BO0III0I0101001 { 100
0011001010171

Professional Expertise Distilled

Splunk Best Practices

professional expertise distilled

Travis Marlette [PACKT] enterprise &

PUBLISHING

Splunk Best Practices

Design, implement, and publish custom Splunk
applications by following best practices

Travis Marlette

enterprise

professional expertise distilled
PUBLISHING

BIRMINGHAM - MUMBAI

Splunk Best Practices

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2016

Production reference: 1150916

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-139-6

www.packtpub.com

Author

Travis Marlette

Reviewer

Chris Ladd

Commissioning Editor

Veena Pagare

Acquisition Editor

Tushar Gupta

Content Development Editor

Prashanth G Rao

Technical Editor

Murtaza Tinwala

Credits

Copy Editor

Safis Editing

Project Coordinator

Ulhas Kambali

Proofreader

Safis Editing

Indexer

Tejal Daruwale Soni

Production Coordinator

Melwyn Dsa

Cover Work

Melwyn Dsa

About the Author

Travis Marlette has been working with Splunk since Splunk 4.0, and has over 7 years of
statistical and analytical experience leveraging both Splunk and other technologies. He cut
his teeth in the securities and equities division of the finance industry, routing stock market
data and performing transactional analysis on stock market trading, as well as reporting
security metrics for SEC and other federal audits.

His specialty is in IT operational intelligence, which consists of the lions share of many
major companies. Being able to report on security, system-specific, and propriety
application metrics is always a challenge for any company and with the increase of IT in the
modern day, having a specialist like this will become more and more prominent.

Working in finance, Travis has experience of working to integrate Splunk with some of the
newest and most complex technologies, such as:

e SAS

e HIVE

e TerraData (Data Warehouse)

e Oozie

¢ EMC (Xtreme IO)

e Datameer

e ZFS

e Compass

e Cisco (Security/Network)

e Platfora

e Juniper (Security and Network)
e IBM Web Sphere

e Cisco Call Manager

¢ Java Management Systems (JVM)
e Cisco UCS

e IBM MQ Series

e FireEye

e Microsoft Active Directory

e Snort

* Microsoft Exchange

e F5

¢ Microsoft — OS

e MapR (Hadoop)
e Microsoft SQL

¢ YARN (Hadoop)
¢ Microsoft SCOM
e NoSQL

e Linux (Red Hat / Cent OS)
e Oracle

e MySQL

¢ Nagios

e LDAP

o TACACS+

o ADS

o Kerberos

e Gigamon

¢ Telecom Inventory Management
¢ Riverbed Suite

e Endace

e Service Now

o JIRA

¢ Confluence

Travis has been certified for a series of Microsoft, Juniper, Cisco, Splunk, and network
security certifications. His knowledge and experience is truly his most valued currency, and
this is demonstrated by every organization that has worked with him to reach their goals.

He has worked with Splunk installations that ingest 80 to 150 GB daily, as well as 6 TB
daily, and provided value with each of the installations he’s created to the companies that
he’s worked with. In addition he also knows when a project sponsor or manager requires
more information about Splunk and helps them understand what Splunk is, and how it can
best bring value to their organization without over-committing.

According to Travis, "Splunk is not a 'crystal ball' that's made of unicorn tears, and bottled
rainbows, granting wishes and immediate gratification to the person who possesses it. It's
an IT platform that requires good resources supporting it, and is limited only by the
knowledge and imagination of those resources". With the right resources, that’s a good
limitation for a company to have.

Splunk acts as a ‘Rosetta Stone” of sorts for machines. It takes thousands of machines,
speaking totally different languages all at the same time, and translates that into something
a human can understand. This by itself, is powerful.

His passion for innovating new solutions and overcoming challenges leveraging Splunk
and other data science tools have been exercised and visualized every day each of his roles.
Those roles are cross industry, ranging from Bank of New York and Barclay's Capital, to the
Federal Government. Thus far, he and the teams he has worked with have taken each of
these organizations further than they have ever been on their Splunk journey. While he
continues to bring visibility, add value, consolidate tools, share work, perform predictions,
and implement cost savings, he is also are often mentioned as the most resourceful, reliable,
and goofy person in the organization. Travis says “A new Splunk implementation is like
asking your older brother to turn on a fire hose so you can get a drink of water. Once it’s on,
just remember to breathe.”

About the Reviewer

Chris Ladd is a staff sales engineer at Splunk. He has been with Splunk for three years and
has been a sales engineer for more than a decade. He has earned degrees from
Southwestern University and the University of Houston. He resides in Chicago.

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and

PACKT! i

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

Table of Contents

Preface 1
Chapter 1: Application Logging 8
Loggers 10
Anatomy of a log 10
Log4* 11
Pantheios 11

Logging — logging facility for Python 11
Example of a structured log 11

Data types 13
Structured data — best practices 13

Log events 14
Common Log Format 14

Automatic Delimited Value Extraction (l1S/Apache) — best practice 16

Manual Delimited Value Extraction with REGEX 18

Step 1 — field mapping — best practice 18

Step 2 — adding the field map to structure the data (props/transforms) 19

Use correlation IDs— best practice 20

Correlation IDs and publication transactions — best practice 22

Correlation IDs and subscription transactions — best practices 23

Correlation IDs and database calls — best practices 24
Unstructured data 24
Event breaking — best practice 25
Best practices 26
Configuration transfer — best practice 29
Summary 33
Chapter 2: Data Inputs 34
Agents 34
Splunk Universal Forwarder 34
Splunk Heavy Forwarder 34
Search Head Forwarder 35
Data inputs 35
APl inputs 35
Database inputs 36
Monitoring inputs 37

Scripted inputs 37

Custom or not 38

Modular inputs 40
Windows inputs 46

Windows event logs / Perfmon 47
Deployment server 47
Know your data 54
Long delay intervals with lots of data 55
Summary 56
Chapter 3: Data Scrubbing 57
Heavy Forwarder management 58
Managing your Heavy Forwarder 63
Manual administration 63
Deployment server 63
Important configuration files 64
Even data distribution 64
Common root cause 67
Knowledge management 69
Handling single- versus multi-line events 70
Manipulating raw data (pre-indexing) 71
Routing events to separate indexes 71
Black-holing unwanted events (filtering) 73
Masking sensitive data 74
Pre-index data masking 75
Post-index data masking 75
Setting a hostname per event 77
Summary 77
Chapter 4: Knowledge Management 79
Anatomy of a Splunk search 79
Root search 79
Calculation/evaluation 80
Presentation/action 80

Best practices with search anatomy 81
The root search 81
Calculation/evaluation 81
Presentation/action 82
Knowledge objects 83
Eventtype Creation 84
Creation through the Splunk Ul 84
Creation through the backend shell 86

Field extractions 90
Performing field extractions 20
Pre-indexing field extractions (index time) 9
Post-indexing field extractions (search time) 9

Creating index time field extractions 9
Creating search time field extractions 93

[ii]

Creating field extractions using IFX 93

Creation through CLI 96

Summary 98
Chapter 5: Alerting 99
Setting expectations 100
Time is literal, not relative 101

To quickly summarize 103

Be specific 103

To quickly summarize 105
Predictions 105

To quickly summarize 106
Anatomy of an alert 106
Search query results 107
Alert naming 107
The schedule 107
The trigger 107
The action 108
Throttling 108
Permissions 108
Location of action scripts 108
Example 108
Custom commands/automated self-healing 116
A word of warning 118
Summary 119
Chapter 6: Searching and Reporting 120
General practices 121
Core fields (root search) 121
_time 122

Index 122
Sourcetype 122

Host 122

Source 122

Case sensitivity 123
Inclusive versus exclusive 124
Search modes 124
Fast Mode 125
Verbose Mode 126
Smart Mode (default) 127
Advanced charting 128
Overlay 129

[iii]

Host CPU / MEM utilization 129
Xyseries 132
Appending results 134

timechart 134

stats 137

The Week-over-Week-overlay 139
Day-over-day overlay 140

SPL to overlay (the hard way) 140

Timewrap (the easy way) 141

Summary 141
Chapter 7: Form-Based Dashboards 142
Dashboards versus reports 143
Reports 143
Dashboards 147

Form-based 147

Drilldown 148

Report/data model-based 148

Search-based 148

Modules 148

Data input 149

Chart 149

Table 149

Single value 149

Map module 149
Tokens 149
Building a form-based dashboard 151

Summary 159
Chapter 8: Search Optimization 160
Types of dashboard search panel 160
Raw data search panel 161
Shared search panel (base search) 161
Report reference panel 161
Data model/pivot reference panels 161
Raw data search 161
Shared searching using a base search 165
Creating a base search 167
Referencing a base search 168
Report referenced panels 169
Data model/pivot referenced panels 174
Special notes 178
Summary 179

[iv]

Chapter 9: App Creation and Consolidation 180
Types of apps 181
Search apps 181
Deployment apps 181
Indexer/cluster apps 181
Technical add-ons 182
Supporting add-ons 182
Premium apps 182
Consolidating search apps 183
Creating a custom app 183
App migrations 184
Knowledge objects 185
Dashboard consolidation 186

Search app navigation 193
Consolidating indexing/forwarding apps 196
Forwarding apps 197
Indexer/cluster apps 199
Summary 201
Chapter 10: Advanced Data Routing 202
Splunk architecture 203
Clustering 203
Search head clustering 203

Indexer cluster 203
Multi-site redundancy 204

Leveraging load balancers 204

Failover methods 204

Putting it all together 206
Network segments 207
Production 207
Standard Integration Testing (SIT) 207
Quality assurance 208
Development 208
The DMZ (App Tier) 209
The data router 210
Building roads and maps 211
Building the UF input/output paths 213
Building the HF input/output paths 214

If you build it, they will come 217
Summary 217

Index

219

[v]

Preface

Within the working world of technology, there are hundreds of thousands of different
applications, all (usually) logging in different formats. As a Splunk expert, our job is make all
those logs speak human, which is often the impossible task. With third-party applications
that provide support, sometimes log formatting is out of our control. Take, for instance,
Cisco or Juniper, or any other leading leading manufacturer.

These devices submit structured data,specific to the manufacturer. There are also
applications that we have more influence on, which are usually custom applications built
for a specific purpose by the development staff of your organization. These are usually
referred to as 'Proprietary applications' or 'in-house’ or "home grown' all of which mean the
same thing.

The logs I am referencing belong to proprietary in-house (a.k.a. home grown) applications
that are often part of the middleware, and usually control some of the most mission critical
services an organization can provide.

Proprietary applications can be written in anything, but logging is usually left up to the
developers for troubleshooting, and up until now the process of manually scraping log files
to troubleshoot quality assurance issues and system outages has been very specific. I mean
that usually, the developer(s) are the only people that truly understand what those log
messages mean.

That being said, developers often write their logs in a way that they can understand them,
because ultimately it will be them doing the troubleshooting / code fixing when something
severe breaks.

As an IT community, we haven't really started taking a look at the way we log things, but
instead we have tried to limit the confusion to developers, and then have them help other
SMEs that provide operational support, understand what is actually happening.

This method has been successful, but time consuming, and the true value of any SME is
reducing any systems MTTR, and increasing uptime. With any system, the more
transactions processed means the larger the scale of a system, which after about 20
machines, troubleshooting begins to get more complex, and time consuming with a manual
process.

Preface

The goal of this book is to give you some techniques to build a bridge in your
organization. We will assume you have a base understanding of what Splunk does, so that
we can provide a few tools to make your day to day life easier with Splunk and not get
bogged down in the vast array of SDK's and matching languages, and API's. These tools
range from intermediate to expert levels. My hope is that at least one person can take at
least one concept from this book, to make their lives easier.

What this book covers

Chapter 1, Application Logging, discusses where the application data comes from, and how
that data gets into Splunk, and how it reacts to the data. You will develop applications, or
scripts, and also learn how to adjust Splunk to handle some non-standardized logging.
Splunk is as turnkey, as the data you put it into it. This means, if you have a 20-year-old
application that logs unstructured data in debug mode only, your Splunk instance will not
be a turnkey. With a system such a Splunk, we can quote some data science experts in
saying "garbage in, garbage out".

Chapter 2, Data Inputs, discusses how to move on to understanding what kinds of data
input Splunk uses in order to get data inputs. We see how to enable Splunk to use the
methods which they have developed in data inputs. Finally, you will get a brief
introduction to the data inputs for Splunk.

Chapter 3, Data Scrubbing, discusses how to format all incoming data to a Splunk, friendly
format, pre-indexing in order to ease search querying, and knowledge management going
forward.

Chapter 4, Knowledge management, explains some techniques of managing the incoming
data to your Splunk indexers, some basics of how to leverage those knowledge objects to
enhance performance when searching, as well as the pros and cons of pre and post field
extraction.

Chapter 5, Alerting, discusses the growing importance of Splunk alerting, and the different
levels of doing so. In the current corporate environment, intelligent alerting, and alert
noise' reduction are becoming more important due to machine sprawl, both horizontally
and vertically. Later, we will discuss how to create intelligent alerts, manage them
effectively, and also some methods of 'self-healing' that I've used in the past and the
successes and consequences of such methods in order to assist in setting expectations.

[2]

Preface

Chapter 6, Searching and Reporting, will talk about the anatomy of a search, and then some
key techniques that help in real-world scenarios. Many people understand search syntax,
however to use it effectively, (a.k.a to become a search ninja) is something much more
evasive and continuous. We will also see real world use-cases in order to get the point
across such as, merging two datasets at search time, and making the result set of a two
searches match each other in time.

Chapter 7, Form-Based Dashboards, discusses how to create form based dashboards
leveraging foo variables as selectors to appropriately pass information to another search,
or another dashboard and also, we see how to create an effective drill-down effect.

Chapter 8, Search optimization, shows how to optimize the dashboards to increase
performance. This ultimately effects how quickly dashboards load results. We do that by
adjusting search queries, leverage summary indexes, the KV Store, accelerated searches,
and data models to name a few.

Chapter 9, App Creation and Consolidation, discusses how to take a series of apps from
Splunkbase, as well as any dashboard that is user created, and put them into a Splunk app
for ease of use. We also talk about how to adjust the navigation XML to ease user navigation
of such an app.

Chapter 10, Advanced Data Routing, discusses something that is becoming more common
place in an enterprise. As many people are using big data platforms like Splunk to move
data around their network things such as firewalls and data stream loss, sourcetype
renaming by environment can become administratively expensive.

What you need for this book

You will need at least a distributed deployment of an on prem installation of Splunk for this
book, collecting both Linux and Windows information, and a heavy forwarder as well. We
will use all of these pieces to show you techniques to add value.

Who this book is for

This book is for administrators, developers, and search ninjas who have been using Splunk
for some time. A comprehensive coverage makes this book great for Splunk veterans and
newbies alike.

[3]

Preface

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "For
instance, in Cisco log files there isa src_ip field."

A block of code is set as follows:

[mySourcetype]
REPORT-fields = myLinuxScript_fields

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[myUnstructured]
DATETIME_CONFIG =
NO_BINARY_CHECK = true
category = Custom
pulldown_type = true

Any command-line input or output is written as follows:
ssh -v —-p 8089 mydeploymentserver.com

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "The most common
messages we see are things like unauthorized login attempt <user> or Connection Timed
out to <ip address>."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

[4]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.p
acktpub. com. If you purchased this book elsewhere, you can visit http: //www.packtpub.c
om/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSOk D=

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

[5]

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPubl
ishing/Splunk-Best-Practices. We also have other code bundles from our rich catalog of
books and videos available at https://github.com/PacktPublishing/. Check them out!

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from nttps://www.packtpub.com/sites/default/files/down
loads/SplunkBestPractices_ColorImages.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/conten
t/support and enter the name of the book in the search field. The required information will
appear under the Errata section.

[6]

Preface

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

[7]

Application Logging

Within the working world of technology, there are hundreds of thousands of different
applications, all (usually) logging in different formats. As Splunk experts, our job is make all
those logs speak human, which is often an impossible task. With third-party applications
that provide support, sometimes log formatting is out of our control. Take for instance,
Cisco or Juniper, or any other leading application manufacturer. We won't be discussing
these kinds of logs in this chapter, but we'll discuss the logs that we do have some control
over.

The logs I am referencing belong to proprietary in-house (also known as “home grown”)
applications that are often part of middleware, and usually they control some of the most
mission-critical services an organization can provide.

Proprietary applications can be written in any language. However, logging is usually left up
to the developers for troubleshooting and up until now the process of manually scraping
log files to troubleshoot quality assurance issues and system outages has been very specific.
I mean that usually, the developer(s) are the only people that truly understand what those
log messages mean.

That being said, oftentimes developers write their logs in a way that they can understand
them, because ultimately it will be them doing the troubleshooting/code fixing when
something breaks severely.

As an IT community, we haven't really started looking at the way we log things, but instead
we have tried to limit the confusion to developers, and then have them help other SME's
that provide operational support to understand what is actually happening.

This method is successful, however, it is slow, and the true value of any SME is reducing
any system's MTTR, and increasing uptime.

Application Logging

With any system, the more transactions processed means the larger the scale of the system,
which means that, after about 20 machines, troubleshooting begins to get more complex and
time consuming with a manual process.

This is where something like Splunk can be extremely valuable. However, Splunk is only as
good as the information that comes into it.

I will say this phrase for the people who haven't heard it yet; “garbage in... garbage out*

There are some ways to turn proprietary logging into a powerful tool, and I have personally
seen the value of these kinds of logs. After formatting them for Splunk, they turn into a
huge asset in an organization's software life cycle.

I'm not here to tell you this is easy, but I am here to give you some good practices about
how to format proprietary logs.

To do that I'll start by helping you appreciate a very silent and critical piece of the
application stack.

To developers, a logging mechanism is a very important part of the stack,
and the log itself is mission critical. What we haven't spent much time
thinking about before log analyzers, is how to make log
events/messages/exceptions more machine friendly so that we can socialize
the information in a system like Splunk, and start to bridge the knowledge
gap between development and operations.

The nicer we format the logs, the faster Splunk can reveal the information
about our systems, saving everyone time and headaches.

In this chapter we are briefly going to look at the following topics:

e Log messengers

e Logging formats

e Correlation IDs and why they help

e When to place correlation ID in a log

[91

Application Logging

Loggers

Here I will give some very high level information on loggers. My intention is not to
recommend logging tools, but simply to raise awareness of their existence for those that are
not in development, and allow for independent research into what they do. With the right
developer, and the right Splunker, the logger turns into something immensely valuable to
an organization.

There is an array of different loggers in the IT universe, and I'm only going to touch on a
couple of them here. Keep in mind that I only reference these due to the ease of
development I've seen from personal experience, and experiences do vary.

I'm only going to touch on three loggers and then move on to formatting, as there are tons
of logging mechanisms and the preference truly depends on the developer.

Anatomy of a log

I'm going to be taking some very broad strokes with the following explanations in order to
familiarize you, the Splunk administrator, with the development version of 'the logger'.
Each language has its own versions of 'the logger' which is really only a function written in
that software language that writes application relevant messages to a log file. If you would
like to learn more information, please either seek out a developer to help you understand
the logic better or acquire some education on how to develop and log in independent study.

There are some pretty basic components to logging that we need to understand to learn
which type of data we are looking at. I'll start with the four most common ones:

¢ Log events: This is the entirety of the message we see within a log, often starting
with a timestamp. The event itself contains all other aspects of application
behavior such as fields, exceptions, messages, and so on... think of this as the
“container” if you will, for information.

* Messages: These are often made by the developer of the application and provide
some human insight into what's actually happening within an application. The
most common messages we see are things like unauthorized login attempt
<user> or Connection Timed out to <ip address>.

e Message Fields: These are the pieces of information that give us the who, where,
and when types of information for the application's actions. They are handed to
the logger by the application itself as it either attempts or completes an activity.
For instance, in the log event below, the highlighted pieces are what would be
fields, and often those that people look for when troubleshooting;:

[10]

Application Logging

"2/19/2011 6:17:46 AM Using 'xplog70.dll' version
'2009.100.1600" to execute extended store procedure
'xp_common_1"' operation failed to connect to 'DB_XCUTE_STOR'"

¢ Exceptions: These are the uncommon but very important pieces of the log. They
are usually only written when something goes wrong, and offer developer insight
into the root cause at the application layer. They are usually only printed when
an error occurs, and are used for debugging.

These exceptions can print a huge amount of information into the log
depending on the developer and the framework. The format itself is not easy
and in some cases is not even possible for a developer to manage.

Log4*

This is an open source logger that is often used in middleware applications.

Pantheios

This is a logger popularly used for Linux, and popular for its performance and multi-
threaded handling of logging. Commonly, Pantheios is used for C/C++ applications, but it
works with a multitude of frameworks.

Logging — logging facility for Python
This is a logger specifically for Python, and since Python is becoming more and more
popular, this is a very common package used to log Python scripts and applications.

Each one of these loggers has their own way of logging, and the value is determined by the
application developer. If there is no standardized logging, then one can imagine the
confusion this can bring to troubleshooting.

Example of a structured log

This is an example of a Java exception in a structured log format:

[11]

Application Logging

e s

T 2 e T T —eof = cSeoecoroo,
BASIC REND RENDERING org.jdesktop.wonderland.modules.orb.client.cell.OrbCellRenderer@?sfed
**% BASIC REND VISIBLE org.Jjdesktop.wonderland.modules.orb.client.cell.orbCellRenderer@iefedss]
Jul 8, 2009 6:15:05 PM org.jdesktop.wonderland.modules.appbase.client.swing.Windowswing requesty
WRARNING: Focus request for embedded component rejected.

Jul &, 2009 6:15:06 PM org.jdesktop.wonderland.modules.appbase.client.swing.Windowswing$l run
WARNING: Focus reguest for main canvas rejected.

Jul &, 2009 6:15:19 PM com.sun.sgs.impl.ic.CompleteMessageFilter processRecelveBuffer

java.lang.MullPointerException
at org.jdeskteop.wonderland.modules.orb.client.cell.0rkMessageHandler.done (OrkbMessageHan
at org.jdesktop.wonderland.modules.orb.client.cell.0rbMessageHandler.processMessage (Ork!
at org.ijdesktop.wonderland.modules.orb.client.cell.orbMessageHandlersl . messageReceived|
at oryg.ijdesktop.wonderland.client.cell.ChannelComponent.deliverMessage (ChannelComponent
at org.ijdesktop.wonderland.client.cell.ChannelComponent . .messageReceived|ChannelComponen
at org.ijdesktop.wonderland.client.cell.CellChannelConnection.handleMessage (CellChannelC
at org.jdesktop.wonderland.client.comms.BaseConnection.messageReceived(BaseConnection. j
at org.jdesktop.woenderland.client.comms.WonderlandSessionImplsclientRecord.handleMessag
at org.jdesktop.wonderland.client.comms.WonderlandSessionImpl.fireSessionMessageReceive
at org.jdesktop.wonderland.client.comms.WonderlandSessionImpliWonderlandClientListeners
at com.sun.sgs.client.simple.Simpleclient$SimpleclientChannel.receiveddessage(|Simplecli
at com.sun.sgs.client.simple.SimpleClient$SimpleclientConnectionlistener.handleChannelM
at com.sun.sgs.client.simple.sSimpleclient$simpleclientConnectionlistener.handlefpplicat
at com.sun.sgs.client.simple.sSimpleclient$simpleclientConnectionListener.receivedMessag
at com.sun.sgs.impl.client.simple.sSimpleclientConnection.bytesReceived(simpleCclientConn
at com.sun.sgs.impl.io.SocketConnection.filteredMessageReceived(SocketConnection. java:l
at com.sun.sgs.impl.io.CompleteMessageFilter.processReceiveBuffer (CompleteMessageFilter
at com.sun.sgs.impl.ic.CompleteMessageFilter.filterReceive(CompleteMessageFilter.javasl
at com.sun.sgs.impl.ic.SccketConnecticnlistener.messageRecelived(SocketConnectionListene.
at org.apache.mina.common.support.AbstractIcoFilterchain$TailFilter.messageReceived(abst
at org.apache.mina.common.suppert.fbstractIcFilterchain.calliextMessageReceived |Abstrac
at org.apache.mina.common.support.ibstractIoFilterChain. accesss1100(aAbstractIoFiltercha
at org.apache.mina.common.support.kbstractIoFilterChain$EntryImplsl.messageReceived (abs
at org.apache.mina.filter.executor.ExecutorFilter.processEvent|ExecutorFilter. javas247)
at org.apache.mina.filter.executor.ExecutorFiltersProcessEventsRunnable. run(ExecutorFil
at java.util.concurrent.ThreadPooclExecutor$Worker. runTask(ThreadPoolExecutor. javat885)
at java.util.concurrent.ThreadFooclExecutor$Worker.run(ThreadPooclExecutor. java:%07)
at jawva.lang.Thread.run(Thread.java:637)

Jul &, 2009 6:15:19 PM org.jdesktop.wonderland.client.cell.CellCacheBasicImpl unloadCell

WARHING: ====== > UNLOADING CELL 50

Jul &, 2009 6:15:19 PM org.jdesktop.wonderland.client.cell.CellCacheBasicImpl setCellStatus

FINE: Set status of cell 50 to DISK

**% BASIC REND RENDERING org.jdesktop.wonderland.modules.orb.client.cell.orbCellRenderer@sizid

**% BASIC REND ACTIVE org.jdesktop.wonderland.modules.orb.client.cell.orbCellRenderer@5321d4174

**% BASIC REND INACTIVE org.jdesktop.wonderland.modules.orb.client.cell.OrbCellRenderer@53zidl]

**% BASIC REND DISK org.jdesktop.wonderland.modules.orb.client.cell.OrbCellRenderer@5321d174

Jul &, 2009 6:15:19 PM org.jdesktop.wonderland.client.cell.CellCacheBasicImpl unlcoadcCell

WARNING: =-==-==== > UNLOADING ROOT CELL 50

Log format — null pointer exception

When Java prints an exception, it will be displayed in the format as shown in the preceding
screenshot, and a developer doesn't control what that format is. They can control some
aspects about what is included within an exception, though the arrangement of the
characters and how it's written is done by the Java framework itself.

I mention this last part in order to help operational people understand where the control of
a developer sometimes ends. My own personal experience has taught me that attempting to
change a format that is handled within the framework itself is an attempt at futility. Pick
your battles, right? As a Splunker, you can save yourself headaches on this kind of thing.

[12]

Application Logging

Data types

There are generally two formats that Splunkers will need to categorize to weigh the amount
of effort that goes into bringing the data to a dashboard:

¢ Structured data: These are usually logs for Apache, IIS, Windows events, Cisco,
and some other manufacturers.

¢ Unstructured data: This type of logging usually comes from a proprietary
application where each message can be printed differently in different operations
and the event itself can span multiple lines with no definitive event start, or event
end, or both. Often, this is the bulk of our data.

Structured data — best practices

In the land of unicorn tears, money trees, and elven magic, IT logs come in the same format,
no matter what the platform, and every engineer lives happily ever after.

In our earthly reality, IT logs come in millions of proprietary formats, some structured and
others unstructured, waiting to blind the IT engineer with confusion and bewilderment at a
moment's notice and suck the very will to continue on their path to problem resolution out
of them every day.

As Splunk experts, there are some ways that we can work with our developers in order to
ease the process of bringing value to people through machine logs, one of which is to
standardize on a log format across platforms. This in effect is creating a structured logging
format.

Now when I say “cross-platform” and “standardize”, I'm focusing on the in-house platform
logs that are within your Splunk indexes and controlled by your in-house development staff
right now. We can't affect the way a framework like Java, .NET, Windows, or Cisco log their
information, so let's focus on what we can potentially improve. For the rest, we will have to
create some Splunk logic to do what's called data normalization. Data normalization is the
process of making the field user equal user across your entire first, second, and third-party
systems. For instance, in Cisco log files there is a src_ip field. However, in the Juniper
world, there is the source_address field. Data normalization is the act of making it so that
you can reference a source IP address with a single field name across multiple data sets. In
our example lets say source_ip represents both the src_ip field from Cisco, and the
source_address from Juniper.

[13]

Application Logging

Log events

There are a few ways we can standardize on log event formats, and some systems already
have these kinds of logging in place. The most Splunk-friendly ways are going to be either
key=value pairs, or delimited values, JSON, or XML. I can tell you, through experience, that
the easiest way to get Splunk to auto recognize the fields in a log is to use key=value pairs
when writing to a log.

Let me give a couple examples of the structured data formats so you at least know what the
data looks like:

17/10/2014 { [-]

16:46:30.000 bytes: 28
clientip:
duration: 355526
host: www.ezix.org

method:

pname:
port: 4
protocol: HTTP

referer:

request: /project

ssl:

sslcipher: ECDHE-RSA-AES
sslexport: false
sslkeysize:
sslprotocol: TLS
sslvirtualhost:
status: 200

tags: [[+]

1

time: 2014-10-17T16:46:30+0200

urlpath: /project

urlquery: null

user:

useragent: Mozilla/5.0 (X Lir x86_64 32.0) Gecko/20100101 Firefox/32.(
virtualhost:

WWW.€zix.org = /var/log/httpd/access.json json-2 1

JSON Logging format (this is how Splunk parses JSON logs)

Common Log Format

You can find some information about Common Log Format at: https://en.wikipedia.org

/wiki/Common_Log_Format.

[14]

Application Logging

The following dataset is very easy to parse within Splunk.

127.0.0.1 user—-identifier frank [10/0ct/2000:13:55:36 -0700] "GET
/apache_pb.gif HTTP/1.0" 200 2326

In this next example, we will learn how:
This is a delimited value format, and for ease we will be looking at web logs.

In the following image, we see that each log event is structured with <valuel>,
<value2>, and so on. This is a comma delimited log format that Splunk is quite happy with
receiving, and pulling information out of:

= = = Lt

198.70 37 65, -, 3/31/96, 2:12:09, W3SVC, PAOLO, 198.70.37 65, 2814, 167, 3636, 200, 0, GET, /indexhtm, -,
19870 37 65, -, 3/31/96, 2:12:11, W3SVC, PAOLO, 198.70 37 65, 921, 214, 2360, 200, 0, GET, /Graphics/extrajpg, -,
19870 37 65, -, 3731496, 2:12:11, W3SVC, PAOLO, 198.70.37 65, 701, 215, 4108, 200, 0, GET, /graphics/events gif, -,
198.70 37 65, -, 3/31/96, 2:12:11, W3SVC, PAOLO, 198.70.37 65, €71, 216, 2106, 200, 0, GET, /Graphics/ WWWSTAT JPG, -,
198.70 37 65, -, 3/31/96, 2:12:11, W3SVC, PAOLO, 198.70.37 65, 90, 215, 2411, 200, 0, GET, /graphics/public jpg, -,
198.70.37 65, -, 331196, 2:12:11, W3SVC, PAOLD, 198.70.37.65, 1222, 216, 9335, 200, 0, OET, /graphics/wintugi jpg, -,
198.70 37 65, -, 3/31/96, 2:12:13, W3SVC, PAOLO, 198.70.37 65, 2113, 216, 3993, 200, 0, GET, /graphics/members. g, -,
198.70 37 65, -, 3/31/96, 2:12:13, W3SVC, PAOLO, 198.70.37 65, 1742, 216, 2528, 200, 0, GET, /graphics/sponsor jpg, -,
200,0,
200,0,

1987037 65, -, 3/31/96, 2:12:13, W3SVC, PAOLO, 198.70.37 65, 2594, 213, 3993, GET, /graphics/NTRC gif, -,
198.70 37 65, -, 3/31496, 2:12:13, W3SVC, PAOLD, 198.70.37 65, 2694, 213, 3138, 200, 0, GET, /graphicsfjoin jpg, -,
198.70 37 65, -, 3/31/96, 2:12:14, W3SVC, PAOLO, 198,70 37 65, 901, 215, 4049, 200, 0, GET, /graphicsiroster. gif, -,
I198 703765, -, 331196, 2:12:18, W3SVC, PAOLD, 19870 37 65, 4797, 249, 72, 200, 0, GET, /index.htm, -,

Innately, Splunk will understand the structure of an IIS type of log event. However, in some
cases it's up to the Splunk engineer to tell Splunk the field names, and the order of each of
these events. This is basically event and field extraction, and it's also how we start
organizing and managing the value of a dataset.

In this example there are a couple of ways of extracting knowledge from these events, and I
will give both the automatic way and the manual way.

Architectural Notes
In the following example the architecture being used is a distributed
search deployment, with one search head and one indexer.

[15]

Application Logging

Automatic Delimited Value Extraction (IIS/Apache) — best practice

This type of value extraction is performed automatically by the back end Splunk
programming. It looks for specific sourcetypes and data structures and extracts fields from
them as long as you send data from each forwarder appropriately. For instance, IIS or
apache logs.

In order to forward data appropriately, you'll need to:

1. Tell each forwarder on your IIS/Apache Machines to send data to the following
source types (your choice of index):
e access_combined — Apache

o JIS-1IS

2. Make sure your Apache/IIS logs have the fields enabled for logging that Splunk is
expecting (for more insight on this please see the Splunk documentationhttps://
docs.splunk.com/Documentation.

After that, just run a search for index=<my_index> sourcetype=iis and if your
forwarders/indexers are sending and receiving data properly, you should see data and the
fields will be extracted in the Interesting Fields panel in Splunk. Voila, you're done!

This IIS/Apache automatic field extraction is available by default in Splunk which makes it
nice for these data sets. If your source types are not named in this fashion, the extractions
will not work for you out of the box as field extraction happens primarily at the source type
level. If you would like to see all of the configuration for the IIS dataset, go to the following
locations and look at the stanza:

SPLUNK_HOME /etc/system/default/props.conf-[iis], then take a look at the
documentation if you want to learn more about the settings.

IIS data in Splunk should look something like this:

[16]

Application Logging

i sourcetype=iis

G
570 events (before 10/18/13 12:34:09.000 PM)

Selected Fields
c.ip3
cs_bytes 100+
cs_Cookie 3
cs_host 5
cs_method 9

cs_uri_query 34

R "R " R R RS

cs_uri_stem 100+

Events (570) Statistics Visualization
Format Timeline ¥ ©ZoomOut ©Zoomto Selection @ Deselect
List v Format 20 Per Page ~
BHide Fields 3= All Fields UG EE
» 10/18/13 2013-10-18 18:35:33 ::1 GET /favicon.ico - 80 - ::1 HTTP/1.1 Mozilla/5.0+(compatible;

11:35:33.000 AM

10/18/13
11:35:33.000 AM

sc_status

splunkweb_csrf_token_8000=3571848927425522258 localhost 404 0 2 5375 254 46
cip=:1 = cs_Cookie = splunkweb_csrf_token_8000=3571848927425522258 = cs_User_Agent = Mozilla/5.0+(d
cs_host = localhost | cs_method =GET | cs_uri m = /favicon.ico = cs_version = HTTP/1.1 host = pog|
sc_substatus =0 = sc_win32_status =2 = source = C:\inetpub\logs\LogFiles\W3SVC1\u_ex131003.log

soy

2013-10-18 18:35:33 ::1 GET /welcome.png - 80 - ::1 HTTP/1.1 Mozilla/5.0+(compatible;
splunkweb_csrf_token_8000=3571848927425522258 localhost 200 0 0 185196 353 31
el e Cinlin — ambimlasab and taliam ONNN-AE710400N7ANEENNNED

~=-iser_Agent = Mozilla/5.0+(d

pn =HTTP/1.1 host = p|

X

IC1\u_ex131003.log

soy

s

? cs_User_Agent 5
cs_version 2
host 1

s_ip 2

s_port 1

sc_bytes 12
sc_status 5
sc_substatus 1
sc_win32_status 3
source 9

sourcetype 1

Interesting Fields
a date7

date_hour 6
date_mday 8

date_minute 11

mpatible; +MSIE+9.0; +|
36 301 1578
Mozilla/5.0+(d
pogdin-win20(
etype = iis

.154 HTTP/1.1 Mozill]
.50 404 0 2 1405 288

)_8_4)+AppleWebKit/537.3

ser_Agent
1

S0

s_ip = 10.160.24.50

s_p

5 Values, 100% of events Selected | Yes No
Reports

Average over time Maximum value over time Minimum value time
Top values Top values by time Rare values

Events with this field

Avg: 378.231579 Min: 200 Max: 501 Std Dev: 68.8561

Values Count %

404 480 84.21%

200 73 12.807% |
405 13 2.281%

501 3 0.526%

304 1 0.175%

sourcetype = iis
.1 Mozilla/5.0+(Maci)
.50 304 0 0 211 449

)_8_4)+AppleWebKit/537.3
50.24.50 = s_port=80

.154 HTTP/1.1 Mozill|
.50 404 0 2 1405 288

cs_uri_stem = /favicon.ico

sc_win32_status = 2

cs_version = HTTP/1.1 | host = pogdin-win2008r2
source = C:\inetpub\logs\LogFiles\W3SVC1\u_ex130702.log

)_8_4)+AppleWebKit/537.3
s_ip =10.160.24.50 = s_p
sourcetype = iis

1IS data in Splunk with sc_status

Notice all of the fields that are being extracted under Interesting Fields.

Splunk has only extracted a handful of log types, such as IIS/Apache logs,
by default and cannot be leveraged on other datasets. Many of the other
datasets are extracted using either an app from Splunkbase or the manual
method. For a full list of datasets Splunk has programmed for automatic
field extraction, please visit http://www.splunk.com/.

The whole goal of this chapter is to achieve this type of knowledge
extraction most efficiently, as all of this is very helpful once we start
building searches in Splunk. The most effective way to do this is by
literally starting at the log format itself.

[17]

Application Logging

Manual Delimited Value Extraction with REGEX

I will not be getting into how to work with REGEX in this book at all. I can only suggest
that if you're a Splunk admin and you're not fluent with it... learn it quickly. RegExr (http:
//regexr.com/) is a fantastic tool for learning this language or you can also visit https://r
egex1l.com/. Below is an image of regexr.com/v1 (the old version of the tool):

eeable future.

Match Replace Samples My Saved Community

~ Ji\s\w\s Hal\s+([~ THNsH(S O+~ TS H(~ Tohs+([~ TH\sH(~ 1+ | show all v

|¥] global | | ignoreCase | | extended | | dotall | | multiline Share Link) -
J
07:02:47 PM all 91.84 2.55 5.61 0.00 0.00 0.00

\d

o

\S
[ABC] hd

Mztches any character, except for line
breaks if dotall is false.

flags: g |
7 capturing groups:

group 1: (all)

group 2: ([~]+)

This technique can be used on any structured log data that is delimited, that Splunk itself
doesn't have knowledge extraction of by default.

For this we are going to use the same type of structured data, but let's say that Splunk isn't
extracting the data fields, though the data is already being input into Splunk. The data's
source is a bash script that was created by a Linux system admin that required specifics on
their set of machines.

Step 1 — field mapping — best practice

This is as easy as speaking to the expert whose system the data belongs to.

In this example, the bash scripts output that is coming into Splunk is in a structured but
unlabeled format:

07:02:47 PM all 91.84 2.55 5.61 0.00 0.80 0.00
07:02:49 PM all 29.74 49.74 7.69 0.00 0.80 12.82
07:02:51 PM all 0.50 0.00 1.51 0.00 0.80 97.99
07:02:53 PM all 5.85 0.00 15.15 0.00 0.80 79.80
07:02:55 PM all 19.50 0.80 34.50 4.00 0.80 42.00
07:02:57 PM all 8.59 0.00 16.10 0.00 0.80 81.31

[18]

Application Logging

If a general Splunk admin was to look at this data, it would appear to mean something, but
it wouldn't be clear as to what. The person who does have clarity is the person who wrote
the script. Our job as Splunk experts is often to go find out what this information means. I
call this the process of discovery.

We can see a timestamp here, but after that, it's a series of information that makes no sense.
The only thing we know for sure is that something is being printed at 2 second intervals
and there are multiple values.

When we go to our SME, we need to ask him how he structured the data output that is
being printed. Writing that information down will give us the field mappings we are
looking for so we can structure this.

When we ask our SME, they will give us an answer that looks like this:

File Edit Format Wiew Help
Time stamp CPU %user H%nice Hsystem %iowait %steal %idle

This is our field map, so now all we need to do is tell Splunk how to extract these characters
being delimited by a space.

This is a quick and easy prop/transforms.conf setting.

Step 2 — adding the field map to structure the data
(props/transforms)

For this example, we will just be using the standard search app, so we are going to adjust
the settings there. We will be using REGEX to extract the fields and then standard bash
variables to map each REGEX group to its field.

I'm going to add the following stanza to the transforms.conf in
$SSPLUNK_HOME/etc/apps/search/local/transforms.conf:

[myLinuxScript_fields]
REGEX = [~]1+\s\w+\s+(all)\s+ ([~ T+)\s+([” 1+H)\s+ ([1H)\s+([" 1+H)\s+(["
T+)\s+ ([~ 1+)

FORMAT = cpu::$1 pctUser::$2 pctNice::$3 pctSys::$4 pctIOwait::$5
pctSteal::$6 pctIdle::$7

[19]

Application Logging

This REGEX gives Splunk the appropriate capture groups you want to label. These capture
groups are signified by the parenthesis in the REGEX above.

I'm also going to call that transform
in $SPLUNK_HOME/etc/apps/search/local/props.conf for my source type. We need
this reference in order to extract our fields:

[mySourcetype]
REPORT-fields = myLinuxScript_fields

Then we restart the Splunk service on the search head and we should see our new fields.

In the above transform, each REGEX capture group, represented by (), and anything in
between them is mapped to a numerical variable. However, the capture groups must be
contiguous and sequential. You can't have 10 capture groups and expect $1 to be the 5"
group captured. $1 maps to capture group 1, $2 to capture group 2, and so on.

This is the data input from line 1 of the preceding image, with the method explained:

. New Search SaveAsv Close

rmat="%H:%M:%S5" ctime(_time) as timestamp| table timestamp cpu pctUser pctNice All time v Q

1 event (before 1/16/16 2:06:54.000 PM) Job v A L & ® Smart Mode
Events Patterns Statistics (1) Visualization

20 Per P e
timestamp cpu pctUser pctNice pctSys pctiOwait pctSteal pctidle

247 a 91.84

Use correlation IDs- best practice

If you're developing an application in the world of structured data and mature logging,
there are all kinds of lovely fields that can be used to bring value to our data with Splunk.
One of the most valuable fields I've found in the development world that helps Splunk
track a transaction end-to-end through a system is a correlation ID.

This is a field that is attached to the initial action of a user on a frontend, and that field value
is passed down through the stack from frontend to middleware, to database call and back
again during each action or transaction that is committed. This field is usually a uniquely
generated GUID that, to Splunk, has huge potential.

[20]

Application Logging

Without something like a correlation ID, it's much more difficult to track activities from
end-to-end, because many transactions within an application are looked at based on
timestamp when troubleshooting. This little field will make your life profoundly easier if
used properly with Splunk.

Some systems already have correlation IDs, such as SharePoint logging. However, many do
not. If you're a developer of middleware and you're reading this, please use this field, as it
makes mining for your data a lot easier.

This is an example of a SharePoint log with a correlation ID:

SharePoint log with a correlation ID

Time: Thread Product Category EventlD Level Comelation Message

01/29/2011 14.... 2850 Share... Monito... bdly High abea F55-Thb4-46f8-9e68-5beB1172704c Leaving Monitored Scope (Creating Web Bl). Executi
01/29/2011 14.... 2850 Share... General 85mE Medium abea 755 Thb4-46f8-9e68-5beB1172704c Applying web template ‘BlCenterSite#0" on web ud hif
01/29/2011 14.... 2850 Share... General 85m7 Medium abea 755 Thb4-46f8-9e68-5beB1172704c Actual web template to apphyto Ud hitp:/atide65104
01/29/2011 14.... <2A50 Share.. General 72h7 Medium abea 759 7b54-4613-9e68-5be81172704c Applying template "BICenterSite#0” to web at URL "H
01/25/2011 14.... E<2A50 Share.. General 88b Medium abea A59-7b54-46f8-9e68-5be81172704c Feature Activation: Activating Feature "Publishing’ {10}
01/29/2011 14:... <2450 Share.. General 75b Medium abea A55-7b54-46 8-9268-5be 81172704 Calling "FeatureActivated' method of SPFeatureRecer
01/29/2011 14.... 2450 Web .. Publs... 1ght High abea A55-7b54-46f8-9268-5beB 1172704 Publishing Feature activation event handled.

01/29/2011 14.... bc2A50 Web .. Publs.. V5ot Unexpec...| abea 59 7b54-468-5268-5beB1172704c Publishing Feature activation failed. Exception: Systen
01/29/2011 14.... 2850 Share... Featur.. B88m High abea 755 Thb4-46f8-9e68-5beB1172704c Feature receiver assembly "Microsoft. Share Point . Publi
01/29/2011 14.... 2850 Share... General 7. High abea 755 Thb4-46f8-9e68-5beB1172704c Feature Activation: Threw an exception, attempting tol
01/29/2011 14.... 2850 Share... Monito... bdly High abea 755 Thb4-46f8-9e68-5beB1172704c Leaving Monitored Scope (Feature Activation: Activat]
01/29/2011 14.... <2A50 Share.. General 836 High abea 759 7b54-4613-9e68-5be81172704c Failed to activate site-scoped features fortemplate "Bl
01/25/2011 14.... E<2A50 Share... Fields bnx High abea A59-7b54-46f8-9e68-5be81172704c Failed to activate web features when provisioning site
01/29/2011 14:... <2450 Share.. General 72h% High abea A55-7b54-46 8-9268-5be 81172704 Failed to apply template "BlCarterSite#0" to web at ||
01/29/2011 14.... 2450 Share.. General 72k2 High abea A55-7b54-46f8-9268-5beB 1172704 Failed to apply template "BlCerterSite#0" to web at |
01/25/2011 14:... 2A50 Share... General 8eld High abea F59-Th54-46f8-9e68-5be81172704c Deleting the web at hitp:/atide6510-as/Bl .

01/29/2011 14.... 2850 Share... Monito... bdly High abea 755 Thb4-46f8-9e68-5beB1172704c Leaving Monitored Scope (Render WebPart AddGalle
01/29/2011 14.... 2850 Share... Monito... bdly High abea 755 Thb4-46f8-9e68-5beB1172704c Leaving Monitored Scope (Render WebPart Zone g_|
01/29/2011 14 (e2AS0 Share 2 edi 17 e e T U Eav i gauest (P it/ 1atid

As you can see, this correlation ID is used throughout all log events made during this user's
session. This allows great event correlation within a system.

For those who aren't familiar, there is a challenge within development with correlation IDs
and specifically it's based on; when do we use them? Do we use them for everything? The answer
to these questions usually boils down to the type of transaction being made within a
system. I will share with you some techniques I've found to be useful, and have brought the
most value to Splunk when working on development.

First we need to understand our three most popular actions within an application:

¢ Publication: This is when an application answers a query and publishes data to a
user one time. A user clicks a button, the application serves the user it's data for
that request, and the transaction is complete.

[21]

Application Logging

e Subscription: This is a transaction that begins with the click of a button, though
the data streams to the user until something stops it. Think of this kind of
transaction as a YouTube video that you click on. You click to start the video, and
then it just streams to your device. The stream is a subscription type of
transaction. While the application is serving up this data, it is also often writing
to the application logs. This can get noisy as subscriptions can sometimes last

hours or even days.

Database call: These are simply calls to a database to either retrieve or insert data
to a database. These actions are usually pretty easy to capture. It's what people

want to see from this data that becomes a challenge.

Correlation IDs and publication transactions — best practice

It's very simple. Add correlation IDs to all of your publication transactions, and save

yourself and your ops team hundreds of hours of troubleshooting.

When writing to a log, if we can log a correlation ID for each publication transaction and
insert that data into Splunk, then we can increase the view of what our application is doing
tremendously. I will refer to SharePoint again as it is the easiest and most well-known to

reference:
Time: Thread Product Category EventlD Level Comelation Message

01/29/2011 14.... 2850 Share... Monito... bdly High abea F55-Thb4-46f8-9e68-5beB1172704c Leaving Monitored Scope (Creating Web Bl). Executi
01/29/2011 14.... 2850 Share... General 85mE Medium abea 755 Thb4-46f8-9e68-5beB1172704c Applying web template ‘BlCenterSite#0" on web ud hif
01/29/2011 14.... 2850 Share... General 85m7 Medium abea 755 Thb4-46f8-9e68-5beB1172704c Actual web template to apphyto Ud hitp:/atide65104
01/29/2011 14.... 2850 Share... General 72h7 Medium abea 755 Thb4-46f8-9e68-5beB1172704c Applying template "BICenterSite 0" to web at URL "H
01/29/2011 14.... <2A50 Share.. General 88b Medium abea 759 7b54-4613-9e68-5be81172704c Feature Activation: Activating Feature "Publishing (1D}
01/25/2011 14.... E<2A50 Share.. General 7Hb Medium abea A59-7b54-46f8-9e68-5be81172704c Calling "Feature Activated' method of SPFeatureRecer
01/29/2011 14:... <2450 Web ... Publs... 1ght High abea A55-7b54-46 8-9268-5be 81172704 Publishing Feature activation event handled.

01/29/2011 14.... 2A50 Web .. Publs... 5ot Unexpec...| abea 755 7b54-4618-9268-5beB81172704c Publishing Feature activation failed. Exception: Syster
01/29/2011 14.... 2850 Share... Featur.. B88m High abea 755 Thb4-46f8-9e68-5beB1172704c Feature receiver assembly "Microsoft. Share Point . Publi
01/29/2011 14.... 2850 Share... General 7. High abea 755 Thb4-46f8-9e68-5beB1172704c Feature Activation: Threw an exception, attempting tol
01/29/2011 14.... 2850 Share... Monito... bdly High abea 755 Thb4-46f8-9e68-5beB1172704c Leaving Monitored Scope (Feature Activation: Activat]
01/29/2011 14.... 2850 Share.. General 836 High abea 755 Thb4-46f8-9e68-5beB1172704c Failed to activate site-scoped features fortemplate "Bl
01/29/2011 14.... <2A50 Share.. Fields bnx High abea 759 7b54-4613-9e68-5be81172704c Failed to activate web features when provisioning site
01/25/2011 14.... E<2A50 Share.. General 72h9 High abea A59-7b54-46f8-9e68-5be81172704c Failed to apply template "BlCerterSite#0" to web at L
01/29/2011 14:... <2450 Share.. General 722 High abea A55-7b54-46 8-9268-5be 81172704 Failed to apply template "BlCarterSite#0" to web at ||
01/25/2011 14:... 2A50 Share... General 8eld High abea F59-Th54-46f8-9e68-5be81172704c Deleting the web at hittp:/atide6510-as/Bl .

01/29/2011 14.... 2850 Share... Monito... bdly High abea 755 Thb4-46f8-9e68-5beB1172704c Leaving Monitored Scope (Render WebPart AddGalle
01/29/2011 14.... 2850 Share... Monito... bdly High abea 755 Thb4-46f8-9e68-5beB1172704c Leaving Monitored Scope (Render WebPart Zone g_|
01/29/2011 14 el Share 4t edj = LST=2= W e S T e = e o= B A T eaving Monitored Scope (Request (P it /1atid

In the preceding image, all of these events are publications and you can see that it's even
written into the log message itself in some events. What we are looking at above is a slice of
time a user has been on our system, and their activity.

[22]

Application Logging

If we put this data into Splunk, and we extract the correlation ID field correctly, it's as easy
as finding a single event with a username and then copying and pasting the correlation ID
into our search query to find our user's entire behavior. Above, we are looking at a single
instance of SharePoint.

In the real world we may have:

e 200 users

10 user-facing machines running an application that is load-balanced
30 middleware machines

4 databases

100+ tables.

Following a single user's activity through that system becomes time consuming, but if we
use correlation IDs, mixed with Splunk, we will find ourselves saving days of time when
looking for problems. We can also proactively alert on our system if we extract the
knowledge in Splunk properly.

Developers actually love correlation IDs more than operations, because inserting their
application data into Splunk and allowing them a single place to search the logs of their
applications where all they have to do is find the correlation ID to look for a user's activity
saves lots of time in QA.

Correlation IDs and subscription transactions — best practices

The most common question for subscription transactions and correlation IDs is; How can
we minimize the wasted space in the log that arises from subscription events, seeing as they
are part of the same transaction and don't need to be written to every event within each
subscription?

For subscription type events within a log, they are commonly very noisy and not needed
until something breaks.

The compromise for writing correlation IDs to let Splunk continue to monitor user activity
is to write a correlation ID in the event only at subscription start and subscription end.

If you want further detail on your subscriptions, and you want Splunk to be able to quickly
retrieve these events, the developers I've known have used subscription IDs, which are
printed to the log with every action within a subscription transaction. These are also usually
GUIDs, but they target only a user's subscription within your system.

This often ends up being seen most in Splunk license utilization. However, if we plan
accordingly, we can subvert this issue in the real world.

[23]

Application Logging

Correlation IDs and database calls — best practices

In this type of transaction we can write a correlation ID each time a transaction occurs, the
same way we would do as a publication. As best practice, write this ID to the log event in
the same manner one would on a publication transaction.

The larger the system, the more chaos we as Splunk experts must try to bring some order to.
In many cases, companies have a specific use case for something like Splunk, though they
often expect that Splunk is a turnkey solution.

Unstructured data

The following screenshot is an example of what unstructured data looks like:

web [ogi1c. app [1cation. utl [s. StateMachinebriver. nextstate(StateMachinebriver. Java:26)

-

#addcDac 29, 2008 2:14:24 PM IST> <nWotice» <Log Management> <svaidyan(2» <xbusServers
<[ACTIVE] ExecuteThread: '0' for gueue: 'web1ogic.kerneW.DeFau1t Cself-tuning)’ > <<wls
Kernels>> <> <> <l167381864275> <BEA-170027> <The serwver initialized the domain Tog
broadcaster successfully. Log messages will now be broadcasted to the domain log.>

#ddd<Dec 29, 2006 2:14:24 PM IST:> <Woticer <webLogicserver: <swvaidyan2: <xbusserver: <Main
Threads> <<wlL3 Kernels»> <> <> <l1673818645976> <BEA-000365> <Server state changed to ADMIN:
#addcDac 29, 2006 2:14:24 PM IST> <Motice» <webLogicservers> <swvaidyan02> <xbusserver: <main
Threads: <<wlS Kernelz=> <> <> <1167381864996> <BEA-000365:> <Server state changed to RESUMING
####£<Dec 29, 2006 2:14:28 PM IST> <Wotice» <Securitys <svaidyan02:> <xbussServers <[STANDEY]
ExecuteThread: '5' for gueue: 'weblogic.kernel.Dpefault (zalf-tuning)'> <<wlLS Kernelx> <> <>
<1167381868541> <BEA-0S0171> <LDadinE the ddentity certificate and private key stored under
the alias Demoldentity from the jks keystore file
C:hbheaZél3anwEBLOG-1Yserveri 1 ibhDemoIdentity. jks. >

#d#EcDec 29, 2006 2:14:29 PM IST> <Motices> <Securitys: <swvaidyan02:> <xbusservers <[STAMDEY]
ExecuteThread: 'S’ for gueue: 'wehlogic.kernel.Default (self-tuningl's> <<wWLS Kernels:> <> <>
<1167381869543> <BEA-08016%9> <lLoading trusted certificates from the jks keystore file
C:MbeaZ6l3anwEBLOG~1Yserveri1ibyDemoTrust. jks. »

#addcDac 29, 2008 2:14:29 PM IST> <hoTice» <Security> <swalidyanlls> <xbusServer: <[STANMDEY]
ExecuteThread: '5' for gueue: 'weblogic.kernel.pefault (self-tuning)’'s> <<WlLS Kernelz:> <> <>
<1167381869713> <BEA-090165> <Loading trusted certificates from the jks keystore file
C:hnbeazélianJRoOCKI-1Njrey]libhsecurityhcacerts. »

#dd#cDec 29, 2006 2:15:32 PM IST:> <wWarnings <Server: <svaidyan02: <xbusservers
<DynamicssLListenThread[Defaultsecure[1]]> <<WLS Kernels»> <> <> <l167381932743> <BEA-002611
<Hostname "swaidyan02.apac.bea.com"”, maps to multiple IP addresses: 1%2.168.1.5,
172.22.56.120

##FE<Dec 29, 2006 2:15:32 PM IST»> <MOticer <Servers <svaidyand2s: <xbussServer: <[STANDEY]
ExecuteThread: '5' for gueue: 'weblogic.kernel.Dpefault (zelf-tuning)'> <<wlLs Kernelx> <> <>
<1167381932753> <BEA-00Z2613> <ChanneT "Default[2]" is now Tistening on 127.0.0.1:7021 for

These kinds of logs are much more complicated to bring value to, as all of the knowledge
must be manually extracted by a Splunk engineer or admin. Splunk will look at your data
and attempt to extract things that it believes is fields. However, this often ends up being
nothing of what you or your users are wanting to use to add value to their dashboards.

That being the case, this is where one would need to speak to the developer/vendor of that
specific software, and start asking some pointed questions.

[24]

Application Logging

In these kinds of logs, before we can start adding the proper value, there are some
foundational elements that need to be correct. I'm only going to focus on the first, as we will
get to the other 2 later in this book.

Time stamping

Event breaking

Event definitions

Field definitions (field mapping)

Event breaking — best practice

With structured data, Splunk will usually see the events and not automatically break them
as they are nice and orderly.

With unstructured data, in order to make sure we are getting the data in appropriately, the
events need to be in some sort of organized chaos, and this usually begins with breaking an
event at the appropriate line/character in the log. There's lots of ways to break an event in
Spthk(Seehttp://docs.splunk.com/Documentation/Splunk/6.4.l/Admin/Propsconf
and search for break), but using the preceding data, we are going to be looking at the
timestamp to reference where we should break these events, as using the first field, which is
most often the timestamp, is the most effective way to break an event.

There are a few questions to ask yourself when breaking events, though one of the more
important questions is; are these events all in one line, or are there multiple lines in each event? If
you don't know the answer to this question, ask the SME (dev/vendor). Things can get

messy once data is in, so save yourself a bit of time by asking this question before inputting
data.

In the following example, we can see the timestamp is the event delimiter and that there can
be multiple lines in an event. This means that we need to break events pre-indexing;:

01/08/2016 07:28:54.100 - 1 home 1 New Home AvenueZ dentist
01/08/2016 07:28:54.430 - 1 DDS Avenue3 la 3 LA shack3 restaurant 3
Hole in the wall 7 dev house

kelld 7 no fowlerville MPPN November 14

November 22 2015 - Inst 8876.33_v2 filled for caption at fox 2

01/08/2016 07:29:54.010 - 7 Hacker way dist 55vl12bb CANCELLED x11253581 Order From 223
APPT BB74698225

[25]

Application Logging

In order to do that, we need to adjust our props.conf on our indexer. Doing so will
appropriately delineate log events as noted in the following image:

01/08/2016 07:28:54.100 - 1 home 1 Mew Home Avenue? dentist

01/08/2016 07:28:54.430 - 1 DD5S Avenue3 la 3 LA shack3 restaurant 3

Hole in the wall 7 dev house

kelld 7 nOo fowlerville MPPN November 14

November 22 2015 - Inst B876.33 w2 filled for caption at fox 2

01/08/2016 07:29:54.010 - 7 Hacker way dist 533v12bb CANCELLED x11253581 order From 223
APPT BEB746098225

Adding line breaking to the indexing tier in this way is a method for pre-
index event breaking and data cannot be removed without cleaning an
index.

In this example, we have five indexers in a cluster pool, so using the Ul on
each of those indexers is not recommended. “Why?” you ask. In short,
once you cluster your indexers, most of the files that would end up in
$SPLUNK_HOME/etc/ having become shared, and they must be pushed as
a bundle by the cluster master. It is also not recommended by Splunk
support. Try it if you like, but be prepared for some long nights.

Currently Splunk is set up to do this quite easily from an individual file via the U, though
when dealing with a larger infrastructure and multiple indexers, the Ul feature often isn't
the best way to admin. As a tip, if you're an admin and you don't have a personal instance
of Splunk installed on your workstation for just this purpose, install one. Testing the
features you will implement is often the best practice of any system.

Best practices

Why should you install an instance of Splunk on your personal workstation you ask?
Because if you bump into an issue where you need to index a dataset that you can't use the
Ul for, you can get a subset of the data in a file and attempt to ingest it into your personal
instance while leveraging the Ul and all its neat features. Then just copy all of the relevant
settings to your indexers/cluster master. This is how you can do that:

1. Get a subset of the data, the SME can copy and paste it in an e-mail, or send it
attached or by any other way, just get the subset so you can try to input it. Save it
to the machine that is running your personal Splunk instance.

[26]

Application Logging

2. Login to your personal Splunk instance and attempt to input the data. In Splunk,
go to Settings | Data Inputs | Files & Directories | New and select your file
which should bring you to a screen that looks like this:

Add Data —@ - | nexo> |

Selec

Local Event Logs
= Configure thi
directory. Spl

rectory. This might cause
)i y e Y g Jitiple source types to
objects in the same directory, configure individual data inputs for those objects. Learn More (2

File or Directory C:\Users\TRAVIS\Downloads\kv_ht.txt Browse

Files & Directories

HTTP Event Collector Continuously Monitor Index Once

TCP / UDP
Local Performance Monitoring
Remote Perform .
> What kinds of files can Splunk index?
> | can't access the file that | want to index. Why?
4 > How do | get remote data onto my Splunk instance?
Registry monitoring
> Can | monitor changes to files in addition to their content?
> What is a source type?
e Dire it > How do | specify a whitelist or blackiist for a directory?

3. Attempt to break your events using the UL

Now we are going to let Splunk do most of the configuring here. We have three ways to do
this:

1. Auto: Let Splunk do the figuring.
2. Every Line: this is self-explanatory.
3. Regex...: use a REGEX to tell Splunk where each line starts.

For this example, I'm going to say we spoke to the developer and they actually did say that
the timestamp was the event divider. It looks like Auto will do just fine, as Splunk naturally

breaks events at timestamps:

[27]

Application Logging

AddData —————® :

e Set Source Type put Settings Review Done

Set Source Type
This page lets you see how Splunk sees your data before indexing. If the events look correct and have the right timestamps, click "Next" to proceed. If not, use the
options below to define proper event breaks and timestamps. If you cannot find an appropriate source type for your data, create a new one by clicking "Save As"

Source: C:\Users\TRAVIS\Downloads\kv_ht.txt

List v #Format v 20 Per Page v
Source type: Recommended Settings v M

Time Event
+ Event Breaks 1 1/8/16 01/08/2016 07:28:54.100 - 1home1 New Home Avenue
7:2854100 AM 2dentist
BreakiType: | _Auto) [SENEVT incs S Reded; 2 1/8/16 01/08/2016 07:28:54.430 - 1 DDS Avenue

7:2854430 AM 31a3 LA shack
3restaurant3
Hole in the wall

> Timestamp 7dev house
Show all 7 lines
> Advanced
1/8/16 01/08/2016 07:29:54.010 - 7 Hacker way

7:29:54.010 AM dist 55vi2bb CANCELLED X11253581 Order From 223
APPT 8874698225

Going down the rest of the option, we can leave the timestamp extraction to Auto as well,
because it's easily readable in the log.

The Advanced tab is for adding settings manually, but for this example and the information
we have, we won't need to worry about it.

When we click the Next button we can set our source type, and we want to pay attention to
the App portion of this, for the future. That is where the configuration we are building will

be saved:

Save Source Type

Name myUnstructured
Description
Category Custom v
App Search & Reporting v

[28]

Application Logging

Click Save and set all of the other values on the next couple of windows as well if you like.
As this is your personal Splunk instance, it's not terribly important because you, the Splunk
admin, are the only person who will see it.

When you're finished make sure your data looks like you expect it to in a search:

New Search

source="C:\\Users\\TRAVIS\\Downloads\\kv_ht.txt" host="DT-TMARLETTE" sourcetype="myUnstructured”|

3 events (before 1/16/16 3:30:00.000 PM)
Events (3 Patterns Statistics Visualization

mat Timeline v Zoom Out

Hide Field = All Fields i Time
> | 1/8/16 29:54.010 - 7 Hacker way
7:29:54.010 AM CANCELLED X11253581 Order From 223
Selected Fields 8874698225
st DT-TMARLETTE C:\Users\TRAVIS\Downloads\kv_ht.txt myUnstructured
S
> | 1/8/16 0 1 DDS Avenue
feeiype 72854430 AM 3
3re
Hole in the wall
7dev h
Sh a
DT-TMARLETTE C:\Users\TRAVIS\Downloads\kv_ht.txt myUnstructured
> | 1/8/16 01/08/2016 07:28:54.100 - 1home1 New Home Avenue
7:2854100 AM 2dentist
DT-TMARLETTE C:\Users\TRAVIS\Downioads\kv_ht.txt myUnstructured

And if you're happy with it (and let's say we are) we can then look at moving this
configuration to our cluster.

Remember when I mentioned we should pay attention to the App? That's where the
configuration that we want was written. At this point, it's pretty much just copying and
pasting.

Configuration transfer — best practice

All of that was only to get Splunk to auto-generate the configuration that you need to break
your data, so the next step is just transferring that configuration to a cluster.

[29]

Application Logging

You'll need two files for this. The props. conf that we just edited on your personal
instance, and the props. conf on your cluster master. (For those of you unfamiliar,
$SPLUNK_HOME/etc/master_apps/ on your cluster master)

This was the config that Splunk just wrote in my personal instance of Splunk:

SIS
@-\/v\ » Computer » MEDIAL (X) » ProgramFiles » etc b apps b search » local v“,H Search local P
Organize v Includeinlibrary v Sharewith v Bum New folder = Al @
& Foroites Name ° Date modified Type Size
B Desktop 2] inputs 1/16, CONF File 1K8

8 Downloads =) props 1/16 CONF File 1KB
22 Dropbox

%] Recent Places

3 Libraries
|"5| Documents N
& Music Bl < | props - WordPad =%
[=] Pictures Home View @
B videos Courier New u clala :) || &8 Find

3, Replace

*& Homegroup
2 HTPC (DT-HTPC)

Font
2 RK Springfield (DW-
pring

' 1 ' 2 ' 3 ' c 4 - ' 5 ' P
1% Computer
[myUnstructured]
€ Network DATETIME_CONFIG =
/M DT-HTPC NO_BINARY CHECK = true
category = Custom

% DT-TMARLETTE
1% DW-RSPRINGFIELD
% UBEE-LVG

pulldown_type = true

100% (=)] (@)

Follow these steps to transfer the configuration:

1. Go the destination app's props . conf, copy the configuration and paste it to your
cluster masters props . conf, then distribute the configuration to its peers
($SPLUNK_HOME/etc/master_apps/props.conf). In the case of our example:

Copy source file =
SSPLUNK_HOME/etc/apps/search/local/props.conf
Copy dest file = $SPLUNK_HOME/etc/master_apps/props.conf

[30]

Application Logging

2. Change the stanza to your source type in the cluster:

e When we pasted our configuration into our cluster master, it looked

like this:

[myUnstructured]
DATETIME_CONFIG =
NO_BINARY_CHECK = true
category = Custom
pulldown_type = true

¢ Yet there is no myUnstructured source type in the production
cluster. In order to make these changes take effect on your
production source type, just adjust the name of the stanza. In our
example we will say that the log snippet we received was from a
web frontend, which is the name of our source type.

¢ The change would look like this:

[web_frontend]
DATETIME_CONFIG =
NO_BINARY_CHECK = true
category = Custom
pulldown_type = true

3. Push the cluster bundle via the Ul on the cluster master:

Distribute Configuration Bundle

Distribute the configuration bundle from the master to the peers. Learn More =

< Back to Master Node

Distribute Configuration Bundle

[31]

Application Logging

4. Make sure your data looks the way you want it to:

Q New Search

sourcetype="web_frontend"

v

~ 3 events (before 1/16/16 3:54:51.000 PM)

Events (3) Patterns Statistics Visualization

Format Timeline v — Zoom Out

List v 20 Per Page v
< Hide Fields = All Fields dalgime S50
> | 1/8/16 01/08/2016 07:29:54.010 - 7 Hacker way
7:29:54.010 AM dist 55v12bb CANCELLED X11253581 Order From 223
Selected Fields APPT 8874698225
2 host host = Ipioud554 = sourcetype = web_frontend
1 sourcetype 1
& > | 1/8/16 01/08/2016 07:28:54.430 - 1 DDS Avenue

7:2854430 AM 31a3 LA shack

Interesting Fields 3restaurant3

date_hour 1 Hole in the wall
1 7dev house
2 Show all 7 lines
host = Ipioud554 = sourcetype = web_frontend
> 1/8/16 01/08/2016 07:28:54.100 - 1home1 New Home Avenue
7:2854100 AM 2dentist
host = Ipioud554 sourcetype = web_frontend

linecount 3
1 punct 3

1 source 1

Once we have it coming into our index in some sort of reasonable chaos, we can begin
extracting knowledge from events.

[32]

Application Logging

Summary

In this chapter we discussed where the lion's share of application data comes from and how
that data gets into Splunk and how Splunk reacts to it. We mentioned good ways and things
to keep in mind when developing applications, or scripts, and also how to adjust Splunk to
handle some non-standardized logging. Splunk is as turnkey as the data you put into it.
Meaning, if you have a 20-year-old application that logs unstructured data in debug mode
only, your Splunk instance will not be turnkey. With a system like Splunk, we can quote
some data science experts in saying garbage in, garbage out.

While I say that, I will add an addendum by saying that Splunk, mixed with a Splunk
expert and the right development resources, can also make the data I just mentioned
extremely valuable. It will likely not happen as fast as they make it out to be at a
presentation, and it will take more resources than you may have thought. However, at the
end of your Splunk journey, you will be happy. This chapter was to help you understand
the importance of logs formatting and how logs are written. We often don't think about our
logs proactively and I encourage you to do so.

Now that we have this understanding about logging and the types of data that applications
generally write, we can move on to understanding what kinds of data inputs Splunk uses in
order to get data in.

Determining which data input suits your use case is often the first part of getting data into
Splunk, and with a wide variety of ways to do this, Splunk enables us to use the methods
that they have developed, as well as allowing room for us to develop our own if necessary.

[33]

Data Inputs

In Splunk there are many ways to get data into the indexers, which make for the ability to
be very creative in doing so. Between the apps that are provided on Splunk base and the
other methods that can be developed by an individual, it paves the way to be very dynamic
in getting data in to get value out of your data.

In this chapter I'm going to assume that you have your Forwarders installed.

Let's start with most of the agents and applications to get data into Splunk.

Agents

These are the thin and thick clients from Splunk that can be used to forward data to Splunk.

Splunk Universal Forwarder

Splunk Universal Forwarder is a light agent that is installed on a device that enables you
with quite a bit of functionality to get data into a Splunk index. The name is pretty self-
explanatory, as this agent is designed to simply forward data to a Splunk index. This is
often the most common method to get data into Splunk.

Splunk Heavy Forwarder

This is a heavy agent. It is basically a full version of Splunk that is installed on a device in
order to perform the same data-forwarding functionality as the Universal Forwarder, with
the added benefit of being able to perform some more complex functions.

Data Inputs

It is often used as a centralized point for data gathering of multiple systems, as well as a
data router to collect, route, and scrub data appropriately before it hits an indexer. These
are usually standalone machines within your Splunk infrastructure.

Search Head Forwarder

If you have limited ability to create an infrastructure, or you have security limitations
within your environment, you can also use your Search Head as a Heavy Forwarder as it
has all of the essential functionality of a Heavy Forwarder. This can be resource intensive
depending on how many data inputs you are pumping into your indexers, so mind the
resource utilization if you use this method.

Data inputs

Knowing all of the applications and methods we can use to get data into Splunk, let's talk
about the types of data inputs from data sources, and how they get to the indexer. There are
six general types of data inputs in Splunk:

e APl inputs

Database inputs

Monitoring inputs

Scripted inputs

Modular inputs
¢ Windows inputs

APl inputs

There are two ways to get REST API data into Splunk:

e Download the REST API modular input, and install it into your Heavy Forwarder

e Write a REST API poller using cURL or some other method to query the API, and
scrub the output for the data you need

If at all possible, use the REST API modular input from Splunk, as it is very easy to set up
and use. Just figure out your URL, and set up the APl input and it's interval that you want it
to be polled at.

[35]

Data Inputs

REST API input available?
A: When one doesn't already exist, and it's the only way to get data from

8 Q: When would you ever use a custom API input if Splunk already has a
your system.

An example of this is MapR's newest version called YARN. MR1 doesn't have an API that is
very useful for gathering metrics, but YARN on the other hand has a device called History
Server which retains all job metrics for any running, or a job that already been run.
However, there is no prebuilt API for this, so you would need to develop one.

Methods of writing an API input are left up to the developer; however, I know that when
using Splunk, Python is a very common and effective language to get the job done.

Database inputs

These are usually the most popular of the input sets, simply because writing your own DB
connector can be resource intensive, and publishing your database information in a system
such as Splunk usually adds a lot of value to your dashboards. For these, use DB Connect; it
is plain and simple, because the heavy lifting has already been done for you by the
developers at Splunk. DB Connect requires either a Heavy Forwarder or a Search Head and
there are a couple of ways to get data from your database. I won't discuss database inputs
here, as they require an installation of DB Connect which can be a challenge in and of itself.
I will simply refer you to the link to the Splunk website for how to create DB inputs
leveraging DB Connect 2.0:

http://docs.splunk.com/Documentation/DBX/latest/DeployDBX/Createandmanagedataba
seinputs

The different type of database inputs that DB Connect can leverage are as follows:

¢ Automated input: These are simply scheduled to run on a time interval, and
ingest the whole table that you target.

e Rising column: These inputs can simply watch your unique key in your database
and add only the newest rows of data.

¢ Dynamic queries (Search Head Forwarder only): These are queries (often SQL)
that are written into your search queries. These DB queries can be modified by a
DB admin to show only the data that a user would want to see instead of the
entire table.

¢ DB lookups (Search Head Forwarder only): These are queries that you can set
within DB Connect to lookup things such as employee numbers, or product IDs
from a database. You can either use them to lookup data on the fly, or you can
write the results to a lookup file or your key-value store.

[36]

Data Inputs

DB Connect formats any of this data into happy key=value pairs for you to easily parse
and search through. DB Connect has compatibility with SQL, MySQL, DB2, Oracle,
MongoDB, and more. Feel free to check your DB compatibility at http://www.splunk.com
/.

DB Connect can be a bear to install depending on your security and your
system. When installing this app, follow the walk-through at http: //www.
splunk.com/. I'm not a fan of instructions, especially when they are as
long as they are with DB Connect, but in this case I recommend following
them closely to keep your sanity.

Monitoring inputs

This is literally just monitoring a file, be it text based, XML, or JSON. The more structured
the file, and the more well behaved the logging, the easier it is to get into Splunk. Generally,
Splunk likes flat files, however there are still frustrations that come along with this
depending on what you monitor.

Scripted inputs

A scripted input is literally a script that can be deployed by the deployment server, run and
collect data. The most popular language to use for creating these scripts is bash, Python,
PowerShell, or Perl.

When using Perl or Python, make sure that whatever libraries you are
using when creating a script are within the standard Splunk Forwarder
installation, or on your machine. The JSON package (for instance) is not
included on some systems (maybe for security, or just a choice by the
admin) so if you need to use it to print your output to a nice friendly JSON
format, be sure to include it in your deployment server application and
reference it accordingly in your script.

If you have ever deployed the Splunk Linux add-on, you have deployed a series of bash
scripts on every one of your Linux systems, and they run to collect data from different
standard system command outputs.

The beauty of the scripted input is that the script you create only has to echo or print the
output, and the Forwarder takes care of the rest.

I'll use a real-world example for this, as I know sometimes server inventory can be
problematic depending on the company.

[37]

Data Inputs

Custom or not

These are inputs that are written in a scripting language. Often in Linux, these are written in
bash, but if we need to talk to Windows we can use more versatile languages such as
Python, Perl, or PowerShell as well. Each Forwarder comes with a set of libraries for
languages such as Python, or Perl, but for languages such as PowerShell or bash, the
Forwarder will use the libraries that are installed on the system itself. With PowerShell, it's
advised to install the PowerShell add-on from Splunk in order to leverage that language
appropriately. When you do it's simply a stanza within your inputs.conf you can set at
an interval of time to collect the data.

In this example, we have 2400+ Forwarders (Linux), 15 indexers
(clustered), and 5 Search Heads (4 pooled, 1 solo).

The problems are:

e With so many machines, virtual machines, and physical machines being spun up
and retired every day, how do we keep track of that entire inventory?

¢ Can we dynamically track the Hadoop nodes cluster participation?

The solution is:

To use Splunk to deploy a scripted input that runs twice a week to gather metrics, automate
a report, and e-mail it to the data center teams.

When there are so many machines, a deployment server is absolutely necessary, and
fortunately it's a single source to deploy to a major deployment. If you can, write a single
script to work on one Linux machine then just deploy it to the rest using Splunk.

In this instance, most of the 1400 nodes were part of multiple Hadoop clusters (I believe we
had 24 or so), and as machines spun up, went down, or got replaced, the machines would
be named freshly according to their location within the data center. Meaning that not only
can the machines change, but so can their IPs.

The method used to track them was that a person would have to sit down every week and
go through the tickets to determine which machines were live, and which had been moved
and retired. With so many machines, I can only imagine what that person's life must have
been like, considering, from a business perspective, that this was the person's only job. A
dedicated resource (regardless of the cost) was needed in order to track such inventory on a
scale like that.

[38]

Data Inputs

In our environment, we were fortunate to have the Splunk Universal Forwarder on every

node, as Splunk was purchased in order to help manage the big data infrastructure.

This is part of the script that was written:

SERVERNAME="uname -n | awk -F "." '{ print $1 }'"

CLUSTER="cat /etc/profile | grep PS1 | grep —-oP '\[\ (\K["\)]+"
PROC_COUNT="cat /proc/cpuinfo | grep processor | wc -1°
SOCKETS="cat /proc/cpuinfo | egrep 'physical id' | sort -u | wc -1°

CORES="cat /proc/cpuinfo | egrep 'cpu cores' | sort -u | awk '{ print $4

b
UPTIME=" uptime |awk '{print $3" "$4" "s5}'°

MEMKB="cat /proc/meminfo | grep MemTotal | awk '{ print $2 }'°
MEMORY="expr SMEMKB / 1048576

O0S="uname -s°

OSVERSION="cat /etc/redhat-release lawk '{print $0}'"
KERNAL="uname -a | awk '{ print \$3 }'°

OS_MANUFACTURER="cat /etc/redhat-release lawk '{print $1" "$2}'°

SERIAL_NUMBER="dmidecode -s system-serial-number’
SERVER_TYPE=""
if [[S$SERIAL_NUMBER =~ ~VMwa]]; then
SERVER_TYPE="Virtual"
else SERVER_TYPE="Physical"

fi

SPEED="cat /proc/cpuinfo | grep MHz | tail -1 | awk '{ print $4 }'"
CPU_TYPE="cat /proc/cpuinfo | grep '”“model name' | awk -F: '{ print $2 }'
tail -1°

DISKS="1lsblk -ibo KNAME,TYPE,SIZE,MODEL | grep disk | wc -1°

MODEL="1shal | grep -i 'system.hardware.product' | awk -F' '{ print $2 }'°
MANUFACTURER="1shal | grep -i 'system.hardware.vendor' | awk -F' '{ print
$2 v

#NIC="/sbin/ifconfig -a |grep -i -B 3 "UP" |grep —-i "HWaddr"| awk '{print
S1r'e

#MAC_ADDR="/sbin/ifconfig -a |grep -i -B 3 "UP" |grep -1 "HWaddr"| awk
'"{print $5}'°

INSTALL_DATE="1ls -1 /root/install.log |awk '{print $6, $7, $8}'"
#IP_ADDR="hostname -i |awk '{print \$0}'’
TIMESTAMP= date +"%F %T %z"°

echo —n "STIMESTAMP | cluster=$CLUSTER | serverName=$SERVERNAME |
serverType=$SERVER_TYPE | procCount=$PROC_COUNT | sockets=$SOCKETS |
cores=$CORES | uptime="S$UPTIME" | memory=S$SMEMORY | 0s=$0S |
osVersion="$SOSVERSION" | kernalVersion=S$SKERNAL |

osManufacturer="$0S_MANUFACTURER" | SN="$SERIAL_NUMBER" | cpuSpeed=$SPEED

cpuType="$CPU_TYPE" | diskCount=$DISKS | model="$MODEL" |
manufacurer="SMANUFACTURER" | installDate="S$INSTALL_DATE" | "

[39]

Data Inputs

If you put this script in a file and execute the script, the output comes in a nice pleasant
key=value format like this:

serverName=myMachineName | cluster=hadoopClusterl | timeStamp="2016-02-06
20:28:15 MST" | serverType=Physical | procCount=32 | sockets=2 | cores=8 |
uptime="200 days, 4:17," | memory=125 | os=Linux | osVersion="Red Hat

Enterprise Linux Server release 6.4 (Santiago)" |
kernalVersion=2.6.32-358.el16.x86_64 | osManufacturer="Red Hat" |

SN="FCH181BB3XY" | cpuSpeed=2599.929 | cpuType=" Intel (R) Xeon(R) CPU
E5-2650 v2 @ 2.60GHz" | diskCount=2 | model="UCSC-C240-M3S" |
manufacurer="Cisco Systems Inc" | installDate="May 8 2014

Which Splunk loves:

hostname < | env os - | osversion - | kernalversion osManufacturer = | SN cpuSpeed - | cpuType - | diskCount = | model

2401.000

After the script was created, the deployment was made to all machines using the
deployment server.

I figured it's a given, but I will mention this just in case. Make sure the
Universal Forwarder is running as an account that has access to run all of
your desired commands. Without proper permissions, no script will work.

Modular inputs

These inputs are usually installed on a Heavy Forwarder, and collect data from multiple
sources. Let's use the simple example of SNMP(Simple Network Management Protocol)
polling, as well as an API modular input. Both of these packages can be installed on the
same Heavy Forwarder, and while SNMP is polling your network devices, maybe the API
modular input is polling a REST API of your Resource Manager device to draw information
about Hadoop jobs for your YARN (Yet Another Resource Negotiator) system. For these
you can use the UI of the Heavy Forwarder to set them up.

[40]

Data Inputs

These inputs can be developed by you, or they also often come packaged within many apps
from Splunk. A modular input is usually best recognized for being able to use the Ul in
order to configure it. Some apps that leverage modular inputs are the EMC app for Xtreme
1O, the SNMP modular input, and the REST API input.

Often these inputs leverage backend code or scripting that reach out to the target system
and speak to the systems API, pull back a bunch of data, and format the data output into a
meaningful format.

Many companies have partnered with Splunk in order to create an app that leverages a
modular input. The EMC Xtreme app on Splunk is a great example of that, as is the Service
Now app. These apps were developed (and are supported) by both Splunk and the
company, so if you get stuck in deploying an app like this, first call Splunk, and (if needed)
they can reach out to the company.

Modular inputs can be difficult to develop, however they are quite easy to use, which
makes the effort in pre-deployment worth it. Often, Splunk admins simply don't have the
time to make these, which is when Splunkbase is a wonderful thing.

We will just use an app from Splunkbase to show what a modular input looks like, and how
to recognize one.

The EMX XtremlO add-on is a modular input. This is best installed on either a Search Head
Forwarder or a Heavy Forwarder for the purpose of saving you time getting the data from
the system to a Splunk index:

EMC XtremlO Add-on for Splunk Enterprise

0

This technology add-on collects data from EMC XtremlO cluster to be used by the EMC
XtremlO App for Splunk Enterprise

Content: Add-0n | Compatibliity: 6.2 | Platform: Platform Independent | Categorles: [T Operations
Management | Author: Crest Data Systems | Downloads: 85 | Released: Jul 31,2015 | Updated:

Jul 31, 2015

[41]

Data Inputs

This is necessary in order to get data into Splunk from your Xtreme IO appliance, and is
part of the installation bundle for the Xtreme IO app.

Often apps come with multiple pieces, as the app itself is usually just a set
of dashboards and knowledge objects in order to visualize the data from
the system. That data is usually gathered by a Heavy Forwarder, or an
instance of DB Connect, and is also usually quite a bit more complicated to
install than the app itself. To reiterate, often apps on Splunkbase are just
visualizations, and without the rest of the package that gathers the data,
they will remain blank.

If you're getting into things like this, it's always best to set up a Heavy Forwarder, and
install the app there. That way you can offload the data gathering tasks from your Search
Head and let the Heavy Forwarder do the work:

Administrator A es Settings Activity

[42]

Data Inputs

When you install this kind of add-on to

your Heavy Forwarder, you generally won't get a

standard app icon within the app selection menu. Since this is a data input, it will be a new

selection under the Data inputs menu:

unk> Apps

Data inputs

Local inputs

Type
Files & directories
Index a local file or monitol

TCP

ubDP

Listen on a UDP port for in

Automation Testing

Perform web automation a

Enable Cisco UCS inputs

Enable ServiceNow databa:

Set up data inputs from files and directories, network ports, and scripted inputs

Listen on a TCP port for incoming data, e.g. syslog

coming data, e.g. syslog

custom scripts to collect or generate more data.

Splunk Add-on for Cisco UCS

Splunk Add-on for ServiceNow

r an entire directory

Synthetic Transactions

nd synthetic transactions on web pages.

se table inputs

XtremIO REST Inputs

REST API input for polling data from EMC XtremlO

Now you can see that this modular input leverages a REST API for gathering its data. Many
times this is the case, but not always. If we click on this when it is unconfigured you will see
that it's blank, and that there is no way to configure it. With Splunk you can rest assured
that there is always at least one way to do this; however, we hope for two:

¢ The easy way:

e This is when someone has been kind enough to develop a Ul
configuration setup tool within their modular input to assist in the

setup process.

¢ The hard way:

e This is when we have to go to the backend and manually configure
stanzas and settings that are specific to the app. That means time
spent in research trying to discover the settings that are necessary

for your system

[43]

Data Inputs

In our example, we will use the easy way, because someone was nice enough to develop an
interface for this.

It's not always intuitive to find the configuration setup utility for a Splunk app, as is in this
case; however, let's not cry over spilled milk.

To find this modular inputs setup utility, just go to your standard app menu, and select
Manage Apps:

In this case, it's as easy as entering the IP (or DNS address) of your appliance, a Username
with appropriate permissions and that user's Password, and clicking Save:

XtremlO Configuration

Host
Username
Password

Confirm password

[44]

Data Inputs

Confirm that your new data inputs were created by going back to the Data inputs menu,
and clicking your modular input:

splunk> A

Data inputs

Local inputs
Set up data inputs from files and directories, network ports, and scripted inputs. If you want t

Type

Files & directories
Index a local file or monitor an entire directory.

TCP

Listen on a TCP port for incoming data, e.g. syslog.
ubpP

Listen on a UDP port for incoming data, e.g. syslog.
Scripts

Run custom scripts to cellect or generate more data.
Automation Testing | Synthetic Transactions
Perform web automation and synthetic transactions on web pages.
Splunk Add-on for Cisco UCS

Enable Cisco UCS inputs

Splunk Add-on for ServiceNow

Enable ServiceMNow database table inputs

XtremlO REST Inputs
REST APl input for polling data from EMC XtremlQ

And you should see this:

XtremlO REST Inputs

Settings » Data inputs » XtremlO REST Inputs

Showing 1-8 of 8 items

REST input name # Endpoint URL ¢ Polling Interval & Source type ¢
https://imdpxiol gs 120 emcaxremiorrest
https://imdpxio1gso/! 120 emc:xtremio:rest
https://imdpxiol gso/api/json/types/events 120 emcaxtremiorrest
htps: pi/json _ids$ 120 emcaxtremiorrest
https://imdpxiol gso/api/json/types/snaps 120 emcaxremiorrest
https://imdpxio1g: 120 emc:xtremio:rest
https://imdpxio1 gso; n/types 120 emcaxtremiorrest

imdpx https://imdpxiol gso/api/json/types/volumes/Sget ids$ 120 emcaxtremiorest

[45]

Data Inputs

After that, just set your intervals if you like, and enable them all, and you should be able to
see some data. If not, do a search on index=_internal for your app, and troubleshoot
accordingly.

Now that we know some good use cases for our inputs, we can start to organize the chaos
that we have been dumping into Splunk.

Windows inputs

These are pretty much fully packaged within Splunk, and the apps developed by Splunk.
Windows can be a tricky animal, so we appreciate the people at Splunk making this as easy
as they have.

Each input simply has a different stanza within the Forwarders inputs.conf. That stanza
leverages the Windows API in order to get its data from Windows. These are mainly
covered in the Windows add-on for Splunk. Here are examples of a couple of stanzas from
a default inpu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>