in the manager to boost performance. Let's take a look at a few sections of
our code:

Module Path: splunkjs/mvc/savedsearchmanager
Default Variable: SavedSearchManager
JavaScript Object instantiation
 Var mySavedSearchManager = new SavedSearchManager({
 id: "savedsearch1",
 searchname: "Saved Report 1"
 "dispatch.earliest_time": "-24h@h",
 "dispatch.latest_time": "now",
 preview: true,
 cache: true
 });

http://docs.splunk.com/DocumentationStatic/WebFramework/1.1/compref_searchmanager.html
http://docs.splunk.com/DocumentationStatic/WebFramework/1.1/compref_searchmanager.html

The Splunk Web Framework

[84]

The only two required properties are id and searchname. Both of those must
be present in order for this manager to run correctly. The other options are very
similar to the SearchManager, except for the dispatch options. The SearchManager
has the option earliest_time, whereas the SavedSearchManager uses the
option dispatch.earliest_time. They both have the same restriction but are
named differently. The additional options are listed in the main documentation
page available at http://docs.splunk.com/DocumentationStatic/
WebFramework/1.1/compref_savedsearchmanager.html.

PostProcessManager
The PostProcessManager does just that, post processes the results of a main search.
This works in the same way as the post processing done in SimpleXML; a main
search to load the event set, and a secondary search to perform an additional analysis
and transformation. Using this manager has its own performance considerations
as well. By loading a single job first, and then performing additional commands on
those results, you avoid having concurrent searches for the same information. Your
usage of CPU and RAM will be less, as you only store one copy of the results, instead
of multiple:

Module Path: splunkjs/mvc/postprocessmanager
Default Variable: PostProcessManager
JavaScript Object instantiation
 Var mysecondarySearch = new PostProcessManager({
 id: "after_search1",
 search: "stats count by sourcetype",
 managerid: "search1"
 });

The id property is the only required property. The module won't do anything
when instantiated with only an id property, but you can set it up to populate later.
The other options are similar to the SearchManager, the major difference being
that the search property in this case is appended to the search property of the
manager listed in the managerid property. For example, if the manager search is
search index=_internal source=*splunkd.log, and the PostProcessManager
search is stats count by host, then the entire search for the PostProcessManager
is search index=_internal source=*splunkd.log | stats count by host.
The additional options are listed at the main documentation page at http://
docs.splunk.com/DocumentationStatic/WebFramework/1.1/compref_
postprocessmanager.html.

http://docs.splunk.com/DocumentationStatic/WebFramework/1.1/compref_savedsearchmanager.html
http://docs.splunk.com/DocumentationStatic/WebFramework/1.1/compref_savedsearchmanager.html
http://docs.splunk.com/DocumentationStatic/WebFramework/1.1/compref_postprocessmanager.html
http://docs.splunk.com/DocumentationStatic/WebFramework/1.1/compref_postprocessmanager.html
http://docs.splunk.com/DocumentationStatic/WebFramework/1.1/compref_postprocessmanager.html

Chapter 5

[85]

View-related modules
These modules are related to the views and data visualizations that are native to
Splunk. They range in use from charts that display data, to control groups, such as
radio groups or dropdowns. These are also included with Splunk and are included
by default in the RequireJS declaration.

ChartView
The ChartView displays a series of data in the formats in the list as follows.
The following code snippet shows an example of how each different chart is
described and presented. Each ChartView is instantiated in the same way,
the only difference is in what searches are used with which chart:

Module Path: splunkjs/mvc/chartview
Default Variable: ChartView
JavaScript Object instantiation
 Var myBarChart = new ChartView({
 id: "myBarChart",
 managerid: "searchManagerId",
 type: "bar",
 el: $("#mybarchart")
 });

The only required property is the id property. This assigns the object an ID that
can be later referenced as needed. The el option refers to the HTML element in
the page that this view will be assigned and created within. The managerid relates
to an existing search, saved search, or PostProcessManager object. The results are
passed from the manager into the chart view and displayed as indicated. Each
chart view can be customized extensively using the charting.* properties. For
example, charting.chart.overlayFields, when set to a comma-separated list
of field names, will overlay those fields over the chart of other data, making it
possible to display SLA times over the top of customer service metrics. The full list of
configurable options can be found at http://docs.splunk.com/Documentation/
Splunk/latest/Viz/ChartConfigurationReference.

The different types of ChartView
Now that we've introduced the ChartView module, let's look at the different types of
charts that are built-in. This section has been presented in the following format:

•	 Name of the chart
•	 Short description of the chart type
•	 Type property for use in the JavaScript configuration

http://docs.splunk.com/Documentation/Splunk/latest/Viz/ChartConfigurationReference
http://docs.splunk.com/Documentation/Splunk/latest/Viz/ChartConfigurationReference

The Splunk Web Framework

[86]

•	 Example chart command that can be displayed with this chart type
•	 Example image of the chart

The different ChartView types we will cover in this section include the following.

Area
The area chart is similar to the line chart, and compares quantitative data. The graph
is filled with color to show volume. This is commonly used to show statistics of data
over time.

An example of an area chart is as follows:

timechart span=1h max(results.collection1{}.meh_clicks) as
MehClicks max(results.collection1{}.visitors) as Visits

Bar
The bar chart is similar to the column chart except that the x and y axes have been
switched, and the bars run horizontally and not vertically. The bar chart is used to
compare different categories.

An example of a bar chart is as follows:

stats max(results.collection1{}.visitors) as Visits
max(results.collection1{}.meh_clicks) as MehClicks by
results.collection1{}.title.text

Chapter 5

[87]

Column
The column chart is similar to the bar chart, but the bars are displayed vertically.

An example of a column chart is as follows:

timechart span=1h avg(DPS) as "Difference in Products Sold"

Filler gauge
The filler gauge is a Splunk-provided visualization. It is intended for single values,
normally as a percentage, but can be adjusted to use discrete values as well.
The gauge uses different colors for different ranges of values, by default using
green, yellow, and red, in that order. These colors can also be changed using the
charting.* properties. One of the differences between this gauge and the other
single value gauges is that it shows both the color and value close together, whereas
the others do not.

An example of a filler gauge chart is as follows:

eval diff = results.collection1{}.meh_clicks /
results.collection1{}.visitors * 100 | stats latest(diff)
as D

The Splunk Web Framework

[88]

Line
The line chart is similar to the area chart but does not fill the area under the line.
This chart can be used to display discrete measurements over time.

An example of a line chart is as follows:

timechart span=1h max(results.collection1{}.meh_clicks) as
MehClicks max(results.collection1{}.visitors) as Visits

Marker gauge
The marker gauge is a Splunk native visualization intended for use with a single
value. Normally, this will be a percentage of a value, but can be adjusted as needed.
The gauge uses different colors for different ranges of values, by default using
green, yellow, and red, in that order. These colors can also be changed using the
charting.* properties.

An example of a marker gauge chart is as follows:

eval diff = results.collection1{}.meh_clicks /
results.collection1{}.visitors * 100 | stats latest(diff) as D

Chapter 5

[89]

Pie chart
A pie chart is useful for displaying percentages. It gives you the ability to quickly see
which part of the pie is disproportionate to the others. Actual measurements may not
be relevant.

An example of a pie chart is as follows:

top op_action

Radial gauge
The radial gauge is another single value chart provided by Splunk. It is normally
used to show percentages, but can be adjusted to show discrete values. The
gauge uses different colors for different ranges of values, by default using
green, yellow, and red, in that order. These colors can also be changed using
the charting.* properties.

The Splunk Web Framework

[90]

An example of a radial gauge is as follows:

eval diff = MC / V * 100 | stats latest(diff) as D

Scatter
The scatter plot can plot two sets of data on an x and y axis chart (Cartesian
coordinates). This chart is primarily time independent and is useful for finding
correlations (but not necessarily causation) in data.

An example of a scatter plot is as follows:

table MehClicks Visitors

Display-related modules
The following are some display-related modules at our disposal.

Chapter 5

[91]

CheckboxView
The CheckboxView displays an HTML checkbox, and its value can be retrieved
as a Boolean value to indicate whether or not it is checked (true/false). Using
tokenization (we will discuss this later in this chapter), you can have the check/
uncheck action trigger a refresh of panels and other views within the dashboard.

The only required options are the id and el properties, as you have to define where
the checkbox will be displayed:

Module Path: splunkjs/mvc/checkboxview
Default Variable: CheckboxView
JavaScript Object instantiation
 new CheckboxView({
 id: "myCheckbox",
 el: "#checkboxview"
 }, {tokens: true, tokenNamespace: "submitted"}).render();

CheckboxGroupView
The CheckboxGroupView displays a group of HTML checkboxes, and each item's
value can be retrieved as a Boolean value to indicate whether or not it is checked
(true/false). Using tokenization, you can have the check/uncheck action trigger a
refresh of panels and other views within the dashboard.

The only required options are the id and el properties, as you have to define where
the checkbox will be displayed. This group of checkboxes can be generated from a
search result by defining the managerid property. When defining managerid, make
sure to specify the labelField and valueField properties, as those will map the
search results into your checkbox group:

Module Path: splunkjs/mvc/checkboxgroupview
Default Variable: CheckboxGroupView
JavaScript Object instantiation
 new CheckboxGroupView({
 id: "myCheckboxGroup",
 choices: [

The Splunk Web Framework

[92]

 {label: "My First Choice", value: "1"},
 {label:" Number 2", value: "2"},
 {label:" Drie", value: "3"}],
 el: $("#checkboxgroupview")
 }, {tokens: true, tokenNamespace: "submitted"}).render();

DropdownView
The DropdownView probably does what you think; it displays an HTML drop-
down menu with a list of choices. The choices can be static or generated from a
SearchManager. When defining managerid, make sure to specify the labelField
and valueField properties, as those will map the search results into your drop-
down view.

The only required options are the id and el properties, as you have to define where
the drop-down will be displayed:

Module Path: splunkjs/mvc/dropdownview
Default Variable: DropdownView
JavaScript Object instantiation
 new DropdownView({
 id: "dropdownview",
 choices: [
 {label: "My First Choice", value: "1"},
 {label:" Number 2", value: "2"},
 {label:" Drie", value: "3"}],
 el: $("#dropdownview")
 }, {tokens: true, tokenNamespace: "submitted"}).render();

Chapter 5

[93]

EventsViewerView
The EventsViewerView displays the raw events of a SearchManager and includes
pagination and formatting. The only required options are the id and el properties,
as you have to define where the events will be displayed. Using the click event
handlers, you can even trigger the framework to do other actions when an event is
clicked. This view has a type value that defines how the events are displayed, with
the default being list:

Module Path: splunkjs/mvc/eventviewview
Default Variable: EventsViewer
JavaScript Object instantiation
 new EventsViewer({
 id: "eventviewer",
 managerid: "mySearchManager",
 type: "table",
 el: "#eventviewer"
 }).render();

Once the view has been instantiated, the events will display much like in the
following screenshot:

The Splunk Web Framework

[94]

FooterView
The FooterView displays the Splunk page footer. The only required options are the
id and el properties:

Module Path: splunkjs/mvc/footerview
Default Variable: FooterView
JavaScript Object instantiation
 new FooterView({
 id: "myfooter",
 el: "#splunkfooter"
 }).render();

Once the view has been instantiated, the events will display much like in the
following screenshot:

HeaderView
The HeaderView displays the Splunk page header. The header includes the App
selection drop-down, the user menus to navigate to Settings and other Splunk
items, and the navigation bar for the App. The only required options are the id
and el properties:

Module Path: splunkjs/mvc/headerview
Default Variable: HeaderView
JavaScript Object instantiation
 new HeaderView({
 id: "myheader",
 el: "#splunkheader"
 }).render();

Once the view has been instantiated, the events will display much like in the
following screenshot:

Chapter 5

[95]

MultiDropdownView
The MultiDropdownView displays an HTML multi-select form item. This allows you
to select multiple options and use those values in other functions. The only required
options are the id and el properties, as you have to define where the drop-down
will be displayed. The choices can be static or generated from a SearchManager.
When defining managerid, make sure to specify the labelField and valueField
properties, as those will map the search results into your MultiDropdownView:

Module Path: splunkjs/mvc/multidropdownview
Default Variable: MultiDropdownView
JavaScript Object instantiation
 new MultiDropdownView({
 id: "multidropdownview",
 choices: [
 {label: "My First Choice", value: "1"},
 {label:" Number 2", value: "2"},
 {label:" Drie", value: "3"}],
 el: $("#multidropdownview")
 }, {tokens: true, tokenNamespace: "submitted"}).render();

Once the view has been instantiated, the events will display much like in the
following screenshot:

RadioGroupView
The RadioGroupView displays an HTML radio group form item. This allows you
to select a single value and use that value in other functions. The only required
options are the id and el properties, as you have to define where the radio group
will be displayed. The choices can be static, or generated from a SearchManager.
When defining managerid, make sure to specify the labelField and valueField
properties, as those will map the search results into your RadioGroupView:

Module Path: splunkjs/mvc/radiogroupview
Default Variable: RadioGroupView
JavaScript Object instantiation
 new RadioGroupView({

The Splunk Web Framework

[96]

 id: "radiogroupview",
 choices: [
 {label: "My First Choice", value: "1"},
 {label:" Number 2", value: "2"},
 {label:" Drie", value: "3"}],
 el: $("#radiogroupview")
 }, {tokens: true, tokenNamespace: "submitted"}).render();

Once the view has been instantiated, the events will display much like in the
following screenshot:

SearchBarView
The SearchBarView places the default search bar and time range picker in the
element specified. The only required options are the id and el properties, as
you have to define where the search bar will be displayed. When instantiated
as follows, the search bar won't actually make changes to its SearchManager.
You have to use tokenization and change listeners to trigger the automatic
reload of other Splunk views:

Module Path: splunkjs/mvc/searchbarview
Default Variable: SearchBarView
JavaScript Object instantiation
 new SearchBarView({
 id: "searchbarview",
 el: $("#searchbarview")
 }).render();

Once the view has been instantiated, the events will display much like in the
following screenshot:

Chapter 5

[97]

SearchControlsView
The SearchControlsView displays the default search controls for a query. This view
includes the Job drop-down for job-related activities, the Smart Mode drop-down
(for verbose, smart, or fast search modes), and controls to pause and stop the bound
search. The only required options are the id and el properties, as you have to define
where the controls will be displayed:

Module Path: splunkjs/mvc/searchcontrolsview
Default Variable: SearchControlsView
JavaScript Object instantiation
 new SearchControlsView({
 id: "searchcontrolsview",
 el: $("#searchcontrolsview")
 }).render();

Once the view has been instantiated, the events will display much like in the
following screenshot:

SimpleSplunkView
The SimpleSplunkView is special. This is not a directly instantiable view. This is
a base class that must be extended (for example, with a custom D3 visualization)
for the view to work. We will cover more on extending the SimpleSplunkView
in later chapters.

SingleView
The SingleView generates an HTML object with a single value formatted in it. The
only required options are the id and el properties, as you have to define where the
single value will be displayed. In order to use this effectively, I recommend using a
PostProcessManager to narrow down the results to a single value. This helps keep
the value at exactly what you need it to be. You can also add a before label and an
after label—this displays the text you specify either before or … wait for it … after
the value:

Module Path: splunkjs/mvc/singleview
Default Variable: SingleView
JavaScript Object instantiation
 new SingleView({
 id: "singleview",
 field: "count",

The Splunk Web Framework

[98]

 afterLabel: "count",
 el: "#singleview"
 }).render();

Once the view has been instantiated, the events will display much like in the
following screenshot:

MapElement
The MapElement displays a full geographical map of the world, displaying the field
values you choose using the geostats command. It is recommended that you use
the geostats command to generate the appropriate dataset for the map. The only
required options are the id and el properties, as you have to define where the map
will be displayed:

Module Path: splunkjs/mvc/simplexml/element/map
Default Variable: MapElement
JavaScript Object instantiation
 new MapElement({
 id: "mapElement",
 managerid: "smvppm",
 mapping.type: "marker",
 el: $("#mapelement")
 }).render();

Once the view has been instantiated, the events will display much like in the
following screenshot:

Chapter 5

[99]

New in Splunk 6.3, you now have the ability to create choropleth maps. These
are maps in which you define geometric regions and then map your data to these
regions. The instantiation is similar to the marker map, but with a different
map type:

JavaScript Object instantiation
 new MapElement({
 "id": "mapelement",
 "managerid": "smvppm",
 "mapping.type" : "choropleth",
 "el": $("#mapelement")
 }).render();

The data should arrive in the same way using the geostats command, and you will
need to use a geo_lookup file to generate and display the data.

TableView
The TableView displays a formatted table of search results. The only required
options are the id and el properties, as you have to define where the table will
be displayed:

Module Path: splunkjs/mvc/tableview
Default Variable: TableView
JavaScript Object instantiation
 new TableView({
 id: "tableview",
 managerid: "smvppm",
 el: $("#tableview")
 }).render();

Once the view has been instantiated, the events will display much like in the
following screenshot:

The Splunk Web Framework

[100]

TextInputView
The TextInputView displays an HTML text input box that is commonly used in the
forms of dashboards. This form input takes advantage of tokenization and can be
used to direct the SearchManagers that are configured. The only required options are
the id and el properties, as you have to define where the text box will be displayed:

Module Path: splunkjs/mvc/textinputview
Default Variable: TextInputView
JavaScript Object instantiation
 new TextInputView({
 id: "textinputview",
 el: $("#textinputview")
 }).render();

Once the view has been instantiated, the events will display much like in the
following screenshot:

TimeRangeView
The TimeRangeView displays a native Splunk view that has the preset values for
time ranges. The only required options are the id and el properties, as you have to
define where the time range view will be displayed:

Module Path: splunkjs/mvc/timerangeview
Default Variable: TimeRangeView
JavaScript Object instantiation
 new TimeRangeView({
 id: "timerangeview",
 el: $("#timerangeview")
 }).render();

Once the view has been instantiated, the events will display much like in the
following screenshot:

Chapter 5

[101]

TimelineView
The TimelineView displays a standard Splunk timeline, with bars representing the
number of events within a specified time range. The only required options are the id
and el properties, as you have to define where the timeline view will be displayed:

Module Path: splunkjs/mvc/timelineview
Default Variable: TimelineView
JavaScript Object instantiation
 new TimelineView({
 id: "timelineview",
 managerid: "pollraw",
 el: $("#timelineview")
 }).render();

Once the view has been instantiated, the events will display much like in the
following screenshot:

Tokenization
Tokenization refers to the use of tokens within a dashboard. A token is a placeholder
for a value within a dashboard. These placeholders can be dynamically updated
within the dashboard. Searches and other objects can access these values using a
special syntax. The basic syntax is to surround the token variable name with $. So,
for example, if you defined a TextInputView earlier, and assigned it the token name
myText, then you would reference the value as $myText$.

There are a few different ways to generate token values within a dashboard.
These generally include ways to do the following:

•	 Define tokens to capture input values for forms.
•	 Define tokens to specify conditional actions based on the value of the token.
•	 Define tokens within a search string that use values based on previously

defined tokens.
•	 Splunk Enterprise defines token values that you can access. Defined tokens

include tokens for visualizations, time inputs, and labels and values of
form inputs.

The Splunk Web Framework

[102]

Okay, so now what? Once you have defined a token for use, you need to consume
it. You can use these tokens anywhere you would like to, which helps display your
data as you see fit. In order to use a token in JavaScript, you must define it in a
particular syntax. For example, if you have a .json object with the key called foo,
and you want to dynamically define that term from other parts of the page, you will
need to set the value of that key to be token safe, such as myJson{ "foo": mvc.
tokenSafe("$myText$"). This will bind the value of myText to that location, and
any time the page uses that token, the value will either be set or retrieved depending
on the circumstance.

So, based on our previous discussions on JavaScript views, let's apply a token to the
TextInputView, as shown in the following code:

new TextInputView({
 id: "myNextText",
 value: mvc.tokenSafe("$goandgetthem$"),
 el: $("#myNext")
}).render();

new SearchManager({
 id: "vpnConn",
 search: mvc.tokenSafe("index=<your vpn index> $goandgetthem$ ")
});

As you can see, the value of the drop-down is now bound to the $goandgetthem$
token, such that any time the token is updated, so is the search, and it will reexecute
the search with the new value plugged into it.

Customizing Splunk dashboards using
CSS
Now that we have covered the different types of JavaScript modules, let's start
customizing our Overview dashboard. We already converted a SimpleXML
dashboard to an HTML dashboard, but now we want to add some specific styling.
We start by creating a dashboard CSS file in the appserver/static folder of our
app. In this file, we will override specific Splunk CSS styles, as well as add a few of
our own later on, specifically for a D3 visualization. Inside the dashboard.css file,
add this CSS code:

.dashboard-row .dashboard-panel {
 border: 1px dashed black;
}

Chapter 5

[103]

This CSS will add a dashed border, 1 pixel in width, to each panel in the dashboard,
overriding the native Splunk style. Now that we have a CSS file, we need to include
it on the page. In order to override the Splunk CSS, you have to place the CSS
include after the Bootstrap CSS included with Splunk. This is as simple as placing the
code line following this paragraph before the closing head tag </head> of the HTML
dashboard. There are two ways to edit the HTML dashboard. The first is by using
the built-in editor. Located at the top-right of the dashboard, there is a drop-down
with the Edit Source item. Clicking on that brings you to a web-based interface that
allows you to edit the source of the dashboard. There are advantages to using
the built-in editor. Primarily, the easiest advantage is not having to refresh the
debug endpoint.

If you edit any of the files under the appserver/static page without
the built-in editor, then you will have to trigger the debug/refresh
endpoint to load the changes.

Let's take a look at the HTML:

<link rel="stylesheet" type="text/css"
href="{{SPLUNKWEB_URL_PREFIX}}/static/app/SDG/dashboard.css" />

Let's look at the href and decode it a little. We have already discussed the
{{SPLUNKWEB_URL_PREFIX}} variable, which leaves us with the static folder /
static/app/SDG. This static folder maps to the appserver/static folder located
within the directory structure of the app. If needed, you can also define a custom
directory structure and place the JavaScript and CSS custom files in separate folders.
This may help with keeping a multitude of CSS files and JavaScript separate and
organized. Once the page is refreshed, your dashboard cells will look like the
following. Notice the now dashed borders:

This is a different look, so let's continue to change the entire section to be a single
dashboard cell. This will eliminate the space between the cells, giving the dashboard
a more cohesive look. Drop down the Edit button and hit Edit Source. The first
part of each panel is coded as follows. We need to change this to make each panel
consolidated into the main (or first) panel:

 <div id="panel1" class="dashboard-cell" style="width: 20%;">
 <div class="dashboard-panel clearfix">
 <div class="panel-element-row">

The Splunk Web Framework

[104]

By default, Bootstrap is included with each HTML dashboard. It is very
simple to leverage the grid system as you wish. See more about Bootstrap
at http://getbootstrap.com/examples/grid.

To place each panel in a single panel, remove each of the div tags that have the
dashboard-panel clearfix class. The final result will have a single div tag, in this
case with the ID panel1, and five div tags within it that have the panel-element-
row class. We can't just stop there, as this will put the panels in a vertical orientation.
Each panel you transferred will be stacked on top of each other using the default
CSS. To change this into a horizontal layout, we created the new inline-panel CSS
class and added it to dashboard.css that we changed earlier:

.dashboard-row .dashboard-panel .inline-panel {
 display: inline-block;
 width: 19%;
 vertical-align: bottom;
 text-align: center;
}

Note how we included both dashboard-row and dashboard-panel. This helps to
target the CSS, limiting it to only dashboard panels. Now that we added this CSS
to the dashboard.css file, we need to hit the debug/refresh endpoint. Once that
finishes loading, you can reload the Overview dashboard and see how the changes
are rendered:

http://getbootstrap.com/examples/grid

Chapter 5

[105]

See how that changes the dashboard? Instead of five distinct values displayed, we
now have five related values displayed. It helps to focus the end user's eye and
eliminates the gray space between values. The charts are still separated with a gray
space but since the two charts are not directly related, we don't need to put them
in the same panel. This is a very simple example, but it shows you how easy it is to
modify the existing classes and add your own to create new and visually explosive
dashboards. The full power of CSS can be unleashed into your app.

Customizing Splunk dashboards using
JavaScript
Before we start using custom JavaScript, let's work with the already included
JavaScript to make our dashboard include animation. In this example, we will add
additional controls to each chart to allow them to slide. This is advantageous in that
you can give the user control to hide charts they are not interested in, or that take up
too much space to see the charts they want to examine.

Firstly, let's add the slide controls. Right after the panel-element-row div tag for
the two charts, you will see a panel-head div tag. After the panel-head div tag,
you will see a dashboard-element div tag. The concept here is to use the header
as the slide control, thereby leaving the header visible and allowing the end user to
notice that there might be more information. In order to achieve this, you must move
the header before the element. The default code shows the header contained within
the div element:

<div id="element6" class="dashboard-element chart"
style="width: 100%">
 <div class="panel-head">
 <h3>Product Condition</h3>
 </div>
 <div class="panel-body"></div>
</div>

The following modified code shows how we need to set up the div tags in order to
achieve the slide control:

<div class="panel-head" id="element6slideControl">
 <h3>Product Condition</h3>
</div>
<div id="element6" class="dashboard-element chart"
style="width: 100%">
 <div class="panel-body"></div>
</div>

The Splunk Web Framework

[106]

The header is now located before the element chart. The only other modification
needed to the header div is to add an id attribute. This will give the JavaScript an
element to bind to. Since our slideToggle function is native within jQuery (which
is already included by default), we don't need to include a custom JavaScript file. To
add the slide functionality, navigate within the HTML source code of the dashboard
until you find the Dashboard Ready section. This section is labeled with a comment
(if you converted from SimpleXML to HTML using the built-in conversion process).
Right before that section, add this JavaScript code:

 $("#element6slideControl").click(function(){
 $("#element6").slideToggle("slow");
 $("#panel6").resize();
 element6.render();
 });

 $("#element7slideControl").click(function(){
 $("#element7").slideToggle("slow");
 $("#panel7").resize();
 element7.render();
 });

Save your dashboard. Once the dashboard completes loading, it looks like nothing
has changed. However, in fact, you can now click on the header for the chart, and
voila! It disappears. Now your dashboard can look like the following one, allowing
more data to be placed into a smaller place.

This method can be applied for any of the built-in jQuery functions, since, by default,
jQuery is included on the page.

Now let's add some custom JavaScript! Custom JavaScript is included in much
the same way as CSS, but the placement within the page will depend on how the
JavaScript will be used. RequireJS modules as well as generic functions can be
included. The standard format on how to use a <script> tag is available to add
custom JavaScript. The most likely place for the inclusion statement would be
directly before the JavaScript that includes the SplunkJS library.

Chapter 5

[107]

For this example, we will add a simple function to the dashboard. This function
(shown as follows) will take a string and return it formatted with a comma to
separate the thousands place:

function numberWithCommas(x) {
 return x.toString().replace(/\B(?=(\d{3})+(?!\d))/g, ",");
}

This function is contained within the dashboard.js file in appserver/static.
Once the file is created, it must be included. Locate the line in your dashboard that
includes simplexml.min/config.js into the dashboard. After this line, you will
add the additional JavaScript files that are needed. Let's add ours:

<script src="{{SPLUNKWEB_URL_PREFIX}}/static/app/SDG/dashboard.js" />

Simple enough, right? Now we have to use it, which is simple as well. Once it
is included on the page, you can use it anywhere after the inclusion. We won't
spend time trying this out; there is a much better way to include libraries into
the dashboard. jQuery is by default included in the dashboard; it is a founding
framework for the Splunk Web Framework.

However, let's say you want to include a jQuery plugin. How would you do that?
Since Splunk uses RequireJS, the answer is simple: use RequireJS. Let's add a
plugin called sidr. This is a side or top slide-in/out plugin. You can find it online at
https://github.com/artberri/sidr. Download the library and unzip it in the
appserver/static folder. Notice how we are starting to collect quite a few CSS and
JavaScript files? Let's make two new folders: css and js. Move the CSS file for sidr
into the css folder and the JS file for sidr into the js folder. Once they are in place,
edit the dashboard and include the CSS file:

<link rel="stylesheet" type="text/css"
href="{{SPLUNKWEB_URL_PREFIX}}/static/app/SDG/css/jquery.sidr.dark.
css" />

Now we need an element to place the slide into. Add it underneath the
dashboard header:

Toggle menu
<div id="sidr"><div id="sidr_content">
</div>

https://github.com/artberri/sidr

The Splunk Web Framework

[108]

Next, we include the jQuery plugin JavaScript file using RequireJS. Find the section
that has the require.config section. Replace the default section with this code:

var AppBase = "{{SPLUNKWEB_URL_PREFIX}}/static/app/SDG/js";
require.config({
 baseUrl: "{{SPLUNKWEB_URL_PREFIX}}/static/js",
 paths : {
 "sidr": AppBase + "/jquery.sidr.min"
 },
 shim : { "sidr" : { deps: ["jquery"] }},
 waitSeconds: 0 // Disable require.js load timeout
});

Let's review the changes. The AppBase variable points to the base JavaScript folder
within the app. Although not required, the AppBase variable is nonetheless helpful,
especially when you have multiple plugins that are required. In the paths object, you
can see where we specify the path to the JavaScript file that we downloaded earlier.
The object field name sidr is used as a reference to the path in later configurations.
Next up is the shim object. A shim allows you to define dependencies between
libraries. The general configuration syntax is "PATH_NAME" : { deps: [ARRAY OF
PATH_NAMES] }, with one object per dependency requirement. sidr requires jQuery,
and since jQuery is included with Splunk, we can reference the native name.

Next, find the require function (typically right after the config) and find the array of
libraries and modules. Add sidr at the end; it should look something like this:

"splunkjs/mvc/simplexml/urltokenmodel",
"sidr"

This will load the sidr library, only after its dependencies are loaded. The other item
required is the variable to assign the library to. In the next section, find the end of the
variable list and add a variable name that is descriptive:

UrlTokenModel,
Sidr

We named it Sidr. This is now a JavaScript variable that contains the library. Since
this is a jQuery plugin, we will be able to use it like a jQuery plugin. Instantiation is
easy now. Find the location in the JavaScript under pageLoading = true. Add this
code: $("#simple-menu").sidr();. Then, save the dashboard; but wait, where did
it go? Well, it's hidden. Find the Toggle menu link at the top of the dashboard and
click on it. The panel is displayed! Awesome! Just that simply, we can add additional
jQuery plugins and other JavaScript. Here is our end product; we added a table with
the latest sales stats as a quick reference.

Chapter 5

[109]

See the download link for the code that was used to create this content. Make sure
you use visually appealing configurations, such as an icon, for slide outs! People can
quickly recognize them and don't have to search for text:

Custom D3 visualization
Now that we have a slide-out, let's move on to visualizations. We now want to
add an information graphic that displays some statistics about the prices of the
products. So, let's use a box plot! D3 offers a nice example at http://bl.ocks.org/
mbostock/4061502. We will take this code and adapt it for use with this dashboard.
Let's start with the CSS for the box plots. This is located in the index.html section
of the tutorial. Copy all the CSS except for the body class to the dashboard.css
file in the App. In that same section, find the irq function, and copy that into the
dashboard.js file. Now, find the box.js section. Copy the entire function to a
file under appserver/static/js. Download and place a copy of d3.min.js in
appserver/static/js. Once these files are in place, add them to the RequireJS
stack using the methods described in the last section. D3 won't have a dependency
but the box plot requires D3. This completes the initial dependency setup for the
visualization. Now we can move onto the meat of the visualization.

Firstly, we need a new dashboard panel:

<div id="row3" class="dashboard-row dashboard-row3">
 <div id="panel8" class="dashboard-cell" style="width: 100%;">
 <div class="dashboard-panel clearfix">
 <div class="panel-element-row">
 <div class="panel-head">

http://bl.ocks.org/mbostock/4061502
http://bl.ocks.org/mbostock/4061502

The Splunk Web Framework

[110]

 <h3>Product Metric Comparisons</h3>
 </div>
 <div class="dashboard-element chart" style="width:
100%">
 <div id="boxPlotElement" style="display:inline-
block"></div>
 <div style="display:inline-block;vertical-
align:top;"><h4>From left to right, the box plots are:</h4>
 product_price
 product_sold
 product_meh_clicks
 product_visitors
 product_total_revenue
 </div>
 </div>
 </div>
 </div>
 </div>
</div>

Here, we added a dashboard panel after the two pie charts.

When copying and pasting code, always remember to change the element
IDs—or things will break!

Using what we discussed about SearchManagers, let's set one up for the box plot
data. Note that the search string isn't shown—it's actually a macro! So, when we
want to modify the data, we don't have to change the dashboard—only the macro:

var salesBoxPlotSearch = new SearchManager({
 "id": "salesBoxPlotSearch",
 "search": "|'productBoxPlots'"
 }, {tokens: true, tokenNamespace: "submitted"});

Okay, so we have a SearchManager. How the heck do we get the data out of it?
Thankfully, Splunk has decided that might be a useful feature, so there is a method
to extract the data. We will start with providing the code and then review each part:

var salesBoxPlotResults = salesBoxPlotSearch.data("results");
 salesBoxPlotResults.on("data", function() {
 var d3_data = [];
 var index = 0;

Chapter 5

[111]

 _.each(salesBoxPlotResults.data().rows, function(Rcolumn,
RrowCount) {
 Rcolumn.shift();
 _.each(Rcolumn, function(DColumn, DrowCount) {
 d3_data.push([index, DColumn]);
 });
 index++;
 //Transform Data into D3 Array
 });
 //D3 Visualization Code
 });

The first line of this code block retrieves the data from the SearchManager object.
The results parameter tells Splunk to return the events found from the search
in the results format, which would match up with the Results tab in a typical
search. The second line sets a trigger function to execute when the data results are
populated. The data parameter simply tells Splunk that when there is data present,
start executing the code block. Inside this function, we need to massage the data and
draw the chart. Massaging the data is necessary to present the data in a format that
the D3 visualization can understand and use. Here, we are translating the data into
an array of arrays, since this is the expected format for the box plot visualization. The
transformed data is now stored into the d3_data variable.

This is what the data looks like:

[[0,1],[0,3],[0,4],[1,2],[1,5],[1,6]]

The first index is the box plot index and the second is the value index. We got this
data by tabling the data from the SearchManager. From here, we simply create the
D3 element, assign the data, and output into the element we created earlier. The final
plot is shown as follows. As you can see, the box plot automatically calculates the
min, max, mean, 25th percentile, 75th percentile, and also shows the outliers.

The Splunk Web Framework

[112]

This gives you a distribution of the different fields we analyze:

A quick analysis of each field can be done using this chart, for example, looking at
the middle chart (which is the number of users who clicked on the meh button and
is fairly consistent, which can indicate a healthy user community or just a mindless
addiction to clicking a button). Either way, these plots can give insight into the
behavior of the users. From left to right, the fields are product price, total number
of products sold, number of Meh button clicks, number of visitors to the site, and
total revenue sold. The more data you have, the more valuable these graphs become.

External data and content
Very quickly, we will mention ways to pull in additional data from external
sources. These can be external data sources, or more likely, internal API calls to
internal services.

Chapter 5

[113]

Data
Say you have an internal monitoring solution that has an API. Since you want to
be efficient in both the collection of data and the storage of data, you only want to
collect and store the performance data in the internal monitoring solution. However,
how can you integrate the API data with the performance data? Simply put, you can
build a script input that consumes the API data and stores the resulting performance
data in a lookup that you can use to automatically enhance the data. You can also
use jQuery to pull that data right into the dashboard and use the D3 visualizations
as well as the built-in JavaScript objects to visualize it. This is done quite simply by
using the Ajax library of jQuery:

$.ajax({
 url: "http://myinternalserver.example.com/getNode/myNode"
})
 .done(function(data) {
 if (console && console.log) {
 console.log(data);
 }
 });

Very simply, this performs a GET on the URL provided and returns the data into the
done function. From there, you can manipulate it in any way you wish and use it to
enhance your dashboard even further.

Content
Including CSS and JS on the page is very simple—although, due to cross-site
scripting concerns, it is not recommended. It is very possible to include an iframe
on the page, in order to display the latest rendering of the page. You can also
include JavaScript libraries and modules from external sources but the browser has
to be enabled to allow it since it can be a security risk. There are also performance
considerations to consider, so if it is at all possible, download the libraries and
modules to the static folder and serve it locally from Splunk.

The Splunk Web Framework

[114]

Summary
In this chapter, we covered some deeper elements of Splunk applications and
visualizations. Starting with the basics of HTML dashboards and the Splunk Web
Framework, we discussed how to include basic CSS overrides for some of the Splunk
CSS. We also covered the static folder location within an app that serves content
as needed. We mentioned the use of the bump button to bust open the caches if
something isn't rendered properly. After that protip, we reviewed each of the
SplunkJS modules, how to instantiate them, and gave an example of each. Moving
right along, we reviewed how to set tokens within the dashboard, and how to trigger
changes in the display based on updates to the tokens. We customized the dashboard
with CSS and started including custom JavaScript and D3 visualizations. The method
of placing the D3 visualization in the dashboard was neither smooth nor reusable
across other dashboards. We will show that configuration in the next chapter.
We will cover how to make a custom D3 visualization modular and reusable in
multiple dashboards.

Once we were done customizing our dashboard, we took a quick look at the ability
to pull information in from external sources. Using these different concepts and code
snippets, you can start creating awesome dashboards!

[115]

Advanced Integrations and
Development

In this chapter, we will be discussing additional methods of integration and
development. We will start with building a modular D3 visualization, which
is an expansion of the D3 visualization from the last chapter. Using modular
visualizations allows you to be more flexible with your dashboards and allows you
to tweak a particular visualization for all dashboards in which it has been used. We
will discuss modular inputs and how to create and test them. Modular inputs allow
you to consume the same type of data in a modular fashion, similar to the native
directory or file monitoring inputs found in Splunk. We will also cover the KV Store,
how to use it, and why to use it. The KV Store allows you to store information in a
key-value manner, which has the potential to speed up lookup tables, as the data is
stored in the memory. We will also cover how to use Bower, npm, Gulp, and Git as
tools for customizing and tracking our apps.

Modular D3 visualization
In this section, we will convert our previously used D3 box plot graph (we added
this in Chapter 5, The Splunk Web Framework) into extended SimpleSplunkView. The
benefits here are substantial. Primarily, you gain the ability to quickly reuse the view
in other dashboards. Simply assign the SearchManager to the view and off you go.
Retrieving the events from the SearchManager is also easier, as it is handled natively
within the extension. Another great benefit is that when the view is loading, the
default loading screens are used, so it's not just a blank panel until it is loaded; it is
actually a first-class-citizen view. The first thing to have when creating an extended
SimpleSplunkView is the base template.

Advanced Integrations and Development

[116]

Let's take a look at the basic structure and then fill in the pieces we are missing:

define(function(require, exports, module) {
 var _ = require("underscore");
 var mvc = require("splunkjs/mvc");
 var SimpleSplunkView = require
 ("splunkjs/mvc/simplesplunkview");
 var D3BoxPlot = SimpleSplunkView.extend({
 className: "d3boxplot",
 options: {
 data: "preview"
 },
 createView: function() {
 return vis;
 },
 formatData: function(data) {
 return data;
 },
 updateView: function(vis, data) {
 }
 });
 return D3BoxPlot;
});

This is the basic template for SimpleSplunkView. It is written as a RequireJS module
(remember RequireJS from Chapter 5, The Splunk Web Framework?), and you should
notice that it references internal Splunk modules. RequireJS is a framework meant
for loading JavaScript files and modules. A RequireJS module is written to be
included in different parts of an application, allowing you to extend any RequireJS-
compatible installation. You can find the documentation and some really awesome
examples on their website at http://requirejs.org. The internal Splunk modules
are underscore and any modules that start with splunkjs. These are already part of
the stack, making it easier to import the modules. Once the additional modules are
included, you call on the extend function of SimpleSplunkView. The configuration
object you are passing includes some functions that are required for a simple Splunk
view. "Where does this JavaScript go?" you might ask. Into appserver/static/
js, of course! Let's call this file d3boxplotModule.js. There is another important
thing to note here. Since we are using D3 as the visualization library, we have to
include that library in the view class. Add the following code directly before the
SimpleSplunkView require statement:

require('../app
/SDG/js/d3.min');

http://requirejs.org

Chapter 6

[117]

Note that SDG here is actually the name of your App. The path is required
in this instance because when the file is included in the dashboard, it will
call it relative to the page, not the file.

Now give your view a class name relevant to the visualization being presented. Keep
it simple; it doesn't have to be a book! Following that is the options configuration.
This doesn't have to contain anything, but if it does, you can use these values as
defaults within the view. For example, if you want a base height and width, you
can define it here. If a new value is passed via the JavaScript instantiation, then
your default will be overwritten. Let's now move to the formatData function. This
function will take the results being passed in from the assigned SearchManager,
format the data into the structure required by the box plot, and return it. Here is
what our formatData function will look like:

formatData: function(data) {
 var d3_data = [];
 var index = 0;
 _.each(data, function(Rcolumn, RrowCount) {
 Rcolumn.shift();
 _.each(Rcolumn, function(DColumn,
 DrowCount) {
 d3_data.push([index, DColumn]); });
 index++;
 });
 var mydata = [];
 var min = Infinity,
 max = -Infinity;

 d3_data.forEach(function(x) {
 var e = Math.floor(x[0]),
 s = Math.floor(x[1]),
 d = mydata[e];
 if (!d) d = mydata[e] = [s];
 else d.push(s);
 if (s > max) max = s;
 if (s < min) min = s;
 });
 return data;
 }

Advanced Integrations and Development

[118]

This is essentially the same function we used previously in the configuration of
the box plot in Chapter 5, The Splunk Web Framework. The only major changes were
some naming conventions for the data arrays, just to keep inline with the standard
module definitions. This function is what does the heavy lifting for the boxPlot
chart data. Now that we've had the data formatted properly, let's take a look at the
createView function:

createView: function() {
 var iqr = function(k) {
 return function(d, i) {
 var q1 = d.quartiles[0],
 q3 = d.quartiles[2],
 iqr = (q3 - q1) * k,
 i = -1,
 j = d.length;
 while (d[++i] < q1 - iqr);
 while (d[--j] > q3 + iqr);
 return [i, j];
 }};
 var margin = {top: 10, right: 50, bottom: 20,
 left: 50},
 width = 130 - margin.left - margin.right,
 height = 500 - margin.top - margin.bottom;
 var chart = d3.box()
 .whiskers(iqr(1.5))
 .width(width)
 .height(height);
 return { "chart": chart, "width":width,"height
 ":height, "margin":margin };
 }

Again, this looks pretty similar to the code we had earlier for the box plot in
Chapter 5, The Splunk Web Framework, but with some slight changes. The iqr function
is now a variable placed inline so that it can be easily referenced for the whiskers of
the box plot. This function can be called globally, but since it is limited in scope for
us in this view, we just set it as local. The other change from the normal function
of this function is the return object. The chart is returned as an object within an
object, which allows easy expansion to other variables as needed on the fly, as the
only objects given to the updateView function are those returned from this function
(createView) and the formatData function.

Chapter 6

[119]

Speaking of the updateView function, let's take a peek in there:

updateView: function(chartObj, data) {
 var width = chartObj.width,
 height = chartObj.height,
 margin = chartObj.margin,
 chart = chartObj.chart;

 console.log("update view");
 d3.select(this.el).selectAll("svg")
 .data(data)
 .enter().append("svg")
 .attr("class", "box")
 .attr("width", width + margin.left +
 margin.right)
 .attr("height", height + margin.bottom +
 margin.top)
 .append("g")
 .attr("transform", "translate(" +
 margin.left + "," + margin.top + ")")
 .call(chart);
 }

Yet again, this is basically the same D3 code as we had previously in Chapter 5, The
Splunk Web Framework, with minor tweaks for modularity. The biggest change is
the d3.select call is that it now references this.el, which was passed in from the
instantiation. This is the element that will contain the chart. So, with that change, we
can now instantiate multiple box charts in the same dashboard. How? Here's how:

var salesBoxPlotResults = new boxPlot({
 el: $('#boxPlotElement'),
 id: "salesBoxPlotResults",
 managerid: "salesBoxPlotSearch"
 }).render();

That's it. Now that we've modularized the box plot, as shown in the following
diagram, we simply call it using new boxPlot (which is the name of our variable
after we include the module in RequireJS). Pass in the parameters required and
render the visualization.

Advanced Integrations and Development

[120]

So simple! It keeps your dashboards clean and easy to read. How does it look?
You tell me.

As you can see, it looks identical to what we created in the last chapter, but with the
advantage of being plug and play. Keep in mind that this is a simple demonstration of
how to create a custom view; these can be as simple or as complex as you like. This
is far from customizable in terms of coloring, labels, legends, axes, and formatting.
Each of these options can be included in the custom view and taken as far as you are
able to take them.

Chapter 6

[121]

However, what about SimpleXML, you ask? It's a very valid question. Including
custom visualizations into SimpleXML dashboards can be very easy, depending on
how you choose to implement the code. Splunk's approach uses the autodiscover.
js methodology; you can learn more about their method from https://dev.
splunk.com. However, what happens if I want to change the App name? Using
the autodiscover.js approach will break all the defined dashboards. So, let's
add a few things to the dashboard.js file in appserver/static. Let's start with a
configuration for RequireJS:

var APPNAME = "SDG";
require.config({
 paths: {
 "boxplot": "../app/"+APPNAME+"/js/d3boxPlot",
 "d3": "../app/"+APPNAME+"/js/d3.min"
 },
 shim: {
 "d3":{exports:"d3"},
 "boxplot" : { deps: ["d3"]}
 }
});

The preceding code starts up by creating some configurations needed to point to the
correct location. With a simple change of the APPNAME variable, all references to the
App's name will change, and all the custom visualizations using this method in the
dashboards will work again. Simple! Now for some magic!

require(["splunkjs/ready!", "splunkjs/mvc/simplexml/ready!",
"jquery", "underscore", "boxplot"],
function(mvc, ignored, $, _, boxPlot) {
 $(".boxPlot").each(function(index){
 el = $(this);
 data = el.data();
 data["el"] = el;
 new boxPlot(data).render();
 });
});

https://dev.splunk.com
https://dev.splunk.com

Advanced Integrations and Development

[122]

This section of code does a very simple thing. It uses jQuery to find each element
with the specific class boxPlot. For each such element that is found, we will use
the data() function of each element to pull the required configuration settings.
Let's look at an example of the HTML element to use to support this instantiation
method. The really important part is the HTML div, and it can be used in either the
SimpleXML or the HTML dashboard:

<panel>
 <html>
 <div class="boxPlot" data-managerid="mySearch"></div>
 </html>
</panel>

The data-managerid attribute will be parsed to the item of managerid. This makes it
clean and easy to read. For each option that is required for the visualization (and that
you'd normally include in a messy JSON option in the data-require attribute), you
place it into a data-<option> format. That's it! Now you can define the visualization
once and allow your App developers to use a simple div class and some options
without having to build a JSON object to build the dashboard.

Modular inputs
Modular inputs are a feature of Splunk that allow you to extend the platform in ways
that are specifically geared to consuming data. Modular inputs can promote your
scripted inputs to first-class natives of the Splunk platform. This gives you the ability
to define how to collect the data and let your users define the settings with which to
collect that data. "Why would you want that?" you might ask. Lots of reasons! For
example, let's say that you want to gather data about the weather. You could write a
scripted input to collect a single city's weather data from the API of wunderground.
com. However, what happens when you want more than one city's weather data?
You'll have to copy and paste the scripted input, change the API parameters, and
update the API key. If there was a change made to the API specification, you will
have to update all configured scripted inputs. If you use a modular input, you can
give the user an option to specify the API key and the API parameters in the Web
interface. Once these are specified, Splunk will automatically collect that data using
the set options. If any specification changes, you change the modular input code,
and then it is changed for every input defined. Much easier to scale! Here are a few
more features of modular inputs that can be found at http://docs.splunk.com/
Documentation/Splunk:

•	 Splunk Web automatically provides access to your custom-defined inputs.
•	 You can provide validation for the inputs.

http://docs.splunk.com/Documentation/Splunk
http://docs.splunk.com/Documentation/Splunk

Chapter 6

[123]

•	 You can package platform-specific versions of a script; for example, you can
include a Windows version, a Linux version, and an Apple (Darwin) version
in your package.

•	 You can stream data as XML data, which allows you to annotate the script
output. This gives you greater control over how Splunk Enterprise processes
the data.

•	 You can use Splunk Enterprise REST endpoints to access your modular
input scripts.

•	 You can set permissions for these endpoints using Splunk
Enterprise's capabilities.

•	 You can define whether to launch a single instance or multiple instances.
A single instance mode is useful when running in a single-threaded
environment.

As you can see, modular inputs give greater flexibility and robustness to your inputs.
Now you might ask, "Well when would I use this (in a generic sense)?" The best
time to decide whether you need a modular input is when you find yourself writing
and rewriting scripted inputs that are all essentially the same, with only slight
modifications for configuration items such as usernames, authentication tokens,
and/or REST parameters. So, now you know what, why, and when. Let's see how.

We are going to build a very simple REST modular input. This modular input will
consume data from a non-authenticating, public API. These APIs are tied to the meh.
com forum and product detail pages. The actual APIs are hosted by kimonolabs.com,
which allows you to turn any web page into a REST API. Very cool stuff! You should
check it out. The reason we are going to build these APIs is that just now (although
you didn't know it), we were using two scripted inputs to consume two different
APIs. The only real difference is the API URL. Let's abstract the input so that we can
update and add new APIs via the GUI. Modular inputs are written in Python, so all
code presented, unless specified otherwise, is of Python.

Modular inputs have two different modes, depending on the way they are run. They
are the single script instance per input stanza mode and single script instance
mode. The main difference in these modes is how they are executed. In the single
script instance per input stanza mode, a new instance (process) will spawn for each
defined input. This allows you to set multiple inputs with different intervals (300
seconds versus 900 seconds). In the other mode, single script instance mode, Splunk
reads only the scheme's default interval setting. This interval cannot be overridden.
More often than not, you will probably use the single script instance per input
stanza mode.

Advanced Integrations and Development

[124]

The spec file
Let's define the spec file first. This is a new file, in a new folder. The folder is called
README and is placed under the root of the App. The file is called inputs.conf.
spec. This defines the modular input as an input, while also defining the different
configuration options available. Let's put this text into that file:

[sdgAPI://default]
* This is the API Modular Input for the Splunk Developers Guide

api_url = <value>
* This is the non-authenticated API URL to consume

The stanza for this configuration has the script name sdgAPI. This is what will be
referenced in the local inputs.conf files of the App. This also references the name of
the script that will be used for the input, sdgAPI.py, located in the bin folder of the
App. The next step, after we have our spec file, is to set up the Python script that will
actually consume the API that will be configured.

Let's create the sdgAPI.py file in the bin folder.

When constructing modular inputs, you have to ensure that the name of
the Python file is the same as the stanza configuration in the spec file.

So, in this case, we are using sdgAPI. The full text of this code will be available as
a download, but we will display the relevant portions to explain some important
sections. Not shown are the import statements required for Python, the logging
setup, and some general script variables. The first section we will cover is the
scheme, and it might look something like this:

SCHEME = """<scheme>
 <title>sdgAPI</title>
 <description>Get data from an un-authenticated REST API</
description>
 <use_external_validation>true</use_external_validation>
 <streaming_mode>xml</streaming_mode>
 <endpoint>
 <args>
 <arg name="api_url">
 <title>API URL</title>
 <description>The URL</description>
 </arg>
 </args>
 </endpoint>

Chapter 6

[125]

</scheme>
"""

def do_scheme():
 """ Prints the Scheme """
 doPrint(SCHEME)

def doPrint(s):
 """ A wrapper Function to output data by same method (print vs
 sys.stdout.write)"""
 sys.stdout.write(s)

The scheme should match the spec file exactly. The spec file contains the definitions
for each argument. If you have a parameter as hostname, the scheme must also
have hostname. The scheme must be written in XML and presented to the system
when asked (this is shown in code a little further on). For each additional argument
required from the input.spec.config, you must add an arg section to the scheme.
The do_scheme and doPrint functions are very simple. The doPrint function is just
a wrapper meant for writing to the system, but we use it wherever we want to write
to the system, which is exactly what printing the scheme is supposed to do. The next
step in the modular input is to read the configuration of the modular input. This data
is pulled in from the inputs.conf file after the modular input is configured through
the GUI:

#read XML configuration passed from splunkd
def get_config():
 """ Read XML Configuration data passed from splunkd on stdin """
 config = {}
 try:
 # read everything from stdin
 config_str = sys.stdin.read()
 # parse the config XML
 doc = xml.dom.minidom.parseString(config_str)
 root = doc.documentElement
 conf_node = root.getElementsByTagName("configuration")[0]
 if conf_node:
 logging.debug("XML: found configuration")
 stanza = conf_node.getElementsByTagName("stanza")[0]
 if stanza:
 stanza_name = stanza.getAttribute("name")
 if stanza_name:
 logging.debug("XML: found stanza " +
 stanza_name)
 config["name"] = stanza_name

Advanced Integrations and Development

[126]

 params = stanza.getElementsByTagName("param")
 for param in params:
 param_name = param.getAttribute("name")
 logging.debug("XML: found param '%s'" %
 param_name)
 if param_name and param.firstChild and \
 param.firstChild.nodeType == param.
 firstChild.TEXT_NODE:
 data = param.firstChild.data
 config[param_name] = data
 logging.debug("XML: '%s' -> '%s'" %
 (param_name, data))

 if not config:
 raise Exception, "Invalid configuration received from
 Splunk."
 # just some validation: make sure these keys are present
 (required)
 validate_conf(config, "api_url")
 except Exception, e:
 raise Exception, "Error getting Splunk configuration via
 STDIN: %s" % str(e)
 return config

This section of the code reads in the configuration data from stdin, which is passed
to the script from the splunkd process. The function takes the stdin configuration
data, parses it (it is passed in XML), and builds a Python list object with the
configuration data. This section of code is important because it also validates
the configuration, in this case, using the validate_conf function. This is where
you determine and enforce which attributes are required. For each configuration
option that will be required, add another validate_conf call with the appropriate
arguments. The next parts of the code will be a review of some functions that I
typically use to keep the code a little simpler and standardized:

def do_done_event(sourcetype, source):
 """ Outputs a single done even for an unbroken event to the
 Splunk Processor """
 dostr = "<event><source>%s</source><sourcetype>%s
 </sourcetype><done/></event>" %(escape(source),
 escape(sourcetype))
 doPrint(dostr)

def init_stream():
 """ Sends the XML for starting a Stream """

Chapter 6

[127]

 logging.debug("Setting up stream")
 doPrint("<stream>")

def end_stream():
 """ Sends the XML for ending a Stream """
 logging.debug("Ending Stream")
 doPrint("</stream>")

def getAPIResults(url):
 """ SENDS THE JSON FROM THE API CALL """
 logging.debug("Getting URL: %s"%url)
 request = urllib2.Request(url)
 response = urllib2.urlopen(request)
 return(response.read())

Starting off is the do_done_event function. The purpose of this function is to print a
done event. Splunk expects XML on stdout, in order to consume and place data in
the indexes. This function tells Splunk that we are done sending data and tells it to
close the processing. The next functions are init_stream and end_stream. These are
crucial for telling Splunk when a stream of data starts and when it ends. You will see
in the next section how they are used. The last function in this list is getAPIResults.
It takes a single URL as its argument. This is the meat of the modular input. Using
the urllib2 libraries, it opens a connection to the URL, creates the response, and
reads the response. The read response is returned to whence it came, in this case into
another function, as seen here:

def run():
 """ The Main function that starts the action. The thread will
 sleep for however many seconds are configured via the Input.
 """
 sys.stdout = Unbuffered(sys.stdout)
 config = get_config()
 stanza = config["name"]
 sourcetype = config["sourcetype"]
 source = get_source(stanza[(stanza.rfind("/")+1):])
 init_stream()
 logging.info("source=%s sourcetype=%s stanza=%s operation
 =running_api"%(source,sourcetype,stanza))
 do_event("%s"%(getAPIResults(config["api_url"])),
 sourcetype,source)
 do_done_event(sourcetype,source)
 end_stream()

Advanced Integrations and Development

[128]

The run section is what actually builds the data stream and gets the data. Inside this
function, we start with getting the configuration from stdin, using the get_config
function we saw earlier. We then assign some variables, which will be reused
multiple times within the data collection process. After that, we initialize the data
stream to Splunk by calling init_stream, which basically just prints <stream> on
the stdout, where Splunk picks it up. Following init_stream, we call do_event
with the results of the API call as a string. This is what actually gets consumed and
stored in Splunk. Once we are done with getting the data from the API, we finish the
event (do_done_event) and then close the stream with end_stream. The only thing
left to do now is to call the run function:

if __name__ == '__main__':
 if len(sys.argv) > 1:
 if sys.argv[1] == "--scheme":
 do_scheme()
 elif sys.argv[1] == "--validate-arguments":
 validate_arguments()
 elif sys.argv[1] == "--test":
 doPrint('No tests for the scheme present')
 else:
 doPrint('You giveth weird arguments')
 else:
 run()

 sys.exit(_SYS_EXIT_OK)

This is a standard Python statement. It is the first thing that is executed within the
script. We need it to support introspection and argument validation. If Splunk
passes --scheme, the scheme is printed using do_scheme. Arguments are validated
by passing --validate-arguments. If there are no system arguments, then the run
function is called and off we go! These are some basic building blocks for a modular
input. Full code examples are available online in the Splunk documentation. Once
you are done with writing your code, you can move on to testing and integration.

Chapter 6

[129]

Testing modular inputs
Testing is very important, since without testing, how do you know it will work?
Testing modular inputs is pretty simple. The first test is to make sure that it is
syntactically correct. This is done by running python script.py. This will try to
execute the script using Python, and as long as the script is correct syntactically, it
will execute and probably wait for some input. The next step for testing is to run
a command that will pull a sample input configuration and pass it to the modular
input script. All the responses from the script are presented on standard out. Here is
the command (as configured for our sdgAPI modular input):

/opt/splunk/bin/splunk cmd splunkd print-modinput-config sdgAPI sdgAPI://
test | /opt/splunk/bin/splunk cmd python /opt/splunk/etc/apps/SDG/bin/
sdgAPI.py

The section before the pipe gets the configuration for the sdgAPI://test stanza,
which is located in the inputs.conf file. The second part passes the configuration to
the Python script we have written. If everything has been done correctly, the results
of the API call will be output to the screen. Once you have the confirmation that the
modular input will work as expected, restart Splunk. This is necessary to integrate
the input into the Splunk GUI.

Configuring modular inputs
Now that we have a working modular input, we must use it. The configurations for
this modular input are found in Data Inputs under Settings. After the restart, you
can see a new modular input, as shown here:

Advanced Integrations and Development

[130]

Follow these steps to configure the modular input:

1.	 Click on the sdgAPI input name and you will be taken to the input
configuration manager.

2.	 Click on the New button to be taken to the parameter setup screen. You can
see in the manager that the descriptions and parameter values that you set in
the spec file are present and visible, as shown in this screenshot:

3.	 Once you have the fields filled in, click on the Next button, and the input is
saved!

Protip
Make sure you click on More Settings and set your interval if you
want the input to continually consume data.

You can see in the manager that the input has been saved and is enabled and active,
like this:

Chapter 6

[131]

And there you have it! A modular input that can be used with any non-authenticated
API URL.

The App Key Value Store
The App Key Value Store (KV Store) is new in Splunk 6.2. Think of them as lookups
that are stored in memory. The actual storage is done in a Mongo database that is
run by the Splunk process. The KV Store is very useful for storing state data and fills
a gap that existed in earlier versions of Splunk. State data is data that defines what
the current condition of something is. For example, we would like to know what the
most recent memory and CPU usages are for a system. You could write this data to
a typical lookup file, but by using the KV Store, you can get the ability to interface
with the store from within your App. The KV Store has a complete REST interface
with which to perform CRUD (short for create, read, update, and delete) operations,
making it invaluable and extremely flexible. You can perform these CRUD
operations directly from the Splunk search language, much like a typical lookup.

When would you use the KV Store?
Well, there are quite a few instances where the KV Store is beneficial. The bigger
the lookup, the slower it performs as a CSV-based lookup (up to 10 MB). So, as
your lookup or state table increases, you will want to use the KV Store. The folks
at http://dev.splunk.com do a bang up job of detailing the pros and cons of each
methodology.

The pros and cons of KV Store are as follows:

Pros of the KV Store Cons of the KV Store
Enables per-record insertions/updates
(upserts)

May not work for extra large datasets
(> 10 million rows)

Allows optional data type enforcement on
write operations

Memory-intensive with extra large
datasets

Allows you to define field accelerations to
improve search performance
Provides REST API access to the data
collection

http://dev.splunk.com

Advanced Integrations and Development

[132]

The pros and cons of using CSV lookup are the following:

Pros of CSV Cons of CSV
Performs well for files that are small or
rarely modified

Does not provide multiuser access locking

Supports distributed search-based
lookups on the index tier

Requires a full rewrite of a file for edit
operations

Supports automatic lookups Does not support REST API access

So, what actually is the KV Store? The KV Store is configured as collections of data.
The following table illustrates database terms that you may be familiar with, with
their corresponding configuration item in a KV Store:

Table Collection
Row Record
Column Field
Primary key _key

_user

The _key field is reserved and contains a unique ID for each record. You can specify
it, but if you don't, Splunk will generate one for you. The _user field is also reserved
and cannot be overridden. This field contains the user ID for each record. Other
than that, the KV Store is very similar to a database table. The major advantage here,
however, is that the KV Store is not typically used for historical data. It could be, but
that's what Splunk is for, right?

So, now let's dive into how these things work. We will start by configuring the
KV Store for use with the meh.com API data. Once we have it configured, we will
show you how to use it both with the Splunk search language, as well as within an
HTML dashboard. Our collection will be limited to current product, poll, and forum
statistics. In this way, we can quickly get the most up-to-date data without having to
perform a Splunk search other than a simple lookup command.

Chapter 6

[133]

Configuring the KV Store
The configuration of the KV Store is done entirely within the configuration files.
There is no corresponding GUI manager with which to perform the configuration.
The configurations are stored within the collections.conf file. Let's set up our KV
Store for the meh.com data. Edit your collections.conf file by adding this:

[meh_kv_product]
[meh_kv_forum]
[meh_kv_poll]

That's it! Seriously! However, this only defines the KV Store; we need to be able to
access it. Open transforms.conf and enter these configuration stanzas:

[meh_product_kv]
external_type = kvstore
collection = meh_kv_product
fields_list = _key , price, visitors, revenue, mehclicks, title
[meh_forum_kv]
external_type = kvstore
collection = meh_kv_forum
fields_list = _key , op, op_action, activity, last_activity, title,
votes
[meh_poll_kv]
external_type = kvstore
collection = meh_kv_poll
fields_list = _key , poll_id, poll_title, text, votes

This will configure the lookups for each of the different collections. The fields_
list is mandatory and defines what the lookup is allowed to interact with. This is
important because it is possible to update the KV Store via the REST interface for all
fields, while only allowing the lookup command to interact with a subset of fields.
Now that we have some place for our lookup to go, we need to populate it. To do
this, we created a macro called product_KV_gen.

The contents of it are as follows:

`meh_base` earliest=-30m@m | stats latest(deal.items{}.price) as
price latest(results.collection1{}.visitors) as visitors latest(deal.
title) as title, latest(results.collection1{}.product_total_revenue)
as revenue, latest(results.collection1{}.meh_clicks) as mehclicks |
outputlookup meh_product_kv

Advanced Integrations and Development

[134]

Essentially, this search is taking two different source types from the last 30 minutes
and producing a table with fields that match the field list of the meh_product KV
Store. The table should look like this:

Once you have the table formatted with the same fields as the KV Store, you can
use the outputlookup command and write the results to the KV Store. Now, this by
itself won't keep the store updated. Let's save the search and run it every 5 minutes.
In this way, our numbers are constantly updated as the details are updated. So
now, if you want to pull the latest results, you can simply issue the inputlookup
command on the KV lookup name, and the results are returned. We won't sit and
create the other two macros and saved searches; they are done in the same way.

So now that we have this information, how do we use it? Well, you can use it in a
search and display the results in the typical fashion. The other option is to interface
with the REST API directly and pull and display the results as you wish. For this
demonstration, we've created a new HTML dashboard that is completely blank.
To create it, we have made a new SimpleXML dashboard, and then converted it to
HTML. Down in the section for the SearchManager, let's add this code:

var APPNAME = "SDG",
 baseKV = "/servicesNS/nobody/"+APPNAME+"/
 storage/collections/data/",
 productKV = baseKV + "meh_kv_product/";
var service = mvc.createService({ owner: "nobody" });
$('#productkvlaunch').on("click", function(e){
 service.request(
 productKV,
 "GET",
 null,
 null,
 null,
 {"Content-Type": "application/json"},
 null)
 .done(function(data) {

Chapter 6

[135]

 var myData = JSON.parse(data)[0];
 var myHTML = ""+myData.title+"</
li>Price$:"+myData.price+"Total$:"+myData.revenue+"</
li>Visits:"+myData.visitors+"Clicks:"+myData.
mehclicks+"";
 $('#productkvlaunch_results').html(myHTML);
 });
 });

Love to code! So, here's a quick breakdown. Again, this is only for one KV Store; the
same method can be transferred to any other KV Store. Firstly, our variables—we use
variables to help speed development and to reduce the risk of errors. If our APPNAME
value changes, it will change in all the URLs configured for using it. The base URL
for the KV Store is /servicesNS/nobody/APPNAME/storage/collections/data/
KVSTORENAME, where APPNAME is, well, the App name, and KVSTORENAME is the stanza
that you configured earlier in collections.conf. Once you have the URLs set, you
need to initiate a service object. This service object can be used on pretty much any
of the REST APIs, so don't limit yourself to the KV Store. Literally, any configuration
option available for an endpoint is available for this service. The service is called
as shown in the previous code snippet, with the arguments object passed. We are
setting owner to nobody, as nobody is a special user that should have access to most
configurations. Right after we create the service, we assign the onclick event to an
HTML element (which, in our dashboard, is a header). The purpose of this is to give
the user a method of interacting with the data, and we can refresh it at any point.
Once into the function, we call the request method of the service and pass our
parameters. The first is the URL of the endpoint we want; the second is the method
(GET). Number six is a header object. The others can be null for this request. The last
step is to do something with the results once the request returns, so we tack a .done
function and pass the data that was returned. In this case, the done function prints
the returned data on the console. The data returned is a string and looks like this:

[{ "mehclicks" : "4930", "price" : "10", "revenue" : "5111",
 "title" : "Riviera RC Aquacopter", "visitors" : "50739", "_user"
 : "nobody", "_key" : "551eeee9911c2730cd6ca6a1" }]

To use this string as an object, use the JSON features of JavaScript and convert it to
.json objects. From this object, you are now free to move about the cabin, er… the
dashboard. You can update a D3 visualization, or simply build an unordered list
with the results. Here, we built an unordered list and updated the inside of another
element. The options are boundless and are limited only by your imagination. While
this is only a read example of CRUD, you can perform any of the other operations
using the service.request function and pass the needed values. The complete
documentation is available online at http://dev.splunk.com.

http://dev.splunk.com

Advanced Integrations and Development

[136]

Data models
Data models are becoming an essential part of the App developer's toolkit. They
help developers design and maintain the semantic knowledge of their data. Semantic
knowledge can be described as the underlying knowledge of the meaning and
assessment of the data that is being consumed. This knowledge is typically known
only to subject matter experts, but it can be transferred to the end user in the form of
data models. These data models can then be summarized and accelerated as needed
with Splunk Enterprise. Data models are also the driving force behind the Pivot
feature of Splunk Enterprise. They define how data is related and/or broken down.
They are created using searches that are tiered into different sections. For example,
your root event may be tag=web_logs (which says that you want all web logs,
including IIS or Apache), and the second tier may be Errors, which will constrain
the child search to only web log errors (for example, status = 500). This gives the
end user the ability to choose the web log errors and then use Pivot to drill down to
any remaining attributes (also known as fields).

A data model starts with one or more objects. Here is a quick list of facts about these
objects that can be found at http://docs.splunk.com/Documentation/Splunk:

•	 An object is a specification for a dataset. Each data model object corresponds
in some manner to a set of data in an index. You can apply data models to
different indexes and get different datasets.

•	 Objects can be broken down into four types: event objects, search objects,
transaction objects, and child objects.

•	 Objects are hierarchical. Objects in data models can be arranged
hierarchically in parent-child relationships. The top-level event, search, and
transaction objects in data models are collectively referred to as root objects.

•	 Child objects have inheritance. Data model objects are defined by
characteristics that mostly break down into constraints and attributes. Child
objects inherit constraints and attributes from their parent objects and have
additional constraints and attributes of their own.

The first object defined in a data model is called the root object. There can be more
than one root object, and each can be of a different type. The three types are event,
transaction, and search. Let's take a quick look at each of them.

The first type of object is the root event. These objects are the most commonly used
by developers. Each event object represents a type of event, very similar to the event
type configurations in Splunk, as we saw in Chapter 3, Enhancing Applications. Root
event objects are defined using simple constraints, which are basically the first part
of a typical search, before any other search command.

http://docs.splunk.com/Documentation/Splunk

Chapter 6

[137]

The second type of object is the root transaction. These give the developer the ability
to create transactions across a subset of data. A transaction is defined as a related
group of events that cross time. Before you can create a root transaction object, you
must have either an event or a search root object defined in the data model.

The last type of object is the root search. This object can be almost any Splunk search,
including other commands. This gives you the ability to transform events and fields
within the data model, which can then be further constrained by child objects.

Child objects of each root type are defined with a simple constraint. These
constraints narrow down the data from the parent objects.

Data models can be accelerated, making them perfect for use within an App for
performance reasons. However, only root event objects can be accelerated. If
you have a very large transforming search, you will most likely want to find the
equivalent simple constraint search for use with acceleration.

Object constraints (used with each type of data model object) help filter events into a
schema or dataset. A root event object will have a simple search as its constraint, which
means that there are no transforming or streaming commands in the search string. A
root search object uses the base search string and can include transformations within
the string. A root transaction object is constrained by the transaction definition.
These definitions must identify group objects and one or more group by fields.
This is similar in configuration and usage to the transaction command used in
the search bar.

Each object also has object attributes. These are essentially fields that have been
extracted or presented in some way. There are five different types of attributes found
at http://docs.splunk.com/Documentation/Splunk, which are as follows:

•	 Auto-extracted: This is a field that Splunk Enterprise derives at search time.
You can add auto-extracted attributes to root objects only. Child objects can
only inherit them, and they cannot add new auto-extracted attributes of their
own. Auto-extracted attributes can be any of the following:

°° Fields that Splunk Enterprise recognizes and extracts automatically,
such as uri or version. This includes fields indexed through
structured data inputs, such as fields extracted from the headers of
indexed CSV files.

°° Field extractions, lookups, or calculated fields that you have defined
in Settings or configured in inprops.conf.

http://docs.splunk.com/Documentation/Splunk

Advanced Integrations and Development

[138]

°° Fields that you have manually added to the attribute because they
aren't currently in the object dataset, but should be in the future. This
can include fields that are added to the object dataset by generating
commands such as inputcsv or dbinspect.

•	 Eval expression: This is a field derived from an eval expression that you
enter in the attribute definition. Eval expressions often involve one or more
extracted fields.

•	 Lookup: This is a field that is added to the events in the object dataset with
the help of a lookup that you configure in the attribute definition. Lookups
add fields from external data sources, such as CSV files and scripts. When
you define a lookup attribute, you can use any lookup that you have defined
in Settings and associate it with any other attribute that has already been
associated with the same object.

•	 Regular expression: This attribute type represents a field that is extracted
from the object event data using a regular expression that you provide in
the attribute definition. A regular expression attribute definition can use a
regular expression that extracts multiple fields. Each field will appear in the
object attribute list as a separate regular expression attribute.

•	 Geo IP: This is a specific type of lookup that adds geographical attributes,
such as latitude, longitude, country, and city, to events in the object dataset
that have valid IP address fields. It is useful for map-related visualizations.

Attributes can be inherited, extracted, or calculated. Inherited attributes drop through
different objects. Child attributes inherit attributes from the parent object, making
it necessary for each parent to have the attributes required by each child. Extracted
attributes are those that are auto-extracted from the search results. Finally, calculated
attributes are configured through calculation or lookup within the data model.

Data models can be quite complex or they can be really simple. The extensibility
of a data model gives you flexibility to define your data and present it to the end
user as a structured schema based on unstructured data. You can create and manage
data models on the management page, found in Data Models under Settings.
Let's navigate there now, so we can create a simple one, just to get an idea of
what's going on.

Once you are at the Data Models manager, click on Create New. This will load a
quick form to enter your data model name, as shown in the following screenshot:

Chapter 6

[139]

\

Once you have created the base data model, you need to add objects, as we discussed
earlier in the chapter. You can do this by using the drop-down menu and then
choosing your root item:

Then, it's as simple as filling in the items that are required and choosing the fields
you want to add into that object:

Advanced Integrations and Development

[140]

This will be the base of the data model. You can put literally any search here that you
want to use as long as it is a base search only. Any other search commands cannot be
placed here. Once you have your events, choose your fields!

It's that simple! Once you have built the root objects, add the child objects. The child
objects are just more searches that narrow down the scope of the data model. A child
object may then look like this:

As you can see, data models can help you narrow down large datasets into more
manageable chunks, which then can be used in searches. Accelerate a data model,
and you've got a fast and easy way of referencing large datasets.

Version control and package managers
Version control is fairly important in the realm of a Splunk App. When publishing
your Apps, you must include version numbers, and the easiest way to keep a
track of the changes is with version control. We will focus on Git, as it is a standard
of version control. You can just as easily use CVS or SVN, but Git is much more
flexible and easier to work with. Since almost everything in a Splunk App is
ASCII-based (very few and far binary files), Apps are more easily integrated
with version control systems. Package managers are a newer concept, at least
in the realm of web development.

Chapter 6

[141]

The two we will cover (npm and Bower) are specifically designed for web
applications, and a lot of hard work in finding, updating, and converting JavaScript
libraries has already been done for you. Gulp is another tool we will investigate. It is
a streaming build system that can automatically watch files for changes, update static
library contents, and provide minification for your JavaScript. Each of these tools
was selected by how well it meshes with the Splunk architecture and design. You
can use other tools, but these are popular, robust, and extensible.

You may ask yourself: Why should I bother about a package manager? Well, it can
be said that the ability to publish an App, with the ability to be updated on the fly,
is a great feature. For example, most themed Apps will include all the themes a user
might wish to use, but never uses. This wastes space on the filesystems, in the cloud,
and over the wire. Using a package manager, you can include the configuration for
a specific theming library, and provide the user with instructions on how to get the
theme they want. We'll cover this in more depth in just a little while; for now, let's
start with npm.

npm
The Node Package Manager (https://www.npmjs.com) allows developers to share
reusable code and provides an easy way to update that shared code. Most of the
packages available through npm are specifically for Node.js, which is a platform
built on JavaScript, designed to build fast and scalable network applications. While
most of these packages don't work directly with the Splunk Web Framework, we
can take advantage of the other tool packages available. Bower and Gulp are both
npm packages and can be downloaded as such. Configurations for npm are normally
contained within the package.json file. In our case, we will store this file in
appserver/static/build. This gives us a work area in which to put modules and
libraries, which we can then exclude from the final build when we go for publishing.
This program must be installed using your OS package manager or via download
links available at its website.

Bower
Bower (http://bower.io) is a package manager for the Web. D3, AngularJS,
Bootstrap, Font Awesome, and jQuery are just a few of the libraries you can manage
with Bower. D3 and jQuery fit right into the work we've been doing with the Splunk
Web Framework. Configurations for Bower are contained in the bower.json file,
which we will also place in the appserver/static/build folder. We will add
each of the libraries we need to this file, along with specific version information,
if needed. Bower is installed using npm and by including it in the package.json
configuration file.

https://www.npmjs.com
http://bower.io

Advanced Integrations and Development

[142]

Gulp
Gulp (http://gulpjs.com) is a streaming build system. With many modular
plugins, Gulp is very flexible as per your needs. It is very good at compiling static
content into a single file. This gives you the ability to build a multitude of CSS files
into a single application.css file. Why? Because you don't have to touch every
dashboard to include the new CSS files. Build it to one file and include just that file.
It's cacheable and accelerate-able, and doesn't have to be polled multiple times. You
can do the same thing for images or JavaScript files. The default file for configuring
Gulp is gulpfile.js, which we will place in the appserver/static/build folder.
Gulp is another npm module and is installed in the same way as Bower. Each Gulp
plugin needs to be installed via npm as well, but once you see how easy it is, you
won't want to do it any other way!

Git
Git (http://git-scm.com) is a distributed version control system that works very
well with ASCII text projects (such as Splunk Apps). It is not a module of npm.
Rather, it must be installed as a package on your OS of choice. It is lightweight, open
source, and free. There is no direct configuration file for Git as there is for the other
tools. You will have to initialize a repository in the base of your App and add files
and other items that you want to keep a track of in the repository. Keeping your App
under version control helps you keep a track of changes between releases, and in
case anything gets deleted accidentally (as long as it was under version control
in the first place). Git even offers the ability to push your changes to an external
repository (such as GitHub), where others can download, fork, or ask for a pull
request (a code merge).

Tying them all together
Now that you know what tools you want to use, let's put them into practice to
replace the bits of our App. Let's start by defining what tools we want to install with
npm. We are going to use our appserver/static/build folder; we will do this with
npm. Firstly, you will need to install npm on your operating system. Instructions are
available at npm's website. In the package.json file, add this content:

{
 "name": "SDG",
 "version": "0.0.1",
 "author": "alacercogitatus",
 "devDependencies": {

http://gulpjs.com
http://git-scm.com

Chapter 6

[143]

 "bower": "latest",
 "gulp": "~3.8.6",
 "gulp-bower": "0.0.6",
 "gulp-concat": "~2.3.3",
 "gulp-less":"latest"
 }
}

This is exactly how yours needs to be typed out. It should be in a pure JSON string,
not just a JavaScript literal object. The name attribute is the name of your App, as
best practice. Typically, name is the name of the npm module, but since we aren't
packaging this for publishing to npm, we can use our App name. Add your App
version and author, as shown in the following code snippet. The real magic is in the
devDependencies section. In here, you list which tools you need to grab via npm
and their version number.

Specifying latest will get you the—ta da!—latest version! Now that we have a
configuration file, we execute the npm install command (in the same folder as
the file). This will download, compile, and install the npm modules, making them
available for you to use. You will notice that there is a new folder, node_modules,
which contains the modules you just downloaded for use. We now have Bower and
Gulp at our disposal for building the rest of the App.

Let's start with Bower, since it will give us the basic libraries we need. The libraries
we want to include are d3 and the sidr jQuery plugin. The first step is to visit
Bower's website and find the appropriate package name. In this case, we want to use
the d3 and sidr packages. Let's add this code to the bower.json file we have in the
build folder:

{
 "name": "SDG",
 "version": "0.0.1",
 "authors": [
 "alacercogitatus"
],
 "description": "Splunk Developer's Guide Bower",
 "dependencies": {
 "d3": "latest",
 "sidr" : "latest"
 }
}

Advanced Integrations and Development

[144]

This file should also be a pure JSON object, not just a JavaScript object literal. In a
style similar to that of the package.json file, we place the packages we require in
the dependencies object, with the version that we require. Once the file is saved,
you have to run bower install. This command will read the Bower configuration
file and download the libraries in a new folder, bower_components. In this folder,
you will find all the JavaScript files necessary for using d3 and sidr. They are in the
same form as they would be if you had downloaded them from the Internet. Next
up—Gulp!

Gulp is a streaming build system that is designed to compile and distribute just
about anything where it needs to go. The configurations are based in the gulpfile.
js file. Let's populate our file:

var gulp = require('gulp'),
 bower = require('gulp-bower'),
 concat = require('gulp-concat'),
 less = require('gulp-less'),
 rename = require('gulp-rename');

gulp.task('copy:requires', function(){
 gulp.src([
 './bower_components/d3/d3.min.js',
 './bower_components/sidr/jquery.sidr.min.js'
])
 .pipe(rename(function(path) {path["dirname"] =
 "";}))
 .pipe(gulp.dest('../js'));
});

gulp.task('default',['copy:requires'], function() {});

This file is a little more complicated than the other configuration files. It needs to be
written in JavaScript. At the very top of the file, set the variables that are assigned
by requiring the npm modules that were defined in the package.json file. These
variables will be referenced later in the file as functions. Gulp uses definitions called
tasks to perform functions. In our case, we have created a copy:requires task, which
takes the two libraries we need and copies them to the appserver/static/js folder.
This task is referenced by the default task so that every time Gulp is executed
without a task being specified, the default task is executed. There are many other
tasks that can be performed with Gulp and many more plugins. Once you have the
file in place and configured, simply run gulp. The files will be copied to the correct
location. By combining these three tools, you can package an App to have the ability
to be updated to the latest package versions of web frameworks and other tools, as
well as enforce specific versions as needed. You can even include a build script that
executes each tool—one right after another—to automate the process.

Chapter 6

[145]

Now let's set up Git. Git will help us keep a track of what we changed and give us
an opportunity to keep track of versions with tags. It has the ability to push changes
to a remote repository to share or just keep as an offsite backup. It is installed on
the operating system just like npm. Once it is installed, navigate to the root folder of
your App. Issue these commands:

1.	 git init

2.	 git add

3.	 git commit -am ' Initial Commit'

These commands initialize the repository, add all the files to it, and finally commit
the changes made to it. That's it! It's simple to use, and helps keep a track of changes
made to your App. As you add new files and make changes to existing ones, you
have to issue commands 2 and 3 from the preceding list respectively. This ensures
that your changes are up to date and saved in the repository.

Protip
If you employ using the build folder, you will definitely want to add
the following code to the .gitignore file. This will tell Git to ignore
the downloaded files so that they are not added to your repository. This
keeps the repository light and ready for packaging and publishing.

Add this configuration to the .gitignore file in the appserver/static/build
folder to ignore the directories:

node_modules
bower_components
!./package.json
!./bower.json
!./gulpfile.js

There are many more things you can do with Git; this is just a basic introduction to
version control. To find out more, visit the Git website (http://git-scm.com).

http://git-scm.com

Advanced Integrations and Development

[146]

Summary
In this chapter, we converted an inline visualization into a customized
SimpleSplunkView. As we saw, the benefits of this conversion are incredible.
The modular ability allows the same code to be used over and over, without the
likelihood of making mistakes in the copy-and-paste process. Once you've included
the JavaScript in the base RequireJS stack, you can take advantage of the objects and
instantiate the objects wherever you like.

After JavaScript views, we dove into modular inputs. Modular inputs give us the
ability to reuse a script, while providing the end user with a simple interface with
which to do the configuration as required. They can also be configured to take
advantage of encrypted credentials within the script, securing your credentials from
the casual observer. We discussed portions of the script and how they relate to the
total implementation.

We discussed the KV Store and the benefits of using it versus file-based lookups.
We explored how to create them and how to interact with them. Using KV Stores is
very beneficial when creating state tables, as well as when the full gambit of CRUD
operations is desired. We then showed you how to integrate a KV Store into an
HTML dashboard using the REST API and the JavaScript service object.

We then went over some tools designed to help keep your App configurable and
shareable. Using tools such as package managers and version control, you can share
an App with a team and ensure that everybody is using the same version of libraries
and code. This is done to minimize code problems. Version control is especially
helpful, and Splunk Apps lend themselves well to it.

In the next chapter, we will discuss how to package your App for other users to use
and install.

[147]

Packaging Applications
In this chapter, we will cover how to properly package your App for publishing.
Packaging your App correctly is critical to allowing you to publish the App on
Splunkbase. Splunk provides a set of guidelines and standards that must be met
for your App to be included on Splunkbase. Splunkbase is the official repository for
Splunk Apps and add-ons, created by both Splunk and other contributors. Packaging
also gives you the opportunity to brand and document your App in a manner that
clearly defines you and your brand. Splunkbase automatically checks the structure of
your App when you upload it, so it is important to make sure you cross your Ts and
dot your Is before you upload. As we progress through this chapter, we will package
our App and get it ready for deployment to Splunkbase. We will first go over the
naming guidelines, and then cover some standards and best practices. Once we
detail what needs to happen, we will see how to actually package the App.

Naming guidelines
Splunk has provided a very nice set of guidelines for use in packaging your App.
These guidelines are important, as you do not want to infringe on any copyrights or
licensed trademarks as you build your App.

These are guidelines, and while your App can literally be named anything
you want for use, either internally in a company or for an individual
install, you must follow the guidelines to publish on Splunkbase.

Packaging Applications

[148]

The first guideline revolves around using third-party trademarks. A third-party
trademark is anything that you or Splunk do not own, control, or have license to use
except under fair use. When using a third party trademark, Splunk maintains that
you must separate the third party's trademark from the Splunk trademark with the
word for, which:

•	 Clarifies that the third-party trademark and associated technology do not
belong to Splunk or the author of the App or add-on.

•	 Indicates that the App or add-on works with a specific third-party product.
You should include the technology name for the third-party product,
although you can drop the technology where the trademark could only be
referring to only one product.

For example, Nagios for Splunk is a valid App name, whereas Splunk App for Nagios is
not. You should take care to make sure you are naming your App correctly, as you
don't want to confuse the users or infringe on trademarks. Along these lines, do not
use a third-party logo, unless you are licensed to do so. Certain companies allow you
to use their logos under specific guidelines, and you should check their guidelines
to make sure you are compliant with them. Never use the ® symbol when describing
your App, or in your App name, as it pertains to a third party. There are guidelines
for using a third-party trademark in your App name, but there are also guidelines
that govern the name of an App that a non-Splunk party has built (meaning you). If
you reference Splunk's registered trademarks in any of your documentations, web
presence, or headers, you must use the ® symbol next to Splunk's name. Make sure
that your App doesn't imply that Splunk built or includes your App in the product.
Also you may not have a press conference relating to the release of your App, unless
you are a formal partner and adhere to the Splunk press release guidelines.

Another part of packaging is making sure that you will meet the approval criteria
for Splunkbase, which are essentially standards to keep the community vibrant
and trustworthy. Let's run a list of standards and additional naming conventions
required to start the packaging process.

•	 App ID: The ID attribute for the App must be filled out in app.conf. This
ID should be unique so that when installed, the ID is unique from any other
App on the instance. It can simply be the name of the folder.

•	 App version: The version attribute must have a string defined. Normal
versioning methods can be used (major, minor, maintenance, and so on).

•	 App description: This needs to be short and sweet. Keep it informative,
yet concise.

Chapter 7

[149]

•	 App icons and screenshots: Icons that are displayed on Splunkbase are
pulled from the appserver/static directory in your App. They are required
to be in PNG format and 36px x 36px resolution. Screenshots are also shown
on Splunkbase, and must be in PNG format and 623px x 350px resolution.

Let's review our app.conf file and make sure that we have everything we need to
package the App:

[install]
is_configured = 0
[ui]
is_visible = 1
label = Developer's Guide for Splunk
[launcher]
author = Kyle Smith
description = Developer's Guide Example for Splunk
version = 1.0
[package]
id = SDG

Yep, we have the requirements for the app.conf file. All the required options are
filled in (version, description, and ID), and we're ready to go.

The App ID must match the name of the folder in which your App lives.
Once this is uploaded to Splunkbase, it cannot be changed, and a new App
will need to be uploaded if the ID does need change.

Do you remember the icon we created earlier? We copied that to the appserver/
static folder to make sure it gets displayed on Splunkbase. Any source code you
have in your App must also meet certain standards, and will be peer reviewed by
Splunk. If you have any binary content, it should be what it is supposed to be (in
other words, don't end a file with .exe if it is a .png file). Any executable files must
be located in the bin folder of your App. Operating system considerations must
also meet standards. If you have a script that says it is executable, make sure it is
executable. Don't add any malicious commands such as rm -rf or kill -9 and
the like. These are some of the standards used when evaluating your App. Follow
these and your App should be approved; most of them are common sense (like don't
execute rm -rf—for real, don't do it.) The list is ever-evolving; you can find the most
up-to-date version at http://docs.splunk.com/Documentation/Splunkbase/
latest/Splunkbase/Approvalcriteria.

http://docs.splunk.com/Documentation/Splunkbase/latest/Splunkbase/Approvalcriteria
http://docs.splunk.com/Documentation/Splunkbase/latest/Splunkbase/Approvalcriteria

Packaging Applications

[150]

Dos and don'ts
Let's review a quick table of some dos and don'ts when it comes to App packaging.
This table might give you some ideas of other configurations you may want to
include, but it is by no means exhaustive:

Don'ts Dos
Hard code index names into searches and
dashboards.

Use macros and event types to allow end
user customization of index locations.

Leave compiled Python code files in any folder. Remove the *.pyc files.
Leave anything in the local folder. Move it all to the default folder.
Use odd or obtuse naming of fields in
extractions.

Make use of the Splunk Common
Information Model.

Allow users to edit source code to add
configurations.

Use a setup file or modular input to
allow user configurations.

Include no logging, or use obtuse
abbreviations.

Log in key=value with descriptive
information.

Use hardcoded paths or OS-specific options. Use Python libraries to build paths and
environment.

Leave unused libraries and frameworks in bin. Use Bower, npm, Gulp, and Git to keep
the build clean.

Leave inputs enabled by default. Allow users to choose what to enable.
Include an index configuration. "Test, test, and test"

Include a screenshot and icon. Brand
recognition is everything.

Leave hidden files in any folder (you see, OS X
users).

Follow the published guidelines.

The reason you should not include an index configuration is not always clear. An
App should not dictate where in the environment the data should be placed; that is
up to the Splunk administrator. If you place a default configuration for the index,
you could possibly cause disk space issues if the default location is not designed for
the data.

Chapter 7

[151]

Packaging the App
Now we actually get to package the App in preparation for publishing. We will
cover how to use both a *nix command line as well as 7-Zip for Windows. We will
carry out the compression only after readying the folder structure for packaging.
Let's start by copying the entire App folder to a new location. This makes sure that
we get a clean directory to move files and content within. If you are using Git, you
can also simply commit the dev changes and clone the repository into a different
folder. This is beneficial, since earlier we had some build files in the appserver/
static folder, but they didn't make it into the repository. Keep it clean, and keep
it small!

Once you have relocated your App, we can start with the actual packaging. The
first thing to remove is the metadata/local.meta file. The next thing is to check
the default permissions in metadata/default.meta. If they look good, let's move
on to the bin folder. This is where you would want to remove any *.pyc files, as
they need to be compiled on the target system. Next, check your appserver/static
folder to make sure that frameworks and libraries are removed. We used Git, so our
build folder only contains bower.json, gulpfile.js, and package.json. Nice and
neat! Easy cleanup! However, if needed, the sources can be quickly brought in. Next,
we clean up the lookups folder, unless it is a static lookup. Dynamic lookups need to
be generated on the end user's system, so we need to remove our development copy.
Now we'll move on to the harder part of packaging: combining the default and
local folders.

There a few ways to approach combining the folders. The first, and least technical,
approach is using a text editor to copy and paste the stanzas from local back to
default for each configuration file, and then copy the files located in the data
folder one by one. This is prone to human error (you may miss something,
or paste it wrong).

Another approach is to use the Splunk Btool to generate your configuration files.
Btool is a Splunk-specific command that merges the configurations into a single
output, based on the file precedence rules. The following is a bash script (for use
on *nix systems) that cycles through all of the local configuration files in your App,
presents the merged configuration, and writes the configuration to a local folder
within the bin folder. There, you can verify the output, and copy them over to the
default folder. Once copied, delete the local configuration files:

#!/bin/bash
CONFS=();
for entry in ../local/*.conf
do
 myPath=${entry##*/}

Packaging Applications

[152]

 filename=${myPath%.*conf}
 if [-f "$entry"];then
 CONFS=("${CONFS[@]}""$filename")
 fi
done
echo ${CONFS[@]}
for conf in ${CONFS[@]}; do
 echo "Writing to $conf.conf"
 /opt/splunk/bin/splunk cmd btool $conf list --app=$1 > ./
mergedConfs/$conf.conf
done
echo "Files written into mergedConfs. Copy where desired!"

This is very useful, mainly because it can mitigate the copy-paste errors, since the
configuration is how Splunk sees it. It is placed in the bin folder, and executed like
this: ./package.sh SDG. Here, SDG is the name of your App.

If you are going to use this script, make sure all of your configurations
have the App-level permissions assigned to them, and are in the App
scope for your App, before running the command.

Once you are done verifying the changes and have completed the move from local
to default, you can move the local data files over. These are files located at local/
data. These are not merged; they overwrite the default files. Simply copy them from
their location in local/data to the correct location at default/data.

Once you have moved everything around and deleted the local folder, you are
ready for compression. Let's do this in *nix first, and then Windows. Navigate to the
parent directory of your App location and then run these commands:

•	 tar -cvf SDG.tar SDG

•	 gzip SDG.tar

•	 mv SDG.tar.gz SDG.spl

These commands create the properly named App tarball, for use with Splunk. Notice
the .spl extension; that is how we know it is a Splunk App, and it will be handled
accordingly. Unfortunately, it is not as easy on Windows. For Windows, we have to
use 7-Zip, which is available at http://www.7-zip.org/. For this, again, navigate
to the parent folder of the App. Once 7-Zip is installed, you will be able to gain
right-click access to the software. Right-click on the App folder; you will see the
following options:

http://www.7-zip.org/

Chapter 7

[153]

Open up the Add to archive… dialog, which looks like this:

Make sure you select tar as the archive, since that is a requirement for the SPL file.
Once you have a tar file, you need to compress it. Right-click on it again and select
Add to archive…, but this time, select gzip and click on OK. This will compress the
tar file, creating a tar.gz file:

After compression, the only thing left to do is rename the file to the correct
extension, .spl:

Packaging Applications

[154]

There is another method of packaging the App from the command line. Simply
execute the following command and the App will be packaged for distribution. The
command will output the location of the final package. While this is a quick method
for packaging Apps, take care of its use. It does not automatically clean unused code,
check for proper execution in scripts, or remove unnecessary configurations. If you
are planning to distribute the package via Splunkbase, we recommend using a build
system or scripts to make sure that you clean up unnecessary items.

$SPLUNK_HOME/bin/splunk package app <folder_name>

And that's it! Now you have a properly packaged Splunk App. From here, we'll
move on to publishing the App using Splunkbase or your own internal service.

The App packaging checklist
The App packing checklist table is a non-all-inclusive checklist for App packaging
requirements. Not every item on this list needs to be in every App, but it should
provide a basic reminder of what is required:

Basic checklist
Basic README file XML is well formed Empty local directory
Contact information App description Delete metadata/local.meta
Clean of viruses/malware App ID Verify default permissions
No malicious commands App version Remove dynamic lookups
Executables located in bin App icon No hardcoded paths
SPL file format Common Information

Model compliance
Setup screen

App name complies with
guidelines

Valid EULA No hardcoded index paths

Chapter 7

[155]

Summary
In this chapter, we covered the Splunk guidelines for naming conventions. Naming
your App incorrectly could cause an infringement of intellectual property. Make
sure you use third-party trademarks properly, following both Splunk's and the
third party's guidelines. We covered the basic options needed for the app.conf file,
and went through the standards for content located within the App. We saw how
to combine the configurations and how to finalize the package, making it ready
for publishing.

We went through a list of dos and don'ts of things to do within an App, and
provided an App checklist as a reminder of what is required and what you need to
make sure is presented within the App. While these lists are not exhaustive, they
provide a basic measure to test your Apps against.

In our final chapter, we will cover how to publish the App to Splunkbase, as well as
some other areas where you can receive support from the Splunk community.

[157]

Publishing Applications
In this chapter, we will cover how to publish our App on Splunkbase, the community
for Splunk developers. We will discuss the process step by step, and any caveats that
may arise. We will talk about Certified Applications, and what that means to you
as an App developer. We will also start a discussion on communities, and why the
community is important in the culture of Splunk, as well as around the globe.

Then we will see some links and references to other commonly used Splunk
resources, such as the Splunk Wiki and the Splunk documentation (which you
should already be familiar with). Finally, we will hit upon Splunk user groups,
how to find a group, and what to expect.

Self-hosting your App
The first method of publishing an App is by doing it yourself. This can mean that
you are storing the data, keeping the App under control, and generally excluding
Splunkbase altogether. This is a good methodology, especially when you are trying
to monetize your App on a per-license basis. Splunkbase doesn't have a methodology
for restricting downloads, other than for export reasons. Really, if you don't use
Splunkbase, you can publish your App anywhere, and as long as people find it and
download it, it is published. There are many different ways to share your App. These
are just a few: Apache/IIS web server, Amazon S3, and Dropbox. It's a short list, not
meant to be comprehensive, but just enough to give you ideas on where to publish
and display your App.

Publishing Applications

[158]

Splunkbase
The primary location for hosted Apps is http://apps.splunk.com, more commonly
known as Splunkbase. Splunkbase is a place for developers to publish their work
under a set of various licenses and hosting options. Once you have packaged your
App successfully, head over to http://apps.splunk.com/new and log in to your
account. There will be an EULA and a privacy policy. Read and accept both of them
if you agree to the terms. The first step is to determine how you are hosting your
content. There are two ways of doing this: Splunk-hosted content and externally
hosted content. The externally hosted option allows you to specify a URL for the end
user. It contains the App and any other documentation you wish to include. This is
what the option looks like:

The other option is to have it hosted by Splunkbase. This option will look like this:

If your browser supports it, you will have the option of a file picker or drag and
drop. Notice the requirements: maximum size of 50 MB and only one file at a time.
The extension must be tar.gz, .zip, or .spl (although .spl is not currently listed).
As soon as you upload the package, Splunkbase validates the App and informs you
of any validation errors.

http://apps.splunk.com
http://apps.splunk.com/new

Chapter 8

[159]

Any errors during the next steps will be presented at the top of the page, and will
look like this:

Here, the error was a special character in the name of the App. Also, on the initial
upload page, there is additional metadata that should be filled in to help users filter
down to your App as it applies to them:

Make sure that whatever boxes you check actually apply to your
environment. This is important if you are going to request App
certification.

We'll define App certification in a moment. As you step through the web UI, fill in
the relevant details for your App. Make them as complete as possible, especially
sections that are used for documentation. Take careful note of the License page.
You can specify a Free as in Beer license, but you can also restrict it to any number
of different types of licenses. You can even charge fees for your App. You can find
out more about the different licenses, and which of them you may want to use, at
http://choosealicense.com/.

Once you have stepped through the wizard and all configurations have been initially
validated, your App will be placed in a holding pattern, there to remain until a Splunk
employee reviews it, based on the approval criteria we discussed earlier. You can
view your App and make changes to the metadata but, until it has been approved,
no one will be able to see it.

http://choosealicense.com/

Publishing Applications

[160]

Your App may look something like this:

Of course, you will want to make the release notes and description more meaningful,
but very quickly, you can see some basic information about your App. And that's it
as far as uploading and publishing your App on Splunkbase is concerned! Quick and
easy! However, if you want to learn more about Certified Applications, read on.

Certified Applications
Certified Applications is a program provided by Splunk. These Certified
Applications programs are inspected and examined by the awesome people at
Splunk. Both Apps and add-ons are eligible for certification. The source code is
evaluated for vulnerabilities and, in essence, Splunk is committed to back the quality
and status of the App or add-on. Many customers who may be downloading your
App might have concerns with the security of the App. Make sure to take the time
and test and evaluate your code for vulnerabilities and coding best practices. Take
special consideration when considering the following excerpt, which can be found at
http://docs.splunk.com/Documentation:

"Splunk does not, in any way, warrant the accuracy, reliability, completeness,
usefulness, non-infringement of our community or partner developers. Splunk
shall not be liable or responsible in any way for any losses or damage of any kind
including lost profits or other indirect or consequential damages related to the use
or, or reliance upon, Splunk certified apps or add-ons."

http://docs.splunk.com/Documentation

Chapter 8

[161]

There are certain benefits of this for developers and users. Users get the assurance
that an App or add-on has been peer reviewed and it executes with the highest
standards without harming their systems and data. They also get that warm and
fuzzy feeling knowing that a certified App will have the proper support that most
enterprises expect. While the SLA for each App will be different, there should be a
minimum level of support offered as a certification requirement. This requirement
is part of the certification requirements, which are listed later. For developers,
certification means a prominent place on Splunkbase and more visibility, with the
recognition that the App or add-on was designed and executed beautifully. The
really awesome benefit for developers is the ability to access prerelease builds of
Splunk Enterprise (with a valid nondisclosure agreement). This gives you the ability
to refactor and release new builds with each new Splunk release.

The list of requirements for certification is pretty long. We won't hit every point, as
the requirements may change, but the primary requirements are these:

•	 Dependency declarations
•	 Index creation
•	 Summarization and acceleration techniques
•	 CIM support
•	 Eventgen support (required with CIM support)
•	 Documentation
•	 Support

There are also recommended criteria that go deeper down the Splunk rabbit hole,
as well as a nifty checklist for certification. You can find the nitty-gritty right here at
http://dev.splunk.com/view/app-cert/SP-CAAAE3H.

The support requirement details that you must have 8-hour x 5-day
support available. Make sure that you can commit to this requirement.

As part of the certification process, you need to follow the security best practices
guidelines. Some of these guidelines are essential for all types of IT-related projects,
such as keeping track of security in your software life cycle, following the Open
Web Application Security Project (OWASP) site and practices, ensuring that
third-party content is up to date and secure, and manually testing every portion
with the controls listed at OWASP.

http://dev.splunk.com/view/app-cert/SP-CAAAE3H

Publishing Applications

[162]

The certification process is pretty simple! Start by building an App, which we
hopefully helped you accomplish. Next, double and triple check the criteria against
your App and then package it. Before requesting certification, make sure that you
provide documentation and support information in the App or add-on. One of the
biggest reasons for failing in certification is not documenting thoroughly enough.
Once you feel you have met the criteria, you can submit your App to Splunkbase
normally, but make sure that you check the Certification box. This triggers the
review process and, when approved, you will have published a certified App!

Splunk Cloud applications
Recently, Splunk started offering an in-cloud hosted version of Splunk. This offering
is different in a few ways, which will impact your choices for deploying Apps into
Splunk Cloud. Apps cannot be installed directly into Splunk Cloud by the end user.
Splunk must vet each App prior to installation. Splunk support can help you install
an App into Splunk Cloud. As you are developing Apps, you should keep these
points in mind:

•	 Splunk-supported Apps are available in Splunk Cloud.
•	 Community Apps and custom Apps are allowed in Splunk Cloud after a

vetting process by the Splunk Cloud team.
•	 Apps with certain features such as scripted inputs or third-party credentials

must be run on a heavy forwarder that you manage on premises. The heavy
forwarder sends the parsed data to Splunk Cloud.

While you might not have direct control in the environment, keep in mind that a
customer might want your App in Splunk Cloud. Design it now, save time and
hassle later.

Community
Now that we have uploaded our App, we can truthfully say we have joined the
Splunk community. Also, as part of the Splunk community, we have certain
responsibilities to foster the environment as an inviting place to explore, learn,
and help others. We will now take a moment to orient those of you that haven't
yet visited the community.

Chapter 8

[163]

Answers
The answers site is a help forum that is open to the public. It is located at
http://answers.splunk.com. The primary purpose is to get help from other forum
members. The questions that are asked and the answers that are given are highly
variable, but the amount of creativity is astounding. Most of these answers come
from folks with a wealth of real-world knowledge, but some are answered by native
Splunkers. No question is too small; the community is always willing to help.

dev.splunk.com
As the title indicates, http://dev.splunk.com is a site designed for App
developers, and almost everything in this book can be found in the documentation
there. The site covers the HTML web framework, as well as the Django
environment (deprecated in 6.3) and an entire list of SDKs—definitely
a site to use for your reference.

Internet Relay Chat
Internet Relay Chat (IRC) has been around for a very long time. If you are interested
in the multiplayer notepad, join us at the #splunk IRC Channel on EFnet. There
are various IRC clients that can be used; most of them use Adium, Irssi, and
others. If you need help connecting to IRC, check out http://wiki.splunk.com/
Community:IRC.

Wiki
A Wiki is a place meant to gather information; Splunk has one. It is full of
information, and is located at http://wiki.splunk.com. There are quite a few
things posted on the Wiki—too many to mention all of them—but there are a few
gems that I'd like to point out:

•	 Who's who in the IRC channel (http://wiki.splunk.com/Community:IRC).
•	 A list of things (mostly learned from experience) that we wish we knew

when we started (http://wiki.splunk.com/Things_I_wish_I_knew_
then).

•	 Enhancement requests—if you like what you see, open a support ticket and
tell them as much. This is how we voice our opinions on how to make the
software better (http://wiki.splunk.com/Community:ERs).

The content is changing all the time, so check out the Wiki from time to time.

http://answers.splunk.com
http://dev.splunk.com
http://wiki.splunk.com/Community:IRC
http://wiki.splunk.com/Community:IRC
http://wiki.splunk.com
http://wiki.splunk.com/Community:IRC
http://wiki.splunk.com/Things_I_wish_I_knew_then
http://wiki.splunk.com/Things_I_wish_I_knew_then
http://wiki.splunk.com/Community:ERs

Publishing Applications

[164]

User groups
User groups are important for Splunk. A user group is formed when a smaller region
of Splunk users convene on their own to discuss, well, Splunk. It could be a city, a
region of a state, or virtually any combination of users. For now, to find a user group,
check out http://www.meetup.com and search for Splunk. Be on the lookout for the
official Splunk user groups; they are coming soon. If you have questions on how to
find a user group, write an e-mail to community@splunk.com with your questions.

The SplunkTrust
New for this year, the SplunkTrust is a formal recognition of community leaders.
These are users who have contributed to the Splunk community in meaningful ways,
be it answering questions on the answers website, leading a user group, submitting
an App and supporting it, blogging, or catching a leprechaun. Any of these (and
more, but probably not a leprechaun) would make you eligible for the program.
Applications and nominations were accepted until the beginning of September,
2015. The members were announced at Splunk .conf 2015 during the induction
ceremony. You will be able to identify the members; they will have a special icon on
the answers website, and other places, that looks like a fez. If you see one of these
members, feel free to approach them. We are here to help.

http://www.meetup.com

Chapter 8

[165]

Summary
In this chapter, we went through the steps to publishing an App on Splunkbase.
We made sure that our packaging was correct and that the initial verification steps
were met. You learned about Splunk App certification, and how it can be beneficial
to users and developers alike. After that, you learned about some places within the
Splunk community in which you can find help, ask questions, discuss Splunk in
detail, or just hang out.

Now you have reached the end of the book. We thank you for reading, and please
let us know how we did (instructions for feedback are given in the Preface). After
completing this book, you now have the required knowledge and insight into the
world of Splunk application development. Be on the lookout for new and interesting
ways to integrate with Splunk, and visit http://dev.splunk.com for more features
and code in the future. Allons-y!

http://dev.splunk.com

[167]

Index
A
acceleration

about 58
accelerated reports 60
summary indexing 58-60

access 28
Access Control Server (ACS) 23
add-on types

Admin add-ons (ADMIN) 3
Applications 2
Domain add-ons 2
Input add-ons (IA) 3
Supporting add-ons (SA) 3
Technology add-ons (TA) 3

App, branding
about 53
Cascading Style Sheets (CSS) 58
JavaScript 58
logos 54-56
navigation 56, 57

App Key Value Store (KV Store)
about 131
configuring 133-135
cons 131
instances 131
pros 131
using 131

application data
about 20
indexes 20-22
sources 23
source types 23

applications
methods, of creating 12, 13

App packaging
about 151-153
checklist 154
do's and don'ts 150

Apps
installing 7
installing, via Splunk Web 7
self-hosting 157

Apps, designing
about 4
brand, identifying 6
data consumption, identifying 5
display, identifying 6
use case, identifying 5

attributes, data models
auto-extracted 137
eval expression 138
geo IP 138
lookup 138
regular expression 138

B
basic application structure

about 18
appserver folder 18
bin folder 19
default folder 19
local folder 19
lookups folder 19
metadata folder 19
static folder 20

Bower
about 141
URL 141

[168]

C
Cascading Style Sheets (CSS) 58, 72, 73
Certified Applications 160, 161
ChartView

about 85
area chart 86
bar chart 86
column chart 87
filler gauge 87
line chart 88
marker gauge 88
pie chart 89
radial gauge 89
scatter plot 90
types 85

CheckboxGroupView 91
CheckboxView 91
CIM App

reference 53
CLI 15
Common Information Model 53
CSV lookup

cons 132
pros 132

custom alert actions 37-39
custom D3 visualization 109-112
custom JavaScript 72

D
data

visualizing 63, 64
data models

about 136-140
attributes 137
objects 136
root event 136
root object 136
root search 137
root transaction 137

display-related modules
about 90
CheckboxGroupView 91
CheckboxView 91
DropdownView 92

EventsViewerView 93
FooterView 94
HeaderView 94
MapElement 98, 99
MultiDropdownView 95
RadioGroupView 95
SearchBarView 96
SearchControlsView 97
SimpleSplunkView 97
SingleView 97
TableView 99
TextInputView 100
TimelineView 101
TimeRangeView 100

E
enriched data

about 39
Common Information Model 53
event types 39-43
lookups 48-52
macros 46-48
tags 44, 45

external data sources
about 112
content 113
data 113

F
FreeForm 12-17

G
Git

about 142
URL 142

GUI method 13
Gulp

about 142
URL 142

H
HeaderView 94
HTML dashboards 73, 74, 77-81

[169]

I
Internet Relay Chat (IRC) 163

J
JavaScript 58

L
logos 54-56
lookups 48-52

M
macros 46-48
MapElement 98, 99
methods, of creating applications

about 12
GUI 13-15

modular D3 visualization 115-121
modular inputs

about 122, 123
configuring 129, 130
features 122
spec file 124-128
testing 129
URL 122

modules 64
MultiDropdownView 95

N
naming conventions

App description 148
App icons and screenshots 149
App ID 148
App version 148

naming guidelines 147-149
navigation 56
Node Package Manager (npm)

about 141
URL 141

O
object_name 28
object permissions

about 27, 28
setup screen 29

object_type 28
Open Web Application Security Project

(OWASP) 161

R
RadioGroupView 95

S
SearchBarView 96
SearchControlsView 97
Search Processing Language (SPL) 5
search-related modules

about 82
PostProcessManager 84
SavedSearchManager 83
SearchManager 82, 83

setup screen, object permissions
about 29
endpoint 30
setup file 31, 32

sidr
about 107
URL 107

SimpleSplunkView 97
SimpleXML dashboard

about 65-68
SimpleXML forms 68-72

single script instance mode 123
single script instance per input

stanza mode 123
SingleView 97
Splunk application

about 1
definitions 2
features 2

[170]

Splunkbase
about 147, 158-160
Certified Applications 160-162
Splunk Cloud applications 162
URL 11

Splunk command line
about 8
used, for unzipping 8

Splunk community
about 162
answers site 163
dev.splunk.com 163
Internet Relay Chat (IRC) 163
SplunkTrust 164
user groups 164
Wiki 163

Splunk dashboards
customizing, CSS used 102-104
customizing, JavaScript used 105-108

Splunk Developer's Kit (SDK) 53
Splunk documentation

reference 53
SplunkJS Stack

about 81
display-related modules 90
search-related modules 82
view-related modules 85

Splunk knowledge objects (SKOs)
about 23
configurations 27
dashboards 26
event types 24
lookups 26
macros 24
saved searches 25
tags 25

SplunkTrust 164
Splunk Web Framework

about 77
HTML dashboard 77-81
SplunkJS Stack 81
tokenization 101, 102

summary indexing 58-60

T
TableView 99
tags 44, 45
TextInputView 100
TimelineView 101
TimeRangeView 100
token 101
tokenization 101, 102
tokens 72, 73

V
version control and package managers

about 140
Bower 141
Git 142
Gulp 142
implementing 142-145
npm 141

view-related modules
about 85
ChartView 85

W
Wiki, Splunk

URL 163
workflows

about 33
building 34-36

Thank you for buying
Splunk Developer's Guide

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Implementing Splunk
Second Edition
ISBN: 978-1-78439-160-7 Paperback: 506 pages

A comprehensive guide to help you transform Big
Data into valuable business insights with Splunk 6.2

1.	 Learn to search, configure, and deploy Splunk
on one or more machines.

2.	 Start working with Splunk fast, with a tested
set of practical examples and useful advice.

3.	 Step-by-step instructions and examples with
comprehensive coverage for Splunk veterans
and newbies alike.

Mastering Splunk
ISBN: 978-1-78217-383-0 Paperback: 344 pages

Optimize your machine-generated data effectively by
developing advanced analytics with Splunk

1.	 Develop simple applications into robust,
feature-rich applications to search, monitor,
and analyze machine-generated big data
with ease.

2.	 Learn about lookups, indexing, dashboards,
navigation, advances transaction
with examples.

3.	 Understand the key features of Splunk by
exploring real-world examples and apply the
technology in your database.

Please check www.PacktPub.com for information on our titles

Splunk Essentials
ISBN: 978-1-78439-838-5 Paperback: 156 pages

Leverage the power of Splunk to efficiently analyze
machine, log, web, and social media data

1.	 Make impressive reports and dashboards
easily.

2.	 Search, locate, and manage apps in Splunk.

3.	 Use the Twitter app to create a dashboard
based on Twitter searches of particular topics.

Splunk Operational Intelligence
Cookbook
ISBN: 978-1-84969-784-2 Paperback: 414 pages

Over 70 practical recipes to gain operational data
intelligence with Splunk Enterprise

1.	 Learn how to use Splunk to effectively gather,
analyze, and report on the operational data
across your environment.

2.	 Expedite your operational intelligence
reporting, be empowered to present data in
a meaningful way, and shorten the Splunk
learning curve.

3.	 Easy-to-use recipes to help you create robust
searches, reports, and charts using Splunk.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Application Design Fundamentals

	What is a Splunk application?
	Why applications?
	Definitions

	Designing the App
	Identifying the use case
	Identifying what you want to consume
	Identifying what you want to brand
	Identifying what you want to display

	Installing Apps
	Splunk Web
	The Splunk command line
	Unzipping using the command line

	Summary

	Chapter 2: Creating Applications

	A brief clarification
	Methods of creating applications
	GUI
	CLI
	FreeForm

	Basic application structure
	appserver
	bin
	default
	local
	lookups
	metadata
	static

	Application data
	Indexes
	Source types
	Sources

	Available Splunk knowledge objects
	Macros
	Event types
	Tags
	Saved searches
	Dashboards
	Lookups
	Configurations

	Object permissions
	The setup screen
	The endpoint
	The setup file

	Summary

	Chapter 3: Enhancing Applications

	Workflows
	Custom alert actions
	Enriched data
	Event types
	Tags
	Macros
	Lookups
	Common Information Model

	Branding your App
	Logos
	Navigation
	CSS
	JavaScript

	Acceleration
	Summary indexing
	Accelerated reports

	Summary

	Chapter 4: Basic Views and Dashboards

	Knowing your data
	Available modules

	SimpleXML dashboard
	SimpleXML forms

	Custom JavaScript, CSS, and Tokens
	HTML dashboards
	Summary

	Chapter 5: The Splunk Web Framework

	The HTML dashboard
	SplunkJS Stack
	Search-related modules
	SearchManager
	SavedSearchManager
	PostProcessManager

	View-related modules
	ChartView

	Display-related modules
	CheckboxView
	CheckboxGroupView
	DropdownView
	EventsViewerView
	FooterView
	HeaderView
	MultiDropdownView
	RadioGroupView
	SearchBarView
	SearchControlsView
	SimpleSplunkView
	SingleView
	MapElement
	TableView
	TextInputView
	TimeRangeView
	TimelineView

	Tokenization
	Customizing Splunk dashboards using CSS
	Customizing Splunk dashboards using JavaScript
	Custom D3 visualization
	External data and content
	Data
	Content

	Summary

	Chapter 6: Advanced Integrations and Development

	Modular D3 visualization
	Modular inputs
	The spec file
	Testing modular inputs
	Configuring modular inputs

	The App Key Value Store
	When would you use the KV Store?
	Configuring the KV Store

	Data models
	Version control and package managers
	npm
	Bower
	Gulp
	Git
	Tying them all together

	Summary

	Chapter 7: Packaging Applications

	Naming guidelines
	Dos and don'ts

	Packaging the App
	The App packaging checklist
	Summary

	Chapter 8: Publishing Applications

	Self-hosting your App
	Splunkbase
	Certified Applications
	Splunk Cloud applications

	Community
	Answers
	dev.splunk.com
	Internet Relay Chat
	Wiki
	User groups
	The SplunkTrust

	Summary

	Index

