
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Implementing Splunk 7
Third Edition

Effective operational intelligence to transform
machine-generated data into valuable business insight

James D. Miller

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

BIRMINGHAM - MUMBAI

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Implementing Splunk 7 Third Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information
contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the
appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Tushar Gupta
Content Development Editor: Mayur Pawanikar
Technical Editor: Prasad Ramesh
Copy Editor: Vikrant Phadke
Project Coordinator: Nidhi Joshi
Proofreader: Safis Editing
Indexer: Mariammal Chettiyar
Graphics: Tania Dutta
Production Coordinator: Nilesh Mohite

First published: January 2013
Second edition: July 2015
Third edition: March 2018

Production reference: 1280318

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-628-9

www.packtpub.com

||||||||||||||||||||

||||||||||||||||||||

http://www.packtpub.com
https://technet24.ir
https://technet24.ir

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

||||||||||||||||||||

||||||||||||||||||||

https://mapt.io/
https://technet24.ir
https://technet24.ir

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with
us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

||||||||||||||||||||

||||||||||||||||||||

http://www.PacktPub.com
http://www.packtpub.com
https://technet24.ir
https://technet24.ir

Contributors

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

About the author
James D. Miller is an IBM-certified expert, creative innovator, director, senior project
leader, and application/system architect with 35+ years extensive application, system
design, and development experience. He has introduced customers to new and
sometimes disruptive technologies and platforms, integrating with IBM Watson
Analytics, Cognos BI, TM1, web architecture design, systems analysis, GUI design and
testing, database modeling and systems analysis. He has done design and development
of OLAP, client/server, web, and mainframe applications.

I would like to thank Nanette, Shelby and Paige who continually amaze me with their support and love.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

About the reviewer
Kyle Smith is a self-proclaimed geek from Pennsylvania and has been working with
Splunk extensively since 2010. He has spoken many times at the Splunk User
Conference and is an active contributor to the Splunk Answers Community, the #splunk
IRC Channel, and the Splunk Slack Channels. He has published several Splunk apps and
add-ons to Splunkbase, the Splunk community’s premier app, and add- on publishing
platform. He now works as a consultant/developer for Splunk's longest running Aplura,
LLC. He has written Splunk Developer's Guide, also by Packt.

I'd like to thank my wife, who most graciously put up with all of my BS during the writing of this book. Without
her, this effort is meaningless.

Yogesh Raheja is a certified DevOps and cloud expert with a decade of IT experience.
He has expertise in technologies such as OS, source code management, build & release
tools, continuous integration/deployment/delivery tools, containers, config management
tools, monitoring, logging tools, and public and private clouds. He loves to share his
technical expertise with audience worldwide at various forums, conferences, webinars,
blogs, and LinkedIn (https://in.linkedin.com/in/yogesh-raheja-b7503714). He has written
Automation with Puppet 5 and Automation with Ansible.

||||||||||||||||||||

||||||||||||||||||||

https://in.linkedin.com/in/yogesh-raheja-b7503714
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

||||||||||||||||||||

||||||||||||||||||||

http://authors.packtpub.com
https://technet24.ir
https://technet24.ir

Table of Contents
Title Page

Copyright and Credits

Implementing Splunk 7 Third Edition

Packt Upsell

Why subscribe?

PacktPub.com

Contributors

About the author

About the reviewer

Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book

Download the example code files

Conventions used

Get in touch

Reviews

1. The Splunk Interface
Logging in to Splunk

The home app

The top bar

The Search & Reporting app

Data generator

The Summary view

Search

Actions

Timeline

The field picker

Fields

Search results

Options

Events viewer

Using the time picker

Using the field picker

The settings section

Splunk Cloud

Try before you buy

A quick cloud tour

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The top bar in Splunk Cloud

Splunk reference app – PAS

Universal forwarder

eventgen

Next steps

Summary

2. Understanding Search
Using search terms effectively

Boolean and grouping operators

Clicking to modify your search

Event segmentation

Field widgets

Time

Using fields to search

Using the field picker

Using wildcards efficiently

Supplementing wildcards in fields

All about time

How Splunk parses time

How Splunk stores time

How Splunk displays time

How time zones are determined and why it matters

Different ways to search against time

Presets

Relative

Real-time

Windowed real-time versus all-time real-time searches

Date range

Date and time range

Advanced

Specifying time in-line in your search

_indextime versus _time

Making searches faster

Sharing results with others

The URL

Save As Report

Save As Dashboard Panel

Save As Alert

Save As Event Type

Searching job settings

Saving searches for reuse

Creating alerts from searches

Enable Actions

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Action Options

Sharing

Event annotations

An illustration

Summary

3. Tables, Charts, and Fields
About the pipe symbol

Using top to show common field values

Controlling the output of top

Using stats to aggregate values

Using chart to turn data

Using timechart to show values over time

The timechart options

Working with fields

A regular expression primer

Commands that create fields

eval

rex

Extracting loglevel

Using the extract fields interface

Using rex to prototype a field

Using the admin interface to build a field

Indexed fields versus extracted fields

Indexed field case 1 - rare instances of a common term

Indexed field case 2 - splitting words

Indexed field case 3 - application from source

Indexed field case 4 - slow requests

Indexed field case 5 - unneeded work

Chart enhancements in version 7.0

charting.lineWidth

charting.data.fieldHideList

charting.legend.mode

charting.fieldDashStyles

charting.axis Y.abbreviation

Summary

4. Data Models and Pivots
What is a data model?

What does a data model search?
Data model objects

Object constraining

Attributes

Acceleration in version 7.0

Creating a data model

Filling in the new data model dialog

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Editing fields (attributes)

Lookup attributes

Children

What is a pivot?

The Pivot Editor

Working with pivot elements

Filtering pivots

Split (row or column)

Column values

Pivot table formatting

A quick example

Sparklines

Summary

5. Simple XML Dashboards
The purpose of dashboards

Using wizards to build dashboards
Adding another panel

A cool trick

Converting the panel to a report

More options

Back to the dashboard

Add input

Editing source

Edit UI

Editing XML directly

UI examples app

Building forms

Creating a form from a dashboard

Driving multiple panels from one form

Post-processing search results

Post-processing limitations

Features replaced

Autorun dashboard

Scheduling the generation of dashboards

Summary

6. Advanced Search Examples
Using subsearches to find loosely related events

Subsearch

Subsearch caveats

Nested subsearches

Using transaction

Using transaction to determine session length

Calculating the aggregate of transaction statistics

Combining subsearches with transaction

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Determining concurrency

Using transaction with concurrency

Using concurrency to estimate server load

Calculating concurrency with a by clause

Calculating events per slice of time

Using timechart

Calculating average requests per minute

Calculating average events per minute, per hour

Rebuilding top

Acceleration

Big data – summary strategy

Report acceleration

Report acceleration availability

Version 7.0 advancements in metrics

Definition of a Splunk metric

Using Splunk metrics

Creating a metrics index

Creating a UDP or TCP data input

Summary

7. Extending Search
Using tags to simplify search

Using event types to categorize results

Using lookups to enrich data

Defining a lookup table file

Defining a lookup definition

Defining an automatic lookup

Troubleshooting lookups

Using macros to reuse logic

Creating a simple macro

Creating a macro with arguments

Creating workflow actions

Running a new search using values from an event

Linking to an external site

Building a workflow action to show field context

Building the context workflow action

Building the context macro

Using external commands
Extracting values from XML

xmlkv

XPath

Using Google to generate results

Summary

8. Working with Apps
Defining an app

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Included apps

Installing apps
Installing apps from Splunkbase

Using Geo Location Lookup Script

Using Google Maps

Installing apps from a file

Building your first app

Editing navigation

Customizing the appearance of your app

Customizing the launcher icon

Using custom CSS

Using custom HTML

Custom HTML in a simple dashboard

Using server-side include in a complex dashboard

Object permissions

How permissions affect navigation

How permissions affect other objects

Correcting permission problems

App directory structure
Adding your app to Splunkbase

Preparing your app

Confirming sharing settings

Cleaning up our directories

Packaging your app

Uploading your app

Self-service app management

Summary

9. Building Advanced Dashboards
Reasons for working with advanced XML

Reasons for not working with advanced XML

Development process

Advanced XML structure

Converting simple XML to advanced XML

Module logic flow

Understanding layoutPanel

Panel placement

Reusing a query

Using intentions

stringreplace

addterm

Creating a custom drilldown

Building a drilldown to a custom query

Building a drilldown to another panel

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Building a drilldown to multiple panels using HiddenPostProcess

Third-party add-ons

Google Maps

Sideview Utils

The Sideview search module

Linking views with Sideview

Sideview URLLoader

Sideview forms

Summary

10. Summary Indexes and CSV Files
Understanding summary indexes

Creating a summary index

When to use a summary index

When to not use a summary index

Populating summary indexes with saved searches

Using summary index events in a query

Using sistats, sitop, and sitimechart

How latency affects summary queries

How and when to backfill summary data

Using fill_summary_index.py to backfill

Using collect to produce custom summary indexes

Reducing summary index size

Using eval and rex to define grouping fields

Using a lookup with wildcards

Using event types to group results

Calculating top for a large time frame

Summary index searches

Using CSV files to store transient data

Pre-populating a dropdown

Creating a running calculation for a day

Summary

11. Configuring Splunk
Locating Splunk configuration files

The structure of a Splunk configuration file

The configuration merging logic
The merging order

The merging order outside of search

The merging order when searching

The configuration merging logic

Configuration merging – example 1

Configuration merging – example 2

Configuration merging – example 3

Configuration merging – example 4, search

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using btool

An overview of Splunk.conf files
props.conf

Common attributes

Search-time attributes

Index-time attributes

Parse-time attributes

Input-time attributes

Stanza types

Priorities inside a type

Attributes with class

inputs.conf

Common input attributes

Files as inputs

Using patterns to select rolled logs

Using blacklist and whitelist

Selecting files recursively

Following symbolic links

Setting the value of the host from the source

Ignoring old data at installation

When to use crcSalt

Destructively indexing files

Network inputs

Native Windows inputs

Scripts as inputs

transforms.conf
Creating indexed fields

Creating a loglevel field

Creating a session field from the source

Creating a tag field

Creating host categorization fields

Modifying metadata fields

Overriding the host

Overriding the source

Overriding sourcetype

Routing events to a different index

Lookup definitions

Wildcard lookups

CIDR wildcard lookups

Using time in lookups

Using REPORT

Creating multivalue fields

Creating dynamic fields

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Chaining transforms

Dropping events

fields.conf

outputs.conf

indexes.conf

authorize.conf

savedsearches.conf

times.conf

commands.conf

web.conf

User interface resources

Views and navigation

Appserver resources

Metadata

Summary

12. Advanced Deployments
Planning your installation

Splunk instance types

Splunk forwarders

Splunk indexer

Splunk search

Common data sources

Monitoring logs on servers

Monitoring logs on a shared drive

Consuming logs in batch

Receiving syslog events

Receiving events directly on the Splunk indexer

Using a native syslog receiver

Receiving syslog with a Splunk forwarder

Consuming logs from a database

Using scripts to gather data

Sizing indexers

Planning redundancy
The replication factor

Configuring your replication factors

Syntax

Indexer load balancing

Understanding typical outages

Working with multiple indexes

Directory structure of an index

When to create more indexes

Testing data

Differing longevity

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Differing permissions

Using more indexes to increase performance

The life cycle of a bucket

Sizing an index

Using volumes to manage multiple indexes

Deploying the Splunk binary

Deploying from a tar file

Deploying using msiexec

Adding a base configuration

Configuring Splunk to launch at boot

Using apps to organize configuration

Separate configurations by purpose

Configuration distribution

Using your own deployment system

Using the Splunk deployment server

Step 1 – deciding where your deployment server will run

Step 2 - defining your deploymentclient.conf configuration

Step 3 - defining our machine types and locations

Step 4 - normalizing our configurations into apps appropriately

Step 5 - mapping these apps to deployment clients in serverclass.conf

Step 6 - restarting the deployment server

Step 7 - installing deploymentclient.conf

Using LDAP for authentication

Using single sign-on

Load balancers and Splunk

web

splunktcp

deployment server

Multiple search heads

Summary

13. Extending Splunk
Writing a scripted input to gather data

Capturing script output with no date

Capturing script output as a single event

Making a long-running scripted input

Using Splunk from the command line

Querying Splunk via REST

Writing commands

When not to write a command

When to write a command

Configuring commands

Adding fields

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Manipulating data

Transforming data

Generating data

Writing a scripted lookup to enrich data

Writing an event renderer

Using specific fields

A table of fields based on field value

Pretty printing XML

Writing a scripted alert action to process results

Hunk

Summary

14. Machine Learning Toolkit
What is machine learning?

Content recommendation engines

Natural language processing

Operational intelligence

Defining the toolkit

Time well spent

Obtaining the Kit

Prerequisites and requirements

Installation

The toolkit workbench

Assistants

Extended SPL (search processing language)

ML-SPL performance app

Building a model

Time series forecasting

Using Splunk

Launching the toolkit

Validation

Deployment

Saving a report

Exporting data

Summary

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Preface
Splunk is a leading platform that fosters an efficient methodology and delivers ways to
search, monitor, and analyze growing amounts of big data. This book will allow you to
implement new services and utilize them to quickly and efficiently process machine-
generated big data.

We'll introduce you to all the new features, improvements, and offerings of Splunk 7. We
cover the new modules of Splunk—Splunk Cloud and the Machine Learning Toolkit—to
ease data usage. Furthermore, you will learn how to use search terms effectively with
boolean and grouping operators. You will learn not only how to modify your search to
make your searches fast, but also how to use wildcards efficiently. Later, you will learn
how to use stats to aggregate values, a chart to turn data, and a time chart to show values
over time; you'll also work with fields and chart enhancements and learn how to create
a data model with faster data model acceleration. Once this is done, you will learn
about XML dashboards, working with apps, building advanced dashboards, configuring
and extending Splunk, advanced deployments, and more. Finally, we'll teach you how to
use the Machine Learning Toolkit and some best practices and tips to help you
implement Splunk services effectively and efficiently.

By the end of this book, you will have learned the Splunk software as a whole and
implemented Splunk services in your tasks at projects.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Who this book is for
This book is intended for data analysts, business analysts, and IT administrators who
want to make the best use of big data, operational intelligence, log management, and
monitoring within their organization. Some knowledge of Splunk services will help you
get the most out of the book.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

What this book covers
Chapter 1, The Splunk Interface, walks you through the most common elements in the
Splunk interface.

Chapter 2, Understanding Search, dives into the nuts and bolts of how searching works
so that you can make efficient searches to populate the cool reports.

Chapter 3, Tables, Charts, and Fields, starts using fields for more than searches; we'll
build tables and graphs. Then we'll learn how to make our own fields.

Chapter 4, Data Models and Pivots, covers data models and pivots, the pivot editor,
pivot elements and filters, and sparklines.

Chapter 5, Simple XML Dashboards, demonstrates simple XML dashboards; their
purpose; using wizards to build, schedule the generation of, and edit XML directly; and
building forms.

Chapter 6, Advanced Search Examples, dives into advanced search examples, which can
be a lot of fun. We'll expose some really powerful features of the search language and
go over a few tricks that I've learned over the years.

Chapter 7, Extending Search, uses more advanced features of Splunk to help extend the
search language and enrich data at search time.

Chapter 8, Working with Apps, explores what makes up a Splunk app, as well as the latest
self-service app management (originally introduced in version 6.6) updated in version
7.0.

Chapter 9, Building Advanced Dashboards, covers module nesting, layoutPanel, intentions,
and an alternative to intentions with SideView Utils.

Chapter 10, Summary Indexes and CSV Files, explores the use of summary indexes and
the commands surrounding them.

Chapter 11, Configuring Splunk, overviews how configurations work and gives a

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

commentary on the most common aspects of Splunk configuration.

Chapter 12, Advanced Deployments, digs into distributed deployments and looks at how
they are efficiently configured.

Chapter 13, Extending Splunk, shows a number of ways in which Splunk can be extended
to input, manipulate, and output events.

Chapter 14, Machine Learning Toolkit, overviews the fundamentals of Splunk's Machine
Learning Toolkit and shows how it can be used to create a machine learning model.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

To get the most out of this book
To start with the book, you will first need to download Splunk from https://www.splunk.com
/en_us/download.html.

You can find the official installation manual at http://docs.splunk.com/Documentation/Splunk/la
test/Installation/Systemrequirements.

The codes in this book use a data generator which can be used to test the queries given in the
book. However, since the data is randomly generated, not all queries will work as expected and
you may have to modify them accordingly.

||||||||||||||||||||

||||||||||||||||||||

https://www.splunk.com/en_us/download.html
http://docs.splunk.com/Documentation/Splunk/latest/Installation/Systemrequirements
https://technet24.ir
https://technet24.ir

Download the example code files
You can download the example code files for this book from your account at www.packtpub.
com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and
register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packtpub.com.
2. Select the SUPPORT tab.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing
/Implementing-Splunk-7-Third-Edition. In case there's an update to the code, it will be updated
on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Implementing-Splunk-7-Third-Edition
https://github.com/PacktPublishing/
https://technet24.ir
https://technet24.ir
https://technet24.ir

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The events must have a _time field."

A block of code is set as follows:

sourcetype="impl_splunk_gen" ip="*"
| rex "ip=(?P<subnet>\d+\.\d+\.\d+)\.\d+"
| table ip subnet

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "There are several ways to define a field. Let's start by using the Extract
Fields interface."

Warnings or important notes appear like this.

Tips and tricks appear like this.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the subject
of your message. If you have questions about any aspect of this book, please email us at
questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/submit-errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit authors.p
acktpub.com.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://technet24.ir
https://technet24.ir
https://technet24.ir

Reviews
Please leave a review. Once you have read and used this book, why not leave a review
on the site that you purchased it from? Potential readers can then see and use your
unbiased opinion to make purchase decisions, we at Packt can understand what you
think about our products, and our authors can see your feedback on their book. Thank
you!

For more information about Packt, please visit packtpub.com.

||||||||||||||||||||

||||||||||||||||||||

https://www.packtpub.com/
https://technet24.ir
https://technet24.ir

The Splunk Interface
This is the third edition of this book! Splunk has continued to grow in popularity since
our original publication and each new release of the product proves to be
enthusiastically consumed by the industry. The content of each chapter within this
edition has been reviewed and updated for Splunk version 7.0, with new sections added
to cover several new features now available in version 7.0. In addition, we have
two new chapters, one covering Splunk's latest machine learning toolkit (MLT) and
another discussing practical proven-practice recommendations. So, even if you have an
earlier edition of this book (thank you!), it's worthwhile picking up this edition.

Let's begin!

This chapter will walk you through the most common elements in the Splunk interface,
and will touch upon concepts that are covered in greater detail in later chapters. You
may want to dive right into them, but an overview of the user interface elements might
save you some frustration later. We will cover the following topics in this chapter:

Logging in and app selection
A detailed explanation of the search interface widgets
A quick overview of the admin interface

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Logging in to Splunk
The Splunk GUI (Splunk is also accessible through its command-line interface (CLI)
and REST API) is web-based, which means that no client needs to be installed. Newer
browsers with fast JavaScript engines, such as Chrome, Firefox, and Safari, work better
with the interface. As of Splunk Version 6.2.0 (and version 7.0 is no different), no
browser extensions are required.

The default port (which can be changed) for a Splunk installation is still 8000. The
address will look like http://mysplunkserver:8000 or http://mysplunkserver.mycompany.com:8000:

The Splunk interface

If you have installed Splunk on your local machine, the address can be some variant of
http://localhost:8000, http://127.0.0.1:8000, http://machinename:8000, or
http://machinename.local:8000.

Once you determine the address, the first page you will see is the login screen. The
default username is admin with the password changeme. The first time you log in, you
will be prompted to change the password for the admin user. It is a good idea to change
this password to prevent unwanted changes to your deployment.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

By default, accounts are configured and stored within Splunk. Authentication can be
configured to use another system, for instance, Lightweight Directory Access Protocol
(LDAP). By default, Splunk authenticates locally. If LDAP is set up, the order is as
follows: LDAP / Local.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The home app
After logging in, the default app is the Launcher app (some refer to it as Home). This
app is a launching pad for apps and tutorials.

Note that with your first login, Splunk will present a popup displaying Help us improve Splunk
software that will ask you permission (Splunk) to collect information about your Splunk usage. It
is up to you how to respond.

In earlier versions of Splunk, the Welcome tab provided two important shortcuts, Add
data and Launch search app. In version 6.2.0, the Home app was divided into distinct
areas or panes that provided easy access to Explore Splunk Enterprise (Add Data,
Splunk Apps, Splunk Docs, and Splunk Answers) as well as Apps (the app management
page), Search & Reporting (the link to the Search app), and an area where you can set
your default dashboard (choose a home dashboard).

In version 7.0, the main page has not been changed very much, although you may notice
some difference in the graphics. But the general layout remains the same, with the same
panes and access to the same functionalities.

We'll cover apps and dashboards in later chapters of this book:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The Explore Splunk Enterprise pane shows the following links:

Product Tours (a change in 7.0): When you click here, you can select a specific
tour for your review (Add Data Tour, Search Tour and Dashboards Tour).

Note: for first-timers, when you first click on any of the following links, Splunk will ask whether
you'd like to pause and view a tour based on the link you chose. Of course, you always have the
opportunity to go back at any time to the Product Tours link to review a tour.

Add Data: This links Add Data to the Splunk page. This interface is a great start
for getting local data flowing into Splunk (making it available to Splunk users).
The Preview data interface takes an enormous amount of complexity out of
configuring dates and line breaking. We won't go through those interfaces here, but
we will go through the configuration files that these wizards produce in Chapter 11,
Configuring Splunk.

Splunk Apps: This allows you to find and install more apps from the Splunk Apps

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Marketplace (https://splunkbase.splunk.com). This marketplace is a useful resource
where Splunk users and employees post Splunk apps, mostly free but some
premium ones as well. Note that you will need to have a splunk.com user ID.

Splunk Docs: This is one of your links to the wide amount of Splunk documentation
available, specifically https://answers.splunk.com, to come on board with the Splunk
community on Splunkbase (https://splunkbase.splunk.com/) and get the best out of your
Splunk deployment. In addition, this is where you can access http://docs.splunk.com/D
ocumentation/Splunk for the very latest updates to documentation on (almost) any
version of Splunk.

The Apps section shows the apps that have GUI elements on your instance of Splunk.
App is an overloaded term in Splunk. An app doesn't necessarily have a GUI; it is
simply a collection of configurations wrapped into a directory structure that means
something to Splunk. We will discuss apps in a more detailed manner in Chapter 8,
Working with Apps.

Search & Reporting is the link to the Splunk Search & Reporting app:

||||||||||||||||||||

||||||||||||||||||||

https://splunkbase.splunk.com
http://splunk.com
https://answers.splunk.com
https://splunkbase.splunk.com/
http://docs.splunk.com/Documentation/Splunk
https://technet24.ir
https://technet24.ir

Beneath the Search & Reporting link, Splunk provides an outline that, when you hover
over it, displays a Find More Apps balloon tip. Clicking on the link opens the (same)
Browse more apps page as the Splunk Apps link mentioned earlier:

Choose a home dashboard provides an intuitive way to select an existing (simple XML)
dashboard and set it as part of your Splunk Welcome or Home page. This sets you at a
familiar starting point each time you enter Splunk. The following screenshot displays the
Choose Default Dashboard dialog:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Once you select (from the drop-down list) an existing dashboard, it will be a part of
your welcome screen every time you log in to Splunk—until you change it. There are no
dashboards installed by default after installing Splunk, except the Search & Reporting
app. Once you have created additional dashboards, they can be selected as the default.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The top bar
The bar across the top of the window contains information about where you are as well
as quick links to preferences, other apps, and administration.

The current app is specified in the upper-left corner. The following screenshot shows
the upper-left Splunk bar when using the Search & Reporting app:

Clicking on the text takes you to the default page for that app. In most apps, the text next
to the logo is simply changed, but the whole block can be customized with logos and
alternate text by modifying the app's CSS. We will cover this in Chapter 8, Working with
Apps:

The upper-right corner of the window, as seen in the previous screenshot, contains
action links that are almost always available:

The name of the user who is currently logged in appears first. In this case, the user
is Administrator. Previously, clicking on the username allowed you to select Edit
Account (which would take you to the Your account page) or Logout (of Splunk). In
version 7.0, it's a bit different. The first option is now listed as Account Settings,
which opens a settings page similar to prior versions (below is the 7.0 page).
Logout is the other option, and, like prior versions, it ends the session and forces
the user to log in again.

The following screenshot shows what the your account page looks like:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This form presents the global preferences that a user is allowed to change. Other
settings that affect users are configured through permissions on objects and settings on
roles. (Note that preferences can also be configured using the command-line interface or
by modifying specific Splunk configuration files.) Preferences include the following:

Full name and Email address are stored for the administrator's convenience.
Set password allows you to change your password. This is relevant only if Splunk
is configured to use internal authentication. For instance, if the system is configured
to use Windows Active Directory via LDAP (a very common configuration), users

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

must change their password in Windows.
Global/Time zone can be changed for the logged-in user.

Setting the time zone only affects the time zone used to display the data. It is very important that
the date is parsed properly when events are indexed. We will discuss this in detail in >Chapter

2, Understanding Search.

Default application controls where you first land after login. Most users will want
to change this to search.
Restart backgrounded jobs controls whether unfinished queries should run again if
Splunk is restarted.

Search/Search assistant/Syntax highlighting/auto-format and Show line numbers:
these properties are used for assistance with command syntax, including examples,
autocomplete syntax, or to turn off search assistance. Syntax highlighting displays
search string components in different colors.

Messages allows you to view any system-level error messages you may have
pending. When there is a new message for you to review, a notification displays as
a count next to the Messages menu. You can click on the X to remove a message.

The Settings link presents the user with the configuration pages for all Splunk
Knowledge objects, Distributed environment, System and Licensing, Data, and
Users and Authentication settings. For any option that you are unable to see, you do
not have the permissions to view or edit it:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The Activity menu lists shortcuts to Splunk Jobs, Triggered Alerts, and (in
previous versions System Activity) views.
You can click on Jobs (to open the search jobs manager window, where you can
view and manage currently running searches) or Triggered Alerts (to view
scheduled alerts that are triggered).

Note: In version 7.0, System Activity (to see dashboards about user activity and status of the
system) has been removed from under Activity. You can actually access all of this detailed
information in Search!

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Help lists links to video tutorials, Splunk Answers, the Splunk Contact Support
portal, and online Documentation:

Find can be used to search for objects within your Splunk Enterprise instance.
These saved objects include Reports, Dashboards, Alerts, and so on. Errors can be
searched with the Search & Reporting app by clicking on Open error in search.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The Search & Reporting app
The Search & Reporting app (or just the search app) is where most actions in Splunk
start. This app is a dashboard where you will begin your searching.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Data generator
If you want to follow the examples that appear in the next few chapters, install the
ImplementingSplunkDataGenerator demo app by following these steps:

1. Download ImplementingSplunkDataGenerator.tar.gz from the code bundle available at http
://www.packtpub.com/support

2. Choose Manage apps... from the Apps menu
3. Click on the button labeled Install app from the file
4. Click on Choose File, select the file, and then click on Upload

This data generator app will produce about 16 megabytes of output per day. The app can
be disabled so that it stops producing data by using Manage apps... under the App menu.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.packtpub.com/support
https://technet24.ir
https://technet24.ir
https://technet24.ir

The Summary view
Within the Search & Reporting app, the user is presented with the Summary view, which
contains information about the data that the user searches by default. This is an
important distinction; in a mature Splunk installation, not all users will always search
all data by default. But if this is your first trip into Search & Reporting, you'll see the
following:

From the screen depicted in the previous screenshot, you can access the Splunk
documentation related to What to Search and How to Search. Once you have at least
some data indexed (a topic we'll discuss later), Splunk will provide some statistics on
the available data under What to Search.

Remember that this reflects only the indexes that this particular user searches by default; there are
other events that are indexed by Splunk, including events that Splunk indexes about itself. We will
discuss indexes in Chapter 9, Building Advanced Dashboards.

What to Search is shown in the following screenshot:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

In previous versions of Splunk, panels such as the All indexed data panel provided
statistics for a user's indexed data. Other panels gave a breakdown of data using three
important pieces of metadata—Source, Sourcetype, and Hosts. In the current version,
7.0.0, you access this information by clicking on the button labeled Data Summary,
which presents the following to the user:

This dialog splits the information into three tabs—Hosts, Sources and Sourcetypes:

A host is a captured hostname for an event. The majority of cases, the host field is
set to the name of the machine where the data originated. There are cases where
this is not known, so the host can also be configured arbitrarily.
A source in Splunk is a unique path or name. In a large installation, there may be
thousands of machines submitting data, but all data on the same path across these
machines counts as one source. When the data source is not a file, the value of the
source can be arbitrary. For instance, the name of a script or network port.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

A source type is an arbitrary categorization of events. There may be many sources
across many hosts in the same source type. For instance, given the sources
/var/log/access.2012-03-01.log and /var/log/access.2012-03-02.log on the hosts fred and
wilma, you could reference all these logs with source type access or any other name
that you like.

Let's move on now and discuss each of the Splunk widgets (just below the app name).
The first widget is the navigation bar:

As a general rule, within Splunk, items with downward triangles are menus. Items
without a downward triangle are links.

We will cover customizing the navigation bar in Chapter 8, Working with Apps.

Next, we find the Search bar. This is where the magic starts. We'll go into great detail
shortly:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Search
Okay, we've finally made it to search. This is where the real power of Splunk lies.

For our first search, we will search for the word (not case-specific) error. Click in the
search bar, type the word error, and then either press Enter or click on the magnifying
glass to the right of the bar:

Upon initiating the search, we are taken to the search results page (which hasn't really
changed in version 7.0):

Note that the search we just executed was across All time (by default); to change the search time,
you can utilize the Splunk time picker.

However, since the data is randomly generated, not all queries will work as expected and you
may have to modify them accordingly.

You can find the steps to upload the datasets in the previous Data generator section.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Refer to the Using the time picker section for details on changing the time frame of your
search.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Actions
Let's inspect the elements on this page. Below the Search bar, we have the event count,
action icons, and menus:

Starting from the left, we have the following:

The number of events matched by the base search. Technically, this may not be the
number of results pulled from disk, depending on your search. Also, if your query
uses commands, this number may not match what is shown in the event listing.
Job: It opens the Search job inspector window, which provides very detailed
information about the query that was run.
Pause: It causes the current search to stop locating events but keeps the job open.
This is useful if you want to inspect the current results to determine whether you
want to continue a long-running search.
Stop: This stops the execution of the current search but keeps the results generated
so far. This is useful when you have found enough and want to inspect or share the
results found so far.
Share: It shares the search job. This option extends the job's lifetime to seven days
and sets the read permissions to everyone.
Print: This formats the page for printing and instructs the browser to print.
Export: It exports the results. Select this option to output to CSV, raw events,
XML, or JavaScript Object Notation (JSON) and specify the number of results
to export.
Smart mode: This controls the search experience. You can set it to speed up
searches by cutting down on the event data it returns and additionally by reducing
the number of fields that Splunk will extract by default from the data (Fast mode).
You can otherwise set it to return as much event information as possible (Verbose
mode). In Smart mode (the default setting), it toggles search behavior based on the
type of search you're running.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Timeline
Now we'll skip to the timeline below the action icons:

Along with providing a quick overview of the event distribution over a period of time,
the timeline is also a very useful tool for selecting sections of time. Placing the pointer
over the timeline displays a popup for the number of events in that slice of time.
Clicking on the timeline selects the events for a particular slice of time.

Clicking and dragging selects a range of time:

Once you have selected a period of time, clicking on Zoom to selection changes the time
frame and reruns the search for that specific slice of time. Repeating this process is an
effective way to drill down to specific events.

Deselect shows all events for the time range selected in the time picker.

Zoom out changes the window of time to a larger period around the events in the current
time frame.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The field picker
To the left of the search results, we find the field picker. This is a great tool for
discovering patterns and filtering search results:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Fields
The field list contains two lists.

Selected Fields, which have their values displayed under the search event in the
search results
Interesting Fields, which are other fields that Splunk has picked out for you

Above the field list are two links, Hide Fields and All Fields:

Hide Fields: Hides the field list area from the view
All Fields: Takes you to the Selected Fields window:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Search results
We are almost through with all the widgets on the page. We still have a number of items
to cover in the search results section, though, just to be thorough:

As you can see in the previous screenshot, at the top of this section, we have the number
of events displayed. When viewing all results in their raw form, this number will match
the number above the timeline. This value can be changed either by making a selection
on the timeline or by using other search commands.

Next, we have the action icons (described earlier) that affect these particular results.

Under the action icons, we have four results tabs:

Events list, which will show the raw events. This is the default view when running
a simple search, as we have done so far.
Patterns streamlines event pattern detection. A list of the most common patterns
among the set of events is returned by your search. A number of events that share a
similar structure are represented by these patterns.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Statistics populates when you run a search with transforming commands such as
stats, top, chart, and so on. The previous keyword search for error does not
display any results in this tab because it does not have any transforming commands.
Visualization transforms searches and also populates the Visualization tab. The
results area of the Visualization tab includes a chart and the statistics table used to
generate the chart. Not all searches are eligible for visualization—a concept which
will be covered later in this book.

Under the previously described tabs, is the timeline that we will cover in more detail
later in this chapter.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Options
Beneath the timeline (starting from the left) is a row of option links, including:

Show Fields: Shows the Selected Fields screen
List: Allows you to select an output option (Raw, List, or Table) for displaying the
search result
Format: Provides the ability to set Result display options, such as Show row
numbers, Wrap results, the Max lines (to display) and Drilldown as on or off
NN Per Page: This is where you can indicate the number of results to show per
page (10, 20, or 50)

To the right are options that you can use to choose a page of results, and to change the
number of events per page.

In older versions of Splunk (prior to 4.3), these options were available from the Results display
options popup dialog.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Events viewer
Finally, we make it to the actual events. Let's examine a single event:

Starting from the left, we have:

Event Details: Clicking here (indicated by the right facing arrow) opens the
selected event, provides specific information about the event by type, field, and
value, and allows you the ability to perform specific actions on a particular event
field. In addition, Splunk offers a button labeled Event Actions to access workflow
actions, a few of which are always available.
Build Event Type: Event types are a way to name events that match a certain query.
We will dive into event types in Chapter 7, Extending Search.
Extract Fields: This launches an interface for creating custom field extractions. We
will cover field extraction in Chapter 3, Tables, Charts, and Fields.
Show Source: This pops up a window with a simulated view of the original
source.
The event number: Raw search results are always returned in the order most recent
first.
Next appear any workflow actions that have been configured. Workflow actions let
you create new searches or links to other sites, using data from an event. We will
discuss workflow actions in Chapter 7, Extending Search.
Next comes the parsed date from this event, displayed in the time zone selected by
the user. This is an important and often confusing distinction. In most installations,
everything is in one time zone—the servers, the user, and the events. When one of
these three things is not in the same time zone as the others, things can get
confusing. We will discuss time in great detail in Chapter 2, Understanding Search.
Next, we see the raw event itself. This is what Splunk saw as an event. With no
help, Splunk can do a good job finding the date and breaking lines appropriately;
but as we will see later, with a little help, event parsing can be more reliable and
more efficient.
Below the event are the fields that were selected in the field picker. Clicking on
the value adds the field value to the search.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using the time picker
Now that we've looked through all the widgets, let's use them to modify our search.
First, we will change our time. The default setting of All time is fine when there are few
events, but when Splunk has been gathering events over a period of time (perhaps for
weeks or months), this is less than optimal. Let's change our search time to one hour:

The search will run again, and now we see results for the last hour only. Let's try a
custom time. Date Range is an option:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

If you know specifically when an event happened, you can drill down to whatever time
range you want here. We will examine the other options in Chapter 2, Understanding
Search.

The time zone used in Custom Time Range is the time zone selected in the user's preferences, which
is, by default, the time zone of the Splunk server.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using the field picker
The field picker is very useful for investigating and navigating data. Clicking on any
field in the field picker pops open a panel with a wealth of information about that field
in the results of your search:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Looking through the information, we observe the following:

Number (of) values, appears in X% of results tells you how many events contain a
value for this field.
Selected indicates if the field is a selected field.
Top values and Top values by time (allows referring to the Top 10 Values returned

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

in the search) present graphs about the data in this search. This is a great way to
dive into reporting and graphing. We will use this as a launching point later.
Rare values displays the least common values of a field.
Events with this field will modify the query to show only those events that have
this field defined.
The links are actually a quick representation of the top values overall. Clicking on
a link adds that value to the query. Let's click on c:\\Test Data\\tm1server.log:

This will rerun the search, now looking for errors that affect only the source value
c:\\Test Data\\tm1server.log.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The settings section
The Settings section, in a nutshell, is an interface for managing configuration files. The
number of files and options in these configuration files is truly daunting, so the web
interface concentrates on the most commonly used options across the different
configuration types.

Splunk is controlled exclusively by plain text configuration files. Feel free to take a
look at the configuration files that are being modified as you make changes in the admin
interface. You will find them by hitting the following locations:

$SPLUNK_HOME/etc/system/local/
$SPLUNK_HOME/etc/apps/
$SPLUNK_HOME/etc/users/<user>/<app>/local

You may notice configuration files with the same name at different locations. We will
cover in detail the different configuration files, their purposes, and how these
configurations merge together in Chapter 11, Configuring Splunk. Don't start modifying
the configurations directly until you understand what they do and how they merge.

Clicking on Settings on the top bar takes you to the Settings page:

||||||||||||||||||||

||||||||||||||||||||

https://cdp.packtpub.com/implementing_splunk_7__third_edition/wp-admin/post.php?post=146&action=edit#post_449
https://technet24.ir
https://technet24.ir

The reader will note that the layout of the setting page has changed a bit in version 7.0,
but it is generally the same as prior versions. We'll point out the differences here. First,
there have been some name changes (Distributed Management Console is now
Monitoring Console) and a few extra links added (under SYSTEM we see
Instrumentation, and DATA has added Source Types).

The options are organized into logical groupings, as follows:

KNOWLEDGE: Each of the links under KNOWLEDGE allows you to control one
of the many object types that are used at search time. The following screenshot

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

shows an example of one object type, workflow actions: Searches, reports, and
alerts:

System: The options under this section control system-wide settings:
System settings covers network settings, the default location to store indexes,
outbound email server settings, and how much data Splunk logs about itself
Server controls contains a single page that lets you restart Splunk from the
web interface
Licensing lets you add license files or configure Splunk as a slave to a Splunk
license server
Instrumentation (new to version 7.0) lets you configure automated reporting
settings, view collected data, export data to a file, or send data to Splunk

Data: This section is where you manage the data flow:
Data Inputs: Splunk can receive data by reading files (either in batch mode or
in real time), listening to network ports, or running scripts.
Forwarding and receiving: Splunk instances don't typically stand alone. Most
installations consist of at least one Splunk indexer and many Splunk
forwarders. Using this interface, you can configure each side of this
relationship and more complicated setups (we will discuss this in more detail
in Chapter 12, Advanced Deployments).
Indexes: An index is essentially a data store. Under the covers, it is simply a
set of directories, created and managed by Splunk. For small installations, a
single index is usually acceptable. For larger installations, using multiple

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

indexes allows flexibility in security, retention, and performance tuning, as
well as better use of hardware. We will discuss this further in Chapter

11, Configuring Splunk.
Report acceleration summaries: Accesses automatically-created summaries to
speed up completion times for certain kinds of reports.

Source Types: Allows access to the source types page. Source types are used
to assign configurations like timestamp recognition, event breaking, and field
extractions to data indexed by Splunk.

Distributed environment: The three options here relate to distributed deployments
(we will cover these options in detail in Chapter 12, Advanced Deployments):

Indexer clustering: Access to enabling and configuring Splunk Indexer
clustering, which we will discuss later in this book.
Forwarder management: Access to the forwarder management UI distributes
deployment apps to Splunk clients.
Distributed search: Any Splunk instance running searches can utilize itself and
other Splunk instances to retrieve results. This interface allows you to
configure access to other Splunk instances.

Users and authentication: This section provides authentication controls and an
account link:

Access controls: This section is for controlling how Splunk authenticates
users and what users are allowed to see and do. We will discuss this further
in Chapter 11, Configuring Splunk.

In addition to the links, the Settings page also presents a panel on the left-hand side of
the page. This panel includes two icons, Add Data and (previously) Distributed
Management Console, now Monitoring Console:

Add Data links to the Add Data page. This page presents you with three options for
getting data into your Splunk Enterprise instance: Upload, Monitor, and Forward.
Monitoring Console is where you can view detailed performance information
about your Splunk Enterprise deployment.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://cdp.packtpub.com/implementing_splunk_7__third_edition/wp-admin/post.php?post=146&action=edit#post_449
https://cdp.packtpub.com/implementing_splunk_7__third_edition/wp-admin/post.php?post=146&action=edit#post_450
https://cdp.packtpub.com/implementing_splunk_7__third_edition/wp-admin/post.php?post=146&action=edit#post_449
https://technet24.ir
https://technet24.ir
https://technet24.ir

Splunk Cloud
An exciting new option for Splunk is Splunk Cloud. This option offers almost all of
Splunk's features and functionalities along with the convenience of being on a real
cloud platform:

Readily available online, Splunk lists the following statement as per http://docs.splu
nk.com/Documentation/SplunkCloud/6.6.3/User/WelcometoSplunkCloud:

"Splunk Cloud provides a layer of security and operational control that causes it to differ from Splunk
Enterprise".

In my experience, moving any software or service to the cloud typically will
have some implications. With Splunk Cloud, you can expect the following
differences (from Splunk Enterprise):

There is no CLI (Splunk's command-line interface) support. This means that some
(administrative) tasks can be achieved through the web browser but most will
require Splunk support.
Only apps that have been assessed (on security and stability) and accepted by
Splunk support are allowed to be installed and run in Splunk Cloud.
If you selected a managed Splunk Cloud, Splunk support must install and configure
all apps (self-service Splunk Cloud still allows you to install apps yourself).
Direct monitoring of TCP, UDP, file, and syslog inputs. Unlike Splunk Enterprise,
these data types cannot be sent straight to Splunk Cloud (an on-premises forwarder
must be used).
Scripted Alerts are supported only in approved apps.
License pooling is not available in Splunk Cloud. The license manager is not
internet-accessible to the Splunk Cloud customers.
Again, for managed Splunk Cloud deployments, the HTTP event collector (HEC)
must be set up for you by Splunk.
Access to the Splunk API is initially turned off (for Splunk Clusters) but can be
turned on by Splunk support. To enable API access to Splunk Cloud sandbox(es)
and trials, and single instance deployments, you must file a Support ticket (not
recommended due to the short duration of trials).

||||||||||||||||||||

||||||||||||||||||||

http://docs.splunk.com/Documentation/SplunkCloud/6.6.3/User/WelcometoSplunkCloud
https://technet24.ir
https://technet24.ir

Try before you buy
It's worth giving Splunk Cloud a try (even if you are not seriously considering its usage
in the near future). If you have a valid Splunk ID, you can test-drive Splunk Cloud for
free (for 15 days):

To use your Splunk ID to test drive Splunk Cloud, all you need to do is register and
agree to the conditions and terms. This is the Terms of Service acceptance page:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Once you check the box (and then click on the button labeled Ok), you will be sent an
instructional email, and you are ready to go!

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

A quick cloud tour
Let's start with accessing your instance. Once you've received the acknowledgement that
your Splunk Cloud (trial) instance is ready, you can point your browser to the provided
URL. You will notice that the web address for Splunk Cloud is prefixed with a unique
identifier that qualifies your particular instance (this is actually the server name where
your instance resides):

And the Log In page is a bit different in appearance (from Splunk Enterprise):

Once you are authenticated, we see the Splunk Cloud main page:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

First things first. Looking across the task bar (at the top of the page), if you click on
Support & Services and then About, you will notice that the Splunk Cloud version is
6.6.3.2, which is NOT the latest on-premise or locally installed version:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The top bar in Splunk Cloud
The top bar in Splunk Cloud is relatively the same but shifts the locally installed Splunk
right-located links (Messages, Settings, Activity, and Find) to the left:

While on the right, there is My Splunk:

The My Splunk link sends you to the Instances page, where you can view and edit
information about the Splunk instances you have access to. You can also use this page as
a portal to access all of your instances by clicking on the button labeled Access
Instance next to the instance you which to log in to. This is the Instances page:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

On the app list (left of the home app page) in Splunk Cloud, you will notice three apps
preloaded for you: Splunk Reference App-PAS, Universal Forwarder, and eventgen (as
follows):

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Splunk reference app – PAS
Splunk's Pluggable Auditing System (PAS) (originally available as version 1.0 back in
January 2015) is a Splunk App designed to describe how to develop Splunk apps. It is
intended to present recommended practices in addition to the Splunk developer
platform.

PAS also:

Enables you to monitor countless document repositories to track who has viewed,
modified, deleted, or downloaded documents or other artifacts from numerous
sources
Detects suspicious activities
Analyzes trends

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Universal forwarder
The Splunk universal forwarder is a no-license-required app that is not unique to
Splunk Cloud or even new to Splunk 7.0; in fact, it has been available and in use for
quite some time and several releases.

Since it's a cloud-specific app, we'll not spend much time on it here. But, as a reminder,
UF is a dedicated, lightweight form of Splunk Enterprise containing only the vital
components required to forward data and is intended to run on production servers,
requiring minimal CPU and memory. It has the slightest effect possible on other
software, making it ideal for Splunk Cloud.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

eventgen
eventgen is also not new nor Splunk Cloud-specific. eventgen permits you create
dummy events to randomly generate, allowing you to get events into Splunk for testing
their applications.

Note: since eventgen is used by the internal Splunk team for developing its numerous applications
and demos, it is probably a good use of the reader's time to become familiar with its almost infinite
amount of configurability to simulate real data.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Next steps
As mentioned at the beginning of this section, when you sign up for Splunk Cloud, an
email will be sent to your registered email ID to let you log in to your Splunk Cloud
account. You will also receive an app unique to you to help you configure your
forwarded to send data to your Cloud as shown in the Cloud documentation:

http://docs.splunk.com/Documentation/SplunkCloud/latest/User/GetstartedwithSplunkCloud

Note: https://splunkbase.splunk.com/apps/#/product/cloud is a great place to see what apps are Cloud-
compatible or what apps are available specifically for Splunk Cloud.

||||||||||||||||||||

||||||||||||||||||||

http://docs.splunk.com/Documentation/SplunkCloud/latest/User/GetstartedwithSplunkCloud
https://splunkbase.splunk.com/apps/#/product/cloud
https://technet24.ir
https://technet24.ir

Summary
As you have seen in this chapter, the Splunk GUI provides a rich interface for working
with search results. We really scratched just the surface and will cover more elements
as we use them in later chapters.

Something new in this edition was the discussion of Splunk Cloud. With Splunk Cloud,
we can avail the features of Splunk Enterprise. It also provides access to numerous apps
on Splunkbase and enables to you build customized apps.

In the next chapter, we will dive into the nuts and bolts of how searching works so that
you can make efficient searches to populate the cool reports that we will make in Chapter
3, Tables, Charts, and Fields, and beyond.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Understanding Search
To successfully use Splunk, it is vital that you write effective searches. Using the index
efficiently will make your initial discoveries faster, and the reports you create will run
faster for you and for others. In this chapter, we will cover the following topics:

How to write effective searches
How to search using fields
Understanding time
Saving and sharing searches
Event annotation

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using search terms effectively
The key to creating an effective search is to take advantage of the index. The Splunk
index is effectively a huge word index, sliced by time. One of the most important factors
for the performance of your searches is how many events are pulled from the disk. The
following few key points should be committed to memory:

Search terms are case insensitive: Searches for error, Error, ERROR, and
ErRoR are all the same.
Search terms are additive: Given the search item mary error, only events that
contain both words will be found. There are Boolean and grouping operators to
change this behavior; we will discuss these later.
Only the time frame specified is queried: This may seem obvious, but it's very
different from a database, which would always have a single index across all
events in a table. Since each index is sliced into new buckets over time, only the
buckets that contain events for the time frame in question need to be queried.
Search terms are words, including parts of words: A search for foo will also
match foobar.

With just these concepts, you can write fairly effective searches. Let's dig a little
deeper, though:

A word is anything surrounded by whitespace or punctuation (and sometimes a
split of words): For instance, given the log line 2012-02-07T01:03:31.104-0600 INFO

AuthClass Hello world. [user=Bobby, ip=1.2.3.3], the words indexed are 2012, 02, 07T01,
03, 31, 104, 0600, INFO, AuthClass, Hello, world, user, Bobby, ip, 1, 2, 3, and 3. This may
seem strange, and possibly a bit wasteful, but this is what Splunk's index is really,
really good at—dealing with huge numbers of words across huge numbers of
events.
Splunk is not grep with an interface: One of the most common questions is
whether Splunk uses regular expressions for your searches. Technically, the answer
is no. Splunk does use regex internally to extract fields, including autogenerated
fields, but most of what you would do with regular expressions is available in
other ways. Using the index as it is designed is the best way to build fast searches.
Regular expressions can then be used to further filter results or extract fields.
Numbers are not numbers until after they have been parsed at search time:
This means that searching for foo>5 will not use the index, as the value of foo is not

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

known until it has been parsed out of the event at search time. There are different
ways to deal with this behavior depending on the question you're trying to answer.
Field names are case sensitive: When searching for host=myhost, host must be
lowercase. Likewise, any extracted or configured fields have case-sensitive field
names, but the values are case insensitive:

Host=myhost will not work
host=myhost will work
host=MyHost will work

Fields do not have to be defined before indexing data: An indexed field is a
field that is added to the metadata of an event at index time. There are legitimate
reasons to define indexed fields, but in the vast majority of cases, it is unnecessary
and is actually wasteful. We will discuss this in Chapter 3, Tables, Charts, and
Fields.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Boolean and grouping operators
There are a few operators that you can use to refine your searches (note that these
operators must be in uppercase so as not to be considered search terms):

AND is implied between terms. For instance, error mary (two words separated by a
space) is the same as error AND mary.
OR allows you to specify multiple values. For instance, error OR mary means find
any event that contains either word.
NOT applies to the next term or group. For example, error NOT mary would find
events that contain error but do not contain mary.
The quote marks ("") identify a phrase. For example, "Out of this world" will find
this exact sequence of words. Out of this world will find any event that contains all
of these words, but not necessarily in that order.
Parentheses (()) are used for grouping terms. Parentheses can help avoid
confusion in logic. For instance, these two statements are equivalent:

bob error OR warn NOT debug

(bob AND (error OR warn)) AND NOT debug

The equal sign (=) is reserved for specifying fields. Searching for an equal to sign
can be accomplished by wrapping it in quotes. You can also escape characters to
search for them. \= is the same as =.
Brackets ([]) are used to perform a subsearch.

We will discuss this in Chapter 6, Advanced Search Examples.

You can use these operators in fairly complicated ways if you want to be very specific,
or even to find multiple sets of events in a single query. The following are a few
examples:

error mary NOT jacky

error NOT (mary warn) NOT (jacky error)

index=myapplicationindex (sourcetype=sourcetype1 AND ((bob NOT error) OR (mary AND warn))

) OR (sourcetype=sourcetype2 (jacky info))

This can also be written with some whitespace for clarity:

index=myapplicationindex
(

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

sourcetype=security
AND
(
(bob NOT error)
OR
(mary AND warn)
)
)
OR
(
sourcetype=application
(jacky info)
)

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Clicking to modify your search
Though you can probably figure it out by just clicking around, it is worth discussing the
behavior of the GUI when moving your mouse around and clicking:

Clicking on any word or field value will give you the option to Add to search or
Exclude from search the existing search or create a New search, as shown in the
following screenshot:

Clicking on a word or a field value that is already in the query will give you the
option to remove it from the existing query or, as previously, create a new search,
as shown in the following screenshot:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Event segmentation
In prior versions of Splunk, event segmentation was configurable through a setting in the
Options dialog. In version 6.2, the options dialog is not present; although segmentation
(discussed later in this chapter) is still an important concept, it is not accessible through
the web interface/options dialog in this version.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Field widgets
Clicking on values in the Select Fields dialog (the field picker) or in the field value
widgets underneath an event will again give us an option to append (add to) or exclude
(remove from) our search, or as shown before, to start a new search.

For instance, if source=C:\Test Data\TM1ProcessError_20140623213757_temp.log appears under your
event, clicking on that value and selecting Add to search will append source=C:\Test
Data\TM1ProcessError_20140623213757_temp.log to your search:

To use the field picker, you can click on the All Fields link (see the following
screenshot):

Expand the results window by clicking on > in the far-left column. Clicking on a result
will append that item to the current search:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

If a field value looks like key=value in the text of an event, you will want to use one of the
field widgets instead of clicking on the raw text of the event. Depending on your event
segmentation setting, clicking on the word will either add the value or key=value.

The former will not take advantage of the field definition; instead, it will simply search
for the word. The latter will work for events that contain the exact quoted text, but not
for other events that actually contain the same field value extracted in a different way.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Time
Clicking on the time next to an event will open the _time dialog (shown in the following
screenshot), allowing you to change the search to select Events Before or After a
particular time period, and it will also have the following choices:

Before this time
After this time
At this time

In addition, you can select Nearby Events within plus, minus, or plus or minus a
number of seconds (the default), milliseconds, minutes, hours, days, or weeks:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

One search trick is to click on the time of an event, select At this time, and then use
Zoom out (above the timeline) until the appropriate time frame is reached.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using fields to search
When we explored the GUI in Chapter 1, The Splunk Interface, you probably noticed
fields everywhere. Fields appear in the field picker on the left and under every event.
Where fields actually come from is transparent to the user, who simply searches for
key=value. We will discuss adding new fields in Chapter 3, Tables, Charts, and Fields, and
in Chapter 11, Configuring Splunk.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using the field picker
The field picker gives us easy access to the fields (currently defined) for the results of
our query. Splunk will extract some fields from event data without your help such as:
host, source, and sourcetype values, timestamps, and others. Additional fields to be
extracted can be defined by you. Clicking on any field presents us with the details about
that field in our current search results:

As we go through the following items in this widget, we see a wealth of information
right away:

N Value, X% of events is a good indication of whether we are getting the results
we think we're getting. If every event in your results should contain this field, and
this is not 100%, either your search can be made more specific or a field definition
needs to be modified. In addition, N Value indicates the number of unique values
that this field contains.
Selected-Yes or No indicates whether the field is selected (is part of the search
query results) or not (simply listed as interesting additional fields found by Splunk
within the data).
Reports-Top Values, Top Values by time, Rare values, and Events with this field:

Top values (overall) shows a table of the most common values for this field
for the time frame searched.
Top values by time shows a graph of the most common values occurring in the
time frame searched.
Rare values show a table of the most unique values for this field for the time
frame searched.
Events with this field adds fieldname="*" to your existing search to make sure

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

you only get the events that have this field. If the events you are searching for
always contain the name of the field (in this case, network), your query will
be more efficient provided you also add the field name to the query. In this
case, the query would look like this: sourcetype="impl_splunk_gen" network="*"

network.
Values shows a very useful snapshot of the top ten most common values, Count is
the number found for each of these values, and % is the percentage that the value is
found in this field in the results of the search.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using wildcards efficiently
Though the index is based on words, it is possible to use wildcards when necessary,
albeit a little carefully. Take a look at some interesting facts about wildcards:

Only trailing wildcards are efficient: Stated simply, bob* will find events containing
Bobby efficiently, but *by or *ob* will not. The latter cases will scan all events in the
time frame specified.
Wildcards are tested last: Wildcards are tested after all other terms. Given the
search authclass *ob* hello world, all other terms besides *ob* will be searched first.
The more you can limit the results using full words and fields, the better your
search will perform.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Supplementing wildcards in fields
Given the following events, a search for world would return both events:

2012-02-07T01:04:31.102-0600 INFO AuthClass Hello world. [user=Bobby, ip=1.2.3.3]
2012-02-07T01:23:34.204-0600 INFO BarClass Goodbye. [user=Bobby, ip=1.2.3.3, message="Out of this world"]

What if you only wanted the second event but all you know is that the event contains
world somewhere in the field message? The query message="*world*" would work but it is
very inefficient, because Splunk must scan every event looking for *world, and then
determine whether world is present in the field message.

You can take advantage of the behavior mentioned earlier—wildcards are tested last.
Rewriting the query as world message="*world*" gives Splunk a chance to find all the
records with world, and then inspect those events for the more specific wildcard
condition.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

All about time
Time is an important and confusing topic in Splunk. If you want to skip this section,
absorb one concept: time must be parsed properly on the way into the index, as it cannot
be changed later without indexing the raw data again.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

How Splunk parses time
Given the date 11-03-04, how would you interpret this date? Your answer probably
depends on where you live. In the United States, you would probably read this as
November 3, 2004. In Europe, you would probably read this as March 11, 2004. It
would also be reasonable to read this as March 4, 2011.

Luckily, most dates are not this ambiguous, and Splunk makes a good effort to find and
extract them, but it is absolutely worth the trouble to give Splunk a little help by
configuring the time format. We'll discuss the relevant configurations in Chapter 11,
Configuring Splunk.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

How Splunk stores time
Once the date is parsed, the date stored in Splunk is always stored as a GMT epoch.
Epoch time is the number of seconds since January 1, 1970. By storing all events using a
single time zone, there is never a problem lining up events that happen in different time
zones. This, of course, only works properly if the time zone of the event can be
determined when it is indexed. This numeric value is stored in the field _time.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

How Splunk displays time
The text of the original event, and the date it contains, is never modified. It is always
displayed as it was received. The date displayed to the left of the event is determined
by the time zone of the Splunk instance or the user's preference, as specified in your
account:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

How time zones are determined and why
it matters
Since all events are stored according to their GMT time, the time zone of event only
matters at parse time, but it is vital to get it right. Once the event is written into the
index, it cannot be changed without reindexing the raw data.

The time zone can come from a number of places, in the following order of precedence:

The time zone specified in the log. For instance, the date 2012-02-07T01:03:23.575-0600,
-0600 indicates that the zone is 6 hours behind GMT. Likewise, Tue 02 Feb, 01:03:23
CST 2012 represents the same date.
The configuration associated with a source, host, or sourcetype, in that order. This
is specified in props.conf. This can actually be used to override the time zone listed
in the log itself, if necessary. We will discuss this in Chapter 11, Configuring
Splunk.
The time zone of the Splunk instance forwarding the events. The time zone is
relayed along with the events, just in case it is not specified elsewhere. This is
usually an acceptable default. The exception is when different logs are written with
different time zones on the same host, without the time zone in the logs. In that case,
it needs to be specified in props.conf.
The time zone of the Splunk instance parsing the events. This is sometimes
acceptable and can be used in interesting ways in distributed environments.
The important takeaway, again, is that the time zone needs to be known at the time
of parsing and indexing the event.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Different ways to search against time
Now that we have our time indexed properly, how do we search against time? The Date
& Time Range picker provides a neat set of options for dealing with search times:

This picker widget is organized by:

Presets
Relative
Real-time
Data Range
Date & Time Range
Advanced

Let's take a look at each of these.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Presets
Presets are time ranges that are predefined for you in Splunk Enterprise. You should be
aware, though, that if you are searching potentially large amounts of data, the results
will return faster if you run the search over a smaller time period (rather than All time
(real-time)):

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Relative
If the Relative presets are not what you need, you can use the custom Relative time
range options to specify a time range for your search that is relative to Now. You can
select from the list of time range units, Seconds Ago, Minutes Ago, and so on:

Splunk also provides the ability to use Beginning of second (the default) or a No Snap-
to time unit to indicate the nearest or latest time to which your time amount rounds up. If
you don't specify a snap-to time unit, Splunk snaps automatically to the second. Unlike
the Presets, to actually apply your (Relative) selections to the search, you need to click
on the Apply button.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Real-time
The custom Real-time option gives you the ability to set the start time for your real-time
time range window. Keep in mind that the search time ranges for historical searches are
set at the time at which the search runs. With real-time searches, the time ranges are
constantly updating and the results accumulate from the beginning of your search.

You can also specify a time range that represents a sliding window of data, for example,
the last 30 seconds.

When you specify a sliding window, Splunk takes that amount of time to accumulate
data. For example, if your sliding window is 5 minutes, you will not start to see data
until after the first 5 minutes have passed:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Windowed real-time versus all-time real-
time searches
When designing your searches, it's important to keep in mind that there is a difference
between Splunk real-time searches that take place within a set window (like 30 seconds
or 1 minute) and real-time searches that are set to All time.

In windowed real-time searches, the events in the search can disappear as they fall
outside of the window, and events that are newer than the time the search job was
created can appear in the window when they occur.

In all-time real-time searches, the window spans all of your events, so events do not
disappear once they appear in the window. But events that are newer than the time the
search job was created can appear in the window as they occur.

In comparison, in historical searches, events never disappear from within the set range
of time that you are searching and the latest event is always earlier than the job creation
time (with the exception of searches that include events that have future-dated
timestamps).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Date range
You can use the custom Date Range option to add calendar dates to your search. You can
choose among options to return events: Between a beginning and end date, Before a
date, and Since a date (for these fields, you can either type the date in the textbox or
select the date from a calendar):

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Date and time range
Use the custom Date & Time Range option to specify calendar dates and times for the
beginning and ending of your search. Again, you can type the date into the textbox or
select the date from a calendar:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Advanced
Use the Advanced option to specify the earliest and latest search times. You can write
the times in Unix (epoch) time or relative time notation. The epoch time value that you
enter is converted to local time. This timestamp is displayed under the text field so that
you can verify your entry:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Specifying time in-line in your search
You can also directly use relative and exact times in your searches. For instance, given
the search item bob error, you can specify the time frame you want to use directly in the
search, using the fields Earliest and Latest:

To search for errors affecting bob in the last 60 minutes, use earliest=-60m bob error
To search for errors affecting bob in the last 3 hours, snap to the beginning of the
hour using earliest=-3h@h bob error
To search for errors affecting bob yesterday, use earliest=-1d@d latest=-0d@d bob error
To search for errors affecting bob since midnight on Monday, use earliest=-0@w1 bob
error

You cannot use different time ranges in the same query; for instance, in a Boolean
search, (earliest=-1d@d latest=-0d@d bob error) OR (earliest=-2d@d latest=-1d@d mary error) will
not work. The append command provides a way of accomplishing this (union will work
as well).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

_indextime versus _time
It is important to note that events are generally not received at the same time as stated in
the event. In most installations, the discrepancy is usually of a few seconds, but if logs
arrive in batches, the latency can be much larger. The time at which an event is actually
written in the Splunk index is kept in the internal field _indextime.

The time that is parsed out of the event is stored in _time.

You will probably never search against _indextime, but you should understand that the
time you are searching against is the time parsed from the event, not the time at which
the event was indexed.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Making searches faster
We have talked about using the index to make searches faster. When starting a new
investigation, following a few steps will help you get results faster:

1. Set the time to the minimum time that you believe will be required to locate
relevant events. For a chatty log, this may be as little as a minute. If you don't know
when the events occurred, you might search a larger time frame and then zoom in
by clicking on the timeline while the search is running.

2. Specify the index if you have multiple indexes. It's good to get into the habit of
starting your queries with the index name. For example, index=myapplicationindex error
bob.

3. Specify other fields that are relevant. The most common fields to specify are
sourcetype and host. For example, index=myapplicationindex sourcetype="impl_splunk_gen"

error bob. If you find yourself specifying the field source on a regular basis, you
could probably benefit from defining more source types. Avoid using the sourcetype
field to capture other information, for instance, data center or environment. You
would be better off using a lookup against host or creating another indexed field
for those cases.

4. Add more words from the relevant messages as and when you find them. This can
be done simply by clicking on words or field values in events, or field values in
the field picker. For example, index=myapplicationindex sourcetype="impl_splunk_gen" error
bob authclass OR fooclass.

5. Expand your time range once you have found the events that you need, and then
refine the search further.

6. To disable Field discovery in earlier versions of Splunk; there was a toggle at the
top of the field picker. In version 6.2 (and newer), the feature is a bit different. You
can simply open the field picker and use the Select All Within Filter or Deselect
All checkbox to remove any unnecessary fields from the list that Splunk will
extract. This can greatly improve speed, particularly if your query retrieves a lot of
events. Extracting all the fields from events simply takes a lot of computing time,
and disabling this option prevents Splunk from doing all that work when
not necessary. Take a look at the following screenshot:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

If the query you are running is taking a long time to run, and you will be running this
query on a regular basis—perhaps for an alert or a dashboard—using a summary index
may be appropriate. We will discuss this in Chapter 10, Summary Indexes and CSV Files.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Sharing results with others
It is often convenient to share a specific set of results with another user. You could
always export the results to a CSV file and share it, but this is cumbersome. In earlier
versions of Splunk, a URL could be saved and shared; in version 6.2, things were
changed a bit (although you still can save your search as a bookmarked URL), and this
remains the same now in version 7.0.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The URL
To share your search as a bookmarked URL, you can click on the share icon to view the
Share Job dialog:

From here, you can simply right-click on the share icon and bookmark your search for
later use:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

You can also share your search and search results in a variety of other ways, starting by
clicking on the Save As link.

This lists your options for saving the search and search results. Your choices are the
following:

Report
Dashboard Panel
Alert
Event Type

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Save As Report
To save your search as a report, click on the Report link. This opens the Save As Report
dialog:

From here, you need to do the following:

1. Enter a Title (or name) for your report
2. Enter an optional Description to remind users what your report does
3. Indicate if you'd like to include the Splunk Time Range Picker as a part of your

report

Once you click on Save, Splunk prompts you to either review Additional Settings for
your newly-created report (Permissions, Schedule, Acceleration, and Embed), Add (the
report) to Dashboard (we will talk more about dashboards in Chapter 5, Simple XML
Dashboards), View the report, or Continue Editing the search:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

In my example, I named my report My Error Report, added a description (a simple
example of a save as report), and included Time Range Picker. The following
screenshot displays the saved report after clicking on View:

The additional settings that can be made to the report are as follows:

Permissions: Allows you to set how the saved report is displayed: by owner, by
app, or for all apps. In addition, you can make the report read-only or writable
(can be edited).
Schedule: Allows you to schedule the report (for Splunk to run/refresh it based
upon your schedule. For example, an interval like every week, on Monday at 6:00,
and for a particular time range (as described earlier).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Acceleration: Not all saved reports qualify for acceleration, and not all users (not
even admins) have the ability to accelerate reports. Generally speaking, Splunk
Enterprise will build a report acceleration summary for the report if it determines
that the report would benefit from summarization (acceleration). More on this topic
later.
Embed: Report embedding lets you bring the results of your reports to large
numbers of report stakeholders. With report embedding, you can embed scheduled
reports in external (non-Splunk) websites, dashboards, and portals. Embedded
reports can display results in the form of event views, tables, charts, maps, single
values, or any other visualization type. They use the same formatting as the
originating report. When you embed a saved report, you do this by copying a
Splunk-generated URL into an HTML-based web page:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Save As Dashboard Panel
We'll be discussing dashboards in Chapter 5, Simple XML Dashboards, but for now, you
should know that you can save your search as a new dashboard or as a new panel in an
existing one. Permissions can also be set:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Save As Alert
An alert is an action that a saved search triggers based on specified results of the
search. When creating an alert, you specify a condition that triggers the alert (basically,
a saved search with trigger conditions). When you select Save as Alert, the following
dialog is provided to configure search as an alert:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Save As Event Type
Event types are a categorization system to help you make sense of your user-defined
data fields. It simplifies searches by letting you categorize events. Event types let you
classify events that have common characteristics. When your search results come back,
they're checked against known event types. An event type is applied to an event at
search time if that event matches the event type definition.

The simplest way to create a new event type is through Splunk Web. After you run a
search that would make a good event type, click on Save As and select Event Type. This
opens the Save as Event Type dialog, where you can provide the event type name and
optionally apply tags to it:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Searching job settings
Once you run a search, you can access and manage information about the search job (an
individual instance of a running or completed search, pivot, or report, along with its
related output) without leaving the Search page. This is done by clicking on Job and
choosing among the available options:

You can also perform the following tasks:

Edit Job Settings: Select this to open the Job Settings dialog, where you can change
the job's read permissions, extend the job's lifespan, and get a URL for the job
which you can use to share the job with others. You can also put a link to the job in
your browser's bookmark bar.
Send Job to Background: Select this if the search job is slow to complete and you
would like to run the job in the background while you work on other Splunk
Enterprise activities (including running a new search job).
Inspect Job: Opens a separate window and displays information and metrics for
the search job via the Search Job Inspector.
Delete Job: Use this to delete a job that is currently running, is paused, or has
finalized. After you have deleted the job, you can still save the search as a report.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Saving searches for reuse
As an example, let's build a search query, save it (as a report), and then make an alert
out of it. First, let's find errors that affect mary, one of our most important users. This can
simply be the query mary error. Looking at some sample log messages that match this
query, we see that some of these events probably don't matter (the dates have been
removed to shorten the lines):

ERROR LogoutClass error, ERROR, Error! [user=mary, ip=3.2.4.5]
WARN AuthClass error, ERROR, Error! [user=mary, ip=1.2.3.3]
ERROR BarCLass Hello world. [user=mary, ip=4.3.2.1]
WARN LogoutClass error, ERROR, Error! [user=mary, ip=1.2.3.4]
DEBUG FooClass error, ERROR, Error! [user=mary, ip=3.2.4.5]
ERROR AuthClass Nothing happened. This is worthless. Don't log this.
[user=mary, ip=1.2.3.3]

We can probably skip the DEBUG messages; the LogoutClass messages look harmless and the
last message actually says that it's worthless. mary error NOT debug NOT worthless NOT

logoutclass limits the results to:

WARN AuthClass error, ERROR, Error! [user=mary, ip=1.2.3.3]
ERROR BarCLass Hello world. [user=mary, ip=4.3.2.1]

For good measure, let's add the sourcetype field and some parentheses:

sourcetype="impl_splunk_gen" (mary AND error) NOT debug NOT worthless NOT logoutclass

Another way of writing the same thing is as follows:

sourcetype="impl_splunk_gen" mary error NOT (debug OR worthless OR logoutclass)

In order that we don't have to type our query every time, let's go ahead and save it as a
report for quick retrieval.

First choose Save As... and then Report.

The Save As Report window appears:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Enter a value for Title, in our case, errors affecting mary. Optionally, we can add a short
description of the search. The time range is filled in based on what was selected in the
time picker, and we decide to include the Time Range Picker in the saved report. Click
on Save:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Once we see the preceding window (Your Report Has Been Created), we click on
Permissions and see the Edit Permissions window:

For Display For, let's click on App (rather than the default Owner shown in the
preceding screenshot):

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Next, we'll check Read for all user roles except power, since we know that certain
users in our Splunk environment are members of this group (including our friend mary).
Finally, we can click on Save.

The search report is then available under Reports:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Selecting search/report from the menu runs the search using the latest data available.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Creating alerts from searches
Let's continue with our example. We want to take our original search query, schedule it,
and then set a triggered response.

Any saved search can also be run on a schedule. One use for scheduled searches is
firing alerts. Let's get started with our example. Go to the Reports page (shown in the
previous screenshot) and click on Open in Search for our report (errors affecting mary).
This opens our saved report not as a report but as a search query (it also runs the
search). From there, we can click on Save As and choose Alert.

Using the Save As Alert window (shown in the next screenshot), we can fill in the
appropriate details for our alert:

The fields can be filled as follows:

Title: I kept the original search title (errors affecting mary) but added the word alert

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Description: I kept this the same, but in reality, we'd want to add more of a
description
Alert Type: I selected Scheduled, since I want this alert search to be run every day
Time Range: I selected the preset Run every day
Schedule At: Here, I selected the preset 12:00
Trigger condition: I selected the preset Number of Results, since I'd like to trigger
an event if my search finds any errors generated by our favorite user, mary
Trigger if number of results: I selected the preset is Greater than and filled in zero
(this means that I am interested in any errors that are found by my search)

After filling in all this, we can click on Next and we see that we have more information
to provide:

This time, the window is divided into the following areas: Enable Actions, Action
Options, and Sharing.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Enable Actions
The fields are as follows:

List in Triggered Alerts: You can check this if you want to display your triggered
alert in the Splunk Alert Manager, which lists details of triggered alerts for 24
hours or a specified duration
Send Email: You can configure your alert to send an email to specified users when
the alert gets triggered
Run a Script: You can have Splunk run a script when your alert gets triggered

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Action Options
The fields for Action Options are as follows:

When triggered, execute actions: Once or For each result. For example, should the
alert trigger for each error that mary receives or once for all errors within a time
range?
Throttle?: You can use throttling (usually based on time and/or event count) to
reduce the frequency at which an alert triggers, since an alert can trigger frequently
based on similar results that the search returns or the schedule to run the alert.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Sharing
Should the alert Permissions-Private or Shared in App be shared with other users?

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

For our example, I've elected to trigger an email to mary (marys@splunker.com), with a link to
both the alert and the alert results within the email so that she can review her errors. In
addition (as shown in the next screenshot), I have decided to send an email Once (for all

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

events/errors within the time range, not for each one) and leave the alert as Private:

After hitting Save, our alert is ready to go:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Event annotations
An annotation is generally defined as an explanation or comment; event annotations are
new in Splunk version 7.0. With the implementation of this feature, you can now add
explanations or context to trends returned by Splunk (time) charts. Splunk event
annotations are presented as colored flags that display time stamp information and
custom descriptions in labels when you hover your mouse over them, as shown in the
example in the following screenshot:

To illustrate how an event annotation could be used, Splunk offers an example where
administrators are monitoring machine logs looking for user login errors. There is a
Splunk chart that has been created to show login errors over time, and an event
annotation has been added to flag the times when the servers are down for maintenance
(during that time period).

With the server downtimes annotated, it can easily be concluded that the two events
(servers down and login errors) are related. Using event annotations in this way gives
you the ability to correlate or associate discrete datasets.

Event annotations are created using simple XML using the Splunk command search type="annotation"
and are supported only for line charts, column charts, and area charts.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

An illustration
To illustrate a simple example, we can consider a timecount query within a Splunk
dashboard. Opening an existing dashboard, we see the following query that counts the
occurrences of the text error within machine logs that are indexed in source type's names
starting with tm1:

sourcetype="tm1*" error | timechart count

Suppose we know that there are times when various ETL processes are inactive and
want to correlate these events with the count of errors occurring. We can create the
following event annotation query:

<query>sourcetype="tm1*" error | timechart count</query>
 <earliest>-30week</earliest>
 <latest>-1weeks</latest>
 <sampleRatio>1</sampleRatio>

We then add it to the XML of our dashboard (using search type="annotation"):

When we save our dashboard, we can see our results:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

You can get event context for any time chart (line, column, or area), and event annotation
markers and labels can be pulled from sources such as log data, lookup files, or external
sources. All together in single view!

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Summary
In this chapter, we covered searching in Splunk and doing many useful things with those
search results. There are lots of little tricks that we will touch upon as we go forward.

With Splunk version 7.0, event annotation was introduced so we added a section on that
topic.

In the next chapter, we will start using fields for more than searches; we'll build tables
and graphs, and then we'll learn how to make our own fields.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Tables, Charts, and Fields
Up to this point, we have learned how to search for and retrieve raw events, but you
will most likely want to create tables and charts to expose useful patterns. Thankfully,
the reporting commands in Splunk make short work of most reporting tasks. We will
step through a few common use cases in this chapter. Later in the chapter, we will learn
how to create custom fields for even more custom reports.

Specifically, in this chapter, we will cover the following topics:

The pipe symbol
Using top to show common field values
Using stats to aggregate values
Using chart to turn data
Using timechart to show values over time
Working with fields
Acceleration
Chart enhancements in version 7.0

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

About the pipe symbol
Before we dive into the actual commands, it is important to understand what the pipe
symbol (|) is used for in Splunk. In a command line, the pipe symbol is used to
represent the sending of data from one process to another. For example, in a Unix-style
operating system, you might say:

grep foo access.log | grep bar

The first command finds, in the file access.log, lines that contain foo. Its output is taken
and piped to the input of the next grep command, which finds lines that contain bar. The
final output goes wherever it was destined to go, usually to the Terminal window.

The pipe symbol is different in Splunk in a few important ways:

Unlike the command line, events are not simply text, but rather each of them is a set
of key/value pairs. You can think of each event as a database row, Python
dictionary, JavaScript object, Java map, or Perl associative array. Some fields are
hidden from the user but are available for use. Many of these hidden fields are
prefixed with an underscore, for instance, _raw, which contains the original event
text, and _time, which contains the parsed time in UTC epoch form. Unlike a
database, events do not adhere to a schema and fields are created dynamically.
Commands can do anything to the events that they are handed. Usually, a command
does one of the following:

Modifies or creates fields, for example, eval and rex
Filters events, such as head and where
Replaces events with a report, for example, top and stats
Sorts the results of a search using sort

Some commands can act as generators, which produce what you might call
synthetic events, such as |metadata and |inputcsv.

We will get to know the pipe symbol very well through examples.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using top to show common field values
A very common question that may often arise is: "Which values are the most common?"
When looking for errors, you are probably interested in figuring out what piece of code
has the most errors. The top command provides a very simple way to answer this
question.

Let's step through a few examples.

First, run a search for errors:

sourcetype="tm1" error

The preceding example searches for the word error in all source types starting with the
character string "tm1*" (with the asterisk being the wildcard character).

In my data, it finds events containing the word error, a sample of which is listed in the
following screenshot:

Since I happen to know that the data I am searching is made up of application log files
generated throughout the year, it might be interesting to see the month that had the most
errors logged. To do that, we can simply add | top date_month to our search, like so:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

sourcetype="tm1*" error | top date_month

The results are transformed by top into a table like the following one:

From these results, we see that october is logging significantly more errors than any
other month. We should probably take a closer look at the activity that occurred during
that month.

Next, perhaps we would like to determine whether there is a particular day of the week
when these errors are happening. Adding another field name to the end of the command
instructs top to slice the data again. For example, let's add date_wday to the end of our
previous query, like so:

sourcetype="tm1*" error | top date_month date_wday

The results might look like the following screenshot:

In these results, we see that wednesday is logging the most errors from the month of
october. If we simply want to see the distribution of errors by date_wday, we specify
only the user field, like so:

sourcetype=tm1* error | top date_wday

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Controlling the output of top
The default behavior for top is to show the 10 largest counts. The possible row count is
the product of all fields specified, in this case, date_month and date_wday. Using our data in
this example, there are eight possible combinations. If you would like to see less than
ten rows (or, in our example, less than eight), add the argument limit, like so:

sourcetype=tm1* error | top limit=4 date_month date_wday

Arguments change the behavior of a command; they take the form of name=value. Many
commands require the arguments to immediately follow the command name, so it's a
good idea to always follow this structure.

Each command has different arguments, as appropriate. As you type in the search bar, a
drop-down help box will appear for the last command in your search, as shown in the
following screenshot:

The preceding screenshot lists Matching searches in the upper-left corner; if there are no
matching searches, this section will not be displayed.

The Help option takes you to the documentation for that command at http://www.splunk.com,
and More >> provides concise inline documentation.

Let's use a few arguments to make a shorter list but also roll all other results into

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.splunk.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

another line:

sourcetype=tm1* error
| top
limit=4
useother=true otherstr=everything else
date_month date_wday

This produces results like what is shown in the following screenshot:

The last line represents everything that didn't fit into the top four. The
top option useother enables this last row, while the option otherstr controls the value
printed instead of the default value other.

The reader may review the Splunk documentation for additional information on the top
command and options at:

http://docs.splunk.com/Documentation/Splunk/7.0.0/SearchReference/Top

For the opposite of top, see the rare command.

||||||||||||||||||||

||||||||||||||||||||

http://docs.splunk.com/Documentation/Splunk/7.0.0/SearchReference/Top
https://technet24.ir
https://technet24.ir

Using stats to aggregate values
While top is very convenient, stats is extremely versatile. The basic structure of a stats
statement is:

stats functions by fields

Many of the functions available in stats mimic similar functions in SQL or Excel, but
there are many functions unique to Splunk too. The simplest stats function is count. Given
the following query, the results will contain exactly one row, with a value for the field
count:

sourcetype=tm1* error | stats count

Using the by clause, stats will produce one row per unique value for each field listed,
which is similar to the behavior of top. Run the following query:

sourcetype=tm1* error | stats count by date_month date_wday

It will produce a table like this:

There are a few things to note about these results:

The results are sorted against the values of the by fields, in this case, date_month
followed by date_wday. Unlike top, the largest value will not necessarily be at the
top of the list. You can sort in the GUI simply by clicking on the field names at the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

top of the table, or by using the sort command.
There is no limit to the number of rows produced. The number of rows will equal
all possible combinations of field values.
The function results are displayed last. In the next example, we will add a few
more functions, and this will become more obvious.

Using stats, you can add as many by fields or functions as you want into a single
statement. Let's run this query:

sourcetype=tm1* error | stats count avg(linecount) max(linecount)
as "Slowest Time" by date_month date_wday

The results look like those in the following screenshot:

Let's step through every part of this query, just to be clear:

sourcetype=tm1* error is the query itself
| stats starts the stats command
count will return the number of events
avg(linecount) produces an average value of the linecount field
max(linecount) as Slowest Time finds the maximum value of the linecount field and
places the value in a field called Slowest Time

The quotes are necessary ("Slowest Time") because the field name contains a space:

by indicates that we are done listing functions and want to list the fields to slice the
data by. If the data does not need to be sliced, by and the fields following it can be
omitted.
date_month and date_wday are our fields for slicing the data. All functions are actually
run against each set of data produced for every possible combination of date_month

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

and date_user.

If an event is missing a field that is referenced in a stats command, you may not see the
results you are expecting. For instance, when computing an average, you may wish for
events missing a field to count as zeros in the average. Also, for events that do not
contain a field listed in the by fields, the event will simply be ignored.

To deal with both of these cases, you can use the fillnull command to make sure that the
fields you want exist. We will cover this in Chapter 6, Advanced Search Examples.

Let's look at another example, using a time-based function and a little trick. Let's say we
want to know the most recent time at which a particular user saw an error each day.

We can use the following query:

sourcetype=tm1* Error TheUser="Admin" | stats count
 first(date_wday) max(_time) as _time by source

This query produces the following table:

Let's step through this example:

sourcetype=tm1* Error TheUser="Admin" is the query that will find all errors logged by the
user "Admin".
| stats is our command.
count shows how many times this user saw an error each day.
first(date_wday) gives us the weekday that was most recently logged for this user.
This will be the most recent event, since results are returned in the order of the
most recent first.
max(_time) as _time returns the time at which the user most recently saw an error that
day. This takes advantage of three aspects of time in Splunk:

_time is always present in raw events. As discussed in Chapter 2,
Understanding Search, the value is the number of seconds since January 1,
1970, UTC.
_time is stored as a number and can be treated as such.
If there is a field called _time in the results, Splunk will always display the
value as the first column of a table in the time zone selected by the user.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

by source is our field to split the results against, and in this example, it is done by
data source or the error log file where the error(s) were found.

We have only seen a few functions in stats. There are dozens of functions and some
advanced syntax that we will touch upon in later chapters. The simplest way to find the
full listing is to search with your favorite search engine for the Splunk stats functions.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using chart to turn data
The chart command is useful for turning data across two dimensions. It is useful for both
tables and charts. Let's start with one of our examples from stats:

sourcetype="tm1*" error | chart count over date_month by date_wday

The resultant table looks like this:

If you look back at the results from stats, the data is presented as one row per
combination. Instead of a row per combination, chart generates the intersection of the
two fields. You can specify multiple functions, but you may only specify one field each
for over and by.

Switching the fields (by rearranging our search statement a bit) turns the data the other
way:

By simply clicking on the Visualization tab (to the right of the Statistics tab), we can see
these results in a chart:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This is an Area chart, with particular format options set. Within the chart area, you can
click on Area to change the chart type (Line, Area, Column, Bar, and so on) or Format to
change the format options (Stack, Null Values, Multi-series Mode, and Drilldown).

The chart types are pretty self-explanatory, so let's go ahead and take a look at the
(chart) Format options. These options are grouped as:

General: Under General, you have the option to set the Stack Model (which
indicates how Splunk will display your chart columns for different series
alongside each other or as a single column) determine how to handle Null Values
(you can leave gaps for null data points, connect to zero data points, or just connect
to the next positive data point), set the Multi-series mode (Yes or No), and turn
Drilldown (active or inactive) on or off.
X-Axis: Is mostly visual. You can set a custom title, allow truncation of label
captions, and set the rotation of the text for your chart labels.
Y-Axis: Here you can set not only a custom title but also the scale (linear or log),
interval, and min and max values.
Chart Overlay: Here you can set the following options:

Overlay: Select a field to show as an overlay.
View as Axis: Select On to map the overlay to a second y axis.
Title: Specify a title for the overlay.
Scale: Select Inherit, Linear, or Log. Inherit uses the scale for the base chart.
Log provides a logarithmic scale, useful for minimizing the display of large
peak values.
Interval: Enter the units between tick marks in the axis.
Min Value: The minimum value to display. Values less than the Min Value do
not appear on the chart.
Max Value: The maximum value to display. Values greater than the Max Value
do not appear on the chart.

Legend: Finally, under Legend, you can set Position (where to place the legend in
the visualization or whether to exclude the legend), and setting Truncation decides
how to represent names that are too long to display. Keep in mind that, depending
on your search results and the visualization options that you select, you may or may
not get a usable result. Some experimentation with the various options is
recommended.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using timechart to show values over time
The timechart option lets us show numerical values over time. It is similar to the chart
command, except that time is always plotted on the x axis. Here are a couple of things to
note:

The events must have a _time field. If you are simply sending the results of a search
to the timechart, this will always be true. If you are using interim commands, you
will need to be mindful of this requirement.
Time is always bucketed, meaning that there is no way to draw a point per event.

Let's see how many errors have been occurring:

sourcetype="tm1*" error | timechart count

The default chart will look something like this:

Now let's see how many errors have occurred per weekday over the same time period.

We simply need to add by user to the query:

sourcetype="tm1*" error | timechart count by date_wday

This produces the following chart:

As we stated earlier, the x axis is always time. The y axis can be:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

One or more functions.
A single function with a by clause.
Multiple functions with a by clause (a new feature in Splunk 4.3). An example of a
timechart with multiple functions might be as follows:

sourcetype="tm1*" error | timechart count as "Error Count" count(sourcetype) as "Source Count"

This would produce a graph as follows:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The timechart options
Timechart has many arguments and formatting options. We'll touch upon a few examples
of formatting, but they are too numerous to cover in detail. We will use other chart types
in later chapters. Let's throw a few options in (to a simple search) and see what they do:

sourcetype="*" GET | timechart bins=100 limit=3 useother=false
 usenull=false count as "Error count" by user

Let's step through each of these arguments:

sourcetype="*" GET is our search query.
bins defines how many bins to slice time into. The number of bins will probably not
be exactly 100, as the time will be sliced into logical units. In our example, this
comes to 10 minutes per bin. To be more exact, you can use span (for example,
span=1h) for hourly slices, but note that if your span value creates too many time
slices, the chart will be truncated.
limit changes the number of series returned. The series with the largest values are
returned, much like in top. In this case, the most common values of a user will be
returned.
useother instructs timechart whether to group all series beyond the limit into another
bucket. The default value is true.
usenull instructs timechart whether to bucket, into the group NULL, events that do not
have a value for the fields in the by clause. The default value is true.

This combination of arguments produces a graph similar to this:

As mentioned earlier in this chapter, Splunk offers us a variety of Formatting options for
our visualizations. Clicking on the drop-down selector on the Visualization tab in the
following graph gives us quite a few options to work with:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The preceding graph shows a common chart style, the stacked column. This graph is
useful for showing how many events of a certain kind occurred, but with colors to give
us an idea of the distribution. Some great examples of all of the available chart styles
are available at http://www.splunk.com/, and we will touch upon more styles in later
chapters.

||||||||||||||||||||

||||||||||||||||||||

http://www.splunk.com/
https://technet24.ir
https://technet24.ir

Working with fields
All the fields that we have used so far were either indexed fields (such as host,
sourcetype, and _time) or fields that were automatically extracted from key=value pairs.
Unfortunately, most logs don't follow this format, especially for the first few values in
each event. New fields can be created either using inline commands or through
configuration.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

A regular expression primer
Most of the ways to create new fields in Splunk involve regular expressions (sometimes
referred to as regex). As mentioned in the Splunk documentation:

"Regex is a powerful part of the Splunk search interface, and understanding it is an essential component of
Splunk search best practices"

There are many books and sites dedicated to regular expressions, so we will only touch
upon the subject here. The following examples are really provided for completeness;
the Splunk web interface may suffice for most users.

Given the log snippet ip=1.2.3.4, let's pull out the subnet (1.2.3) into a new field called
subnet. The simplest pattern would be the following literal string:

ip=(?P<subnet>1.2.3).4

This is not terribly useful as it will only find the subnet of that one IP address. Let's try a
slightly more complicated example:

ip=(?P<subnet>\d+\.\d+\.\d+)\.\d+

Let's step through this pattern:

ip= simply looks for the raw string ip=.
(starts a capture buffer. Everything until the closing parenthesis is part of this
capture buffer.
?P<subnet>, immediately inside the parentheses, says create a field called subnet
from the results of this capture buffer.
\d matches any single digit, from 0 to 9.
+ says one or more of the item immediately before.
\. matches a literal period. A period without the backslash matches any character.
\d+\.\d+ matches the next two parts of the IP address.
) ends our capture buffer.
\.d\+ matches the last part of the IP address. Since it is outside the capture buffer, it
will be discarded.

Now, let's step through an overly complicated pattern to illustrate a few more concepts:

ip=(?P<subnet>\d+.\d*\.[01234-9]+)\.\d+

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Let's step through this pattern:

ip= simply looks for the raw string ip=.
(?P<subnet> starts our capture buffer and defines our field name.
\d means digit. This is one of the many backslash character combinations that
represent some sets of characters.
+ says one or more of what came before, in this case d.
. matches a single character. This will match the period after the first set of digits,
though it would match any single character.
\d* means zero or more digits.
\. matches a literal period. The backslash negates the special meaning of any
special punctuation character. Not all punctuation marks have a special meaning,
but so many do that there is no harm adding a backslash before a punctuation mark
that you want to literally match.
[starts a character set. Anything inside the brackets will match a single character
in the character set.
01234-9 means the characters 0, 1, 2, 3, and the range 4-9.
] closes the character set.
+ says one or more of what came before, in this case, the character set.
) ends our capture buffer.
• \.\d+ is the final part of the IP address that we are throwing away. It is not actually
necessary to include this, but it ensures that we only match if there were, in fact,
four sets of numbers.

There are a number of different ways to accomplish the task at hand. Here are a few
examples that will work:

ip=(?P<subnet>\d+\.\d+\.\d+)\.\d+

ip=(?P<subnet>(\d+\.){2}\d+)\.\d+

ip=(?P<subnet>[\d\.]+)\.\d

ip=(?P<subnet>.*?\..*?\..*?)\.

ip=(?P<subnet>\S+)\.

For more information about regular expressions, consult the manual pages for Perl
Compatible Regular Expressions (PCRE), which can be found online at http://www.pcre
.org/pcre.txt, or one of the many regular expression books or websites dedicated to the
subject. We will build more expressions as we work through different configurations
and searches, but it's definitely worthwhile to have a reference handy.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.pcre.org/pcre.txt
https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Commands that create fields
In Splunk, fields are extracted from the event data; to fully leverage the power of
Splunk, you have the ability to create additional fields or to have Splunk extract
additional fields that you define. This allows you to capture and track information that is
important to your needs, but which is not automatically discovered and extracted by
Splunk.

There are a number of commands that create new fields, but the most commonly used
ones are eval and rex.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

eval
The eval command allows you to use functions to build new fields, much like how you
build a formula column in Excel, for example:

sourcetype="impl_splunk_gen" | eval
 req_time_seconds=date_second/1000 | stats avg(req_time_seconds)

This creates a new field called req_time_seconds on every event that has a value for
date_second. Commands after this statement see the field as if it were part of the original
event. The stats command then creates a table of the average value of our newly-created
field:

There are a huge number of functions available for use with eval. The simplest way to
find the full listing is to search Google for Splunk eval functions. I would suggest
bookmarking this page, as you will find yourself referring to it often.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

rex
The rex command lets you use regular expressions to create fields. It can work against
any existing field but, by default, will use the field _raw. Let's try one of the patterns that
we wrote in our short regular expression primer:

sourcetype="impl_splunk_gen" | rex
"ip=(?P<subnet>\d+\.\d+\.\d+)\.\d+" | chart values(subnet) by
date_minute

This would create a table like this:

With the addition of the field argument, we can work against the ip field that is already
being created automatically from the name=value pair in the event:

sourcetype="impl_splunk_gen" | rex field=ip "(?P<subnet>.*)\."|
 chart values(subnet) by date_minute

This will create exactly the same result as the previous example.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Extracting loglevel
In some of our examples, we searched for the raw word error. You may have noticed
that many of the events weren't actually errors, but simply contained the word error
somewhere in the message. For example, given the following events, we probably only
care about the second event:

2012-03-21T18:59:55.472-0500 INFO This is not an error
2012-03-21T18:59:42.907-0500 ERROR Something bad happened

Using an extracted field, we can easily create fields in our data without reindexing that
allow you to search for values that occur at a specific location in your events.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using the extract fields interface
There are several ways to define a field. Let's start by using the Extract Fields interface.
To access this interface, choose Extract Fields from the workflow actions menu next to
any event:

This menu launches the Extract Fields view:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

In Splunk version 6.2, we have access to a wizard which helps us provide the
information required for Splunk to attempt building a regular expression that matches.

Although you may choose multiple fields, in this case, we specify Error:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

In the popup, you can provide a custom Field Name (I chose CognosError) and then click
the button labeled Add Extraction.

Under Preview, you can see two tabs—Events, and our new field CognosError:

Under Events, we get a preview of what data was matched in context, and under
CognosError we can see our new field.

Finally, under Show Regular Pattern, we see the regular expression that Splunk

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

generated, which is as follows:

^(?P<CognosError>\w+)

You can step through the pattern and, if you are so inclined, make edits to it:

Clicking on the button labeled Edit the Regular Expression (shown in the preceding
screenshot) presents a dialog to let you modify the pattern manually:

Once you make any edits to the pattern, Preview will be enabled and will launch a new
search with the pattern loaded into a very useful query that shows the most common
values extracted.

Save prompts you for a name for your new field. Assuming that you modified the
originally-generated pattern string, you can enter a new name (rather than CognosError),
and then select the desired permissions for accessing this new field:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Now that we've defined our field, we can use it in a number of ways, as follows:

We can search for the value using the field name, for instance, loglevel=CognosError.
When searching for values by field name, the field name is case-sensitive, but the
value is not case-sensitive. In this case, loglevel=CognosError will work just fine, but
LogLevel=cognoserror will not.
We can report on the field, whether we searched for it or not. For instance,
sourcetype="impl_splunk_gen" user=mary | top loglevel.
We can search for only those events that contain our field:
sourcetype="impl_splunk_gen" user=mary loglevel="*".

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using rex to prototype a field
When defining fields, it is often convenient to build the pattern directly in the query and
then copy the pattern into the configuration. You might have noticed that the test in the
Extract Fields workflow used rex.

Let's turn the subnet pattern we built earlier into a field. First, we build the query with
the rex statement:

sourcetype="impl_splunk_gen" ip="*"
| rex "ip=(?P<subnet>\d\.\d\.\d+)\.\d+"
| table ip subnet

Since we know there will be an ip field in the events which we care about, we can use
ip="*" to limit the results only to events that have a value for that field.

The table command takes a list of fields and displays a table, one row per event:

As we can see, the rex statement doesn't always work. Looking at the pattern again, you
may notice that the first two instances of \d are now missing their trailing +. Without the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

plus sign, only addresses with a single digit in both their first and second sections will
match. After adding the missing plus signs to our pattern, all rows will have a subnet:

sourcetype="impl_splunk_gen" ip="*"
| rex "ip=(?P<subnet>\d+\.\d+\.\d+)\.\d+"
| table ip subnet

We can now take the pattern from the rex statement and use it to build a configuration.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using the admin interface to build a field
Taking our pattern from the previous example, we can build the configuration to wire up
this extract.

First, click on Settings in the upper menu bar. From there, select Fields. The Fields
section contains everything, funnily enough, about fields.

Here you can view, edit, and set permissions on field extractions. Define event
workflow actions, field aliases, and even rename source types.

For now, we're interested in Field extractions.

After clicking on Add new to the right of Field extractions, or on the New button after
clicking on Field extractions, we are presented with the interface for creating a new
field:

Now, we step through the fields:

Destination app lets us choose the app where this extraction will live and where it
will take effect, by default. We will discuss the scope of configurations in Chapter
11, Configuring Splunk.
Name is simply a display name for the extraction. Make it as descriptive as you

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

like.
Apply to lets you choose what to bind this extraction to. Your choices are
sourcetype, source, and host. The usual choice is sourcetype.
named is the name of the item we are binding our extraction to.
Type lets us choose either Inline, which means specifying the regular expression
here, or Uses transform, which means we will specify a named transform that
exists already in the configuration.
Extraction/Transform is where we place our pattern if we chose a Type option of
Inline, or else the name of a Transform object.

Once you click on Save, you will return to the listing of extractions. By default, your
extraction will be private to you and will only function in the application it was created
in. If you have the rights to do so, you can share the extraction with other users and
change the scope of where it runs. Click on Permissions in the listing to see the
permissions page, which most objects in Splunk use:

The top section controls the context in which this extraction will run. Think about when
the field would be useful, and limit the extractions accordingly. An excessive number of
extractions can affect performance, so it is a good idea to limit the extracts to a specific
app when appropriate. We will talk more about creating apps in Chapter 8, Working with
Apps.

The second section controls what roles can read or write this configuration. The usual
selections are the Read option for the Everyone parameter and the Write option for the
admin parameter. As you build objects going forward, you will become very familiar

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

with this dialog. Permissions and security, in general, can be complex and affect where
an app will eventually be visible—the reader is advised to take time to review whether
the permissions set for apps are actually what is expected.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Indexed fields versus extracted fields
When an event is written to an index, the raw text of the event is captured along with a
set of indexed fields. The default indexed fields include host, sourcetype, source, and _time.
There are distinct advantages and a few serious disadvantages to using indexed fields.

First, let's look at the advantages of an indexed field (we will actually discuss
configuring indexed fields in Chapter 11, Configuring Splunk):

As an indexed field is stored in the index with the event itself, it is only calculated
at index time, and in fact, can only be calculated once at index time.
It can make finding specific instances of common terms efficient. See the Indexed
field case 1 - rare instances of a common term section as an example.
You can create new words to search against those which simply don't exist in the
raw text or are embedded inside a word. See from the Indexed field case 2 -
splitting words section to the Indexed field case 4 - slow requests section.
You can efficiently search for words in other indexed fields. See the Indexed field
case 3 - application from source section.

Now for the disadvantages of an indexed field:

It is not retroactive. This is different from extracted fields where all events, past
and present, will gain the newly-defined field if the pattern matches. This is the
biggest disadvantage of indexed fields and has a few implications, as follows:

Only newly-indexed events will gain a newly-defined indexed field. If the
pattern is wrong in certain cases, there is no practical way to apply the field
to already-indexed events.
Likewise, if the log format changes, the indexed field may not be generated
(or may be generated incorrectly).

It adds to the size of your index on disk.
It counts against your license.
Any changes will require a restart to be applied and disrupt data flow temporarily.
In most cases, the value of the field is already an indexed word, in which case
creating an indexed field will likely have no benefit, except in the rare cases where
that value is very common.

With the disadvantages out of our way, let's look at a few cases where an indexed field
would improve search performances and then at one case where it would probably

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

make no difference.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Indexed field case 1 - rare instances of a
common term
Let's say your log captures process exit codes. If 1 represents a failure, you probably
want to be able to search for this efficiently. Consider a log that looks something like
this:

4/1/12 6:35:50.000 PM process=important_process.sh, exitcode=1

It would be easy to search for this log entry using exitcode=1. The problem is that, when
working with extracted fields, the search is effectively reduced to this:

1 | search exitcode="1"

Since the date contains 1, this search would find every event for the entire day and then
filter the events to the few that we are looking for. In contrast, if exitcode were defined as
an indexed field, the query would immediately find the events, only retrieving the
appropriate events from the disk. Please note that binding an indexed field to any time
(stamp) is risky. This wreaks havoc on data integrity and is not considered best
practice.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Indexed field case 2 - splitting words
In some log formats, multiple pieces of information may be encoded into a single word
without whitespace or punctuation to separate the useful pieces of information. For
instance, consider a log message such as this:

4/2/12 6:35:50.000 PM kernel: abc5s2: 0xc014 (UNDEFINED).

Let's pretend that 5s2 (a made-up string of characters for an example) is an important
piece of information that we need to be able to search for efficiently. The query *5s2
would find the events but would be a very inefficient search (in essence, a full table
scan). By defining an indexed field, you can very efficiently search for this instance of
the string 5s2, because essentially, we create a new word in the metadata of this event.

Defining an indexed field only makes sense if you know the format of the logs before
indexing, if you believe the field will actually make the query more efficient, (see
previous section), and if you will be searching for the field value. If you will only be
reporting on the values of this field, an extracted field will be sufficient, except in the
most extreme performance cases.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Indexed field case 3 - application from
source
A common requirement is to be able to search for events from a particular web
application. Often, the only easy way to determine the application that created the logs
is by inspecting the path to the logs, which Splunk stores in the indexed field source. For
example, given the following path, the application name is app_one:

/opt/instance19/apps/app_one/logs/important.log

You can search for this instance using source="*/app_one/*", but this effectively initiates a
full table scan. You can define an extracted field and then search for app="app_one", but
unfortunately, this approach will also be no more efficient because the word we're
looking for is not contained in the field _raw. If we define this field as an indexed field,
app="app_one" will be an efficient search.

Once again, if you only need this field for reporting, the extracted field is just fine.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Indexed field case 4 - slow requests
Consider a web access log with a trailing request time in microseconds:

[31/Jan/2012:18:18:07 +0000] "GET / HTTP/1.1" 200 7918 ""
"Mozilla/5.0..." 11/11033255

Let's say we want to find all requests that took longer than 10 seconds. We can easily
extract the value into a field, perhaps request_ms. We could then run the search
request_ms>10000000. This query will work, but it requires scanning every event in the given
time frame. Whether the field is extracted or indexed, we would face the same problem,
as Splunk has to convert the field value to a number before it can test the value.

What if we could define a field and instead search for slow_request=1? To do this, we can
take advantage of the fact that, when defining an indexed field, the value can be a static
value. Having Splunk search for a static value—rather than examining the value of every
event and then trying to match it—would improve the efficiency of the search. This can
be accomplished with a transform, like so:

REGEX = .*/(\d{7,})$
FORMAT = slow_request::1

We will cover transforms, and the configurations involved, in Chapter 11, Configuring
Splunk.

Once again, this is only worth the trouble if you need to efficiently search for these
events and not simply report on the value of request_ms.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Indexed field case 5 - unneeded work
Once you learn to make indexed fields, it may be tempting to convert all your important
fields into indexed fields. In most cases, it is essentially a wasted effort and ends up
using extra disk space, wasting license, and adding no performance boost.

For example, consider this log message:

4/2/12 6:35:50.000 PM [vincentbumgarner] [893783] sudo bash

Assuming that the layout of this message is as follows, it might be tempting to put both
userid and pid into indexed fields:

date [userid] [pid] action

Since the values are uncommon, and are unlikely to occur in unrelated locations,
defining these fields as indexed fields is most likely wasteful. It is much simpler to
define these fields as extracted fields and shield ourselves from the disadvantages of
indexed fields.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Chart enhancements in version 7.0
Splunk provides a fine collection of charting resources to be used for creating
dashboards. You can check the full Chart configuration reference in the documentation
found at:

https://docs.splunk.com/Documentation/Splunk/latest/Viz/ChartConfigurationReference

In version 7.0, they've gone on and expanded the charting collection by adding some
cool, new chart enhancements that increase the selection of visual styles and chart
options, all geared to improving the visualization of metrics and multi-series monitoring
use cases.

Line width, line style, and a new series comparison option in the legend are included in
these enhancements, and all are editable by SimpleXML.

Let's take a look at a few of these new options.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://docs.splunk.com/Documentation/Splunk/latest/Viz/ChartConfigurationReference
https://technet24.ir
https://technet24.ir
https://technet24.ir

charting.lineWidth
This charting option gives you the chance to set a chart's line width in pixels (px). There
are no special instructions for the use of this new option. You simply include it as part
of your chart definition:

<option name-"charting.linewidth">2px</option>

In the given XML, we've added the linewidth option to the XML that was used to show an
Event Annotation in Chapter 2, Understanding Search:

<dashboard>
 <label>Errors with Process Issues Annoted</label>
 <row>
 <panel>
 <chart>
 <search>
 <!-- Secondary search that drives the annotations -->
 <query>sourcetype="tm1*" error | timechart count</query>
 <earliest>-30week</earliest>
 <latest>-1weeks</latest>
 <sampleRatio>1</sampleRatio>
 </search>
 <search type="annotation">
 <query>sourcetype="tm1*" Process | eval annotation_label = "Processes Offline"</query>
 <earliest>-30week</earliest>
 <latest>-15weeks</latest>
 </search>
 <!--- main search -->
 <option name="charting.axisLabelsX.majorLabelStyle.overflowMode">ellipsisNone</option>
 <option name="charting.axisLabelsX.majorLabelStyle.rotation">0</option>
 <option name="charting.axisTitleX.visibility">visible</option>
 <option name="charting.axisTitleY.visibility">visible</option>
 <option name="charting.axisTitleY2.visibility">visible</option>
 <option name="charting.axisX.abbreviation">none</option>
 <option name="charting.axisX.scale">linear</option>
 <option name="charting.axisY.abbreviation">none</option>
 <option name="charting.axisY.scale">linear</option>
 <option name="charting.axisY2.abbreviation">none</option>
 <option name="charting.axisY2.enabled">0</option>
 <option name="charting.axisY2.scale">inherit</option>
 <option name="charting.chart">line</option>
 <option name="charting.chart.bubbleMaximumSize">50</option>
 <option name="charting.chart.bubbleMinimumSize">10</option>
 <option name="charting.chart.bubbleSizeBy">area</option>
 <option name="charting.chart.nullValueMode">gaps</option>
 <option name="charting.chart.showDataLabels">none</option>
 <option name="charting.chart.sliceCollapsingThreshold">0.01</option>
 <option name="charting.chart.stackMode">default</option>
 <option name="charting.chart.style">shiny</option>
 <option name="charting.drilldown">none</option>
 <option name="charting.layout.splitSeries">0</option>
 <option name="charting.layout.splitSeries.allowIndependentYRanges">0</option>

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 <option name="charting.legend.labelStyle.overflowMode">ellipsisMiddle</option>
 <option name="charting.legend.mode">standard</option>
 <option name="charting.legend.placement">right</option>
 <option name="charting.lineWidth">9px</option>
 <option name="trellis.enabled">0</option>
 <option name="trellis.scales.shared">1</option>
 <option name="trellis.size">medium</option>
 </chart>
 </panel>
 </row>
</dashboard>

We can see the results of increasing the line width to 9px as follows:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

charting.data.fieldHideList
With this option, you can hide the search fields from appearing in a chart to make the
chart clearer or to accentuate a particular data point. For example, this visualization
shows both the host and count fields:

By editing the dashboard XML and adding the following option:

<option name="charting.data.fieldHidelList">["host"]</otion>

We can hide the host field from the chart:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

charting.legend.mode
This new charting option is super when comparing different data series on a chart. The
default argument is "standard" which is what is used in previous releases for charting
multi-series data:

The new seriesCompare option now populates the values for each data series on the
legend, making it easier to compare values at different points on the chart:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

charting.fieldDashStyles
With the new charting option fieldDashStyles, you can experiment with various dash styles
(dash, dashDot, dot, longDash, longDashDot, longDashDotDot, shortDash, shortDot, shortDashDot,
shortDashDotDot, solid) for each of your charts fields.

Like the other charting options, you can apply a style within the XML:

<option name="charting.fieldDashStyles">{count":"shortDashDotDot"}</option>

In the following example, we used the preceding shortDashDotDot style:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

charting.axis Y.abbreviation
Finally, depending upon the chart type, using the following new charting options:

charting.axisX.abbreviation
charting.axisX.abbreviation
charting.axisY.abbreviation
charting.axisY2.abbreviation

You can add abbreviations to the X or Y values using the closest SI prefix.

That wraps up our review of the latest 7.0 charting enhancements. Feel free to
experiment.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Summary
This was a very dense chapter, but we really just scratched the surface of a number of
important topics. In future chapters, we will use these commands and techniques in more
and more interesting ways. The possibilities can be a bit dizzying, so we will step
through a multitude of examples to illustrate as many scenarios as possible.

Although some of the valuable new chart enhancements introduced in version 7.0 were
touched upon in this chapter, we advise the reader to spend some more time (check out
the examples in the downloadable Splunk 7.0 Overview App) experimenting with the
power of these features, as they can immeasurably improve your Splunk visualizations.

In the next chapter, we will cover data models and pivots (covering a definition of
each), the pivot editor, pivot elements and filters, and sparklines.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Data Models and Pivots
In Splunk version 7.0, Splunk has implemented various key optimizations in its core
search technology in an effort to reduce the time and resources required to run data
model accelerations and accelerated searches. To this end, we have added a section on
this topic.

In this chapter, we will introduce the following:

Data models
Pivots (along with pivot elements and filters)
Sparklines

Also in Splunk, data models and pivots should be discussed together because data
models drive (Splunk) pivots. So, let's start by defining data models.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

What is a data model?
The Splunk product documentation (2015-2017) defines a data model as:

"a hierarchically structured, search-time mapping of semantic knowledge about one or more datasets (that
encode the domain knowledge necessary to generate specialized searches of those datasets) so that Splunk
can use these specialized searches to generate reports and charts for pivot users."

Data models enable you to create Splunk reports and dashboards without having to
develop Splunk searches (required to create those reports and dashboards), and can
play a big part in Splunk app development. You can create your own data models, but
before you do, you should review the data models that your organization may have
already developed. Typically, data models are designed by those that understand the
specifics around the format, the semantics of certain data, and the manner in which users
may expect to work with that data. In building a typical data model, knowledge
managers use knowledge object types (such as lookups, transactions, search-time field
extractions, and calculated fields).

Another way to perhaps understand data models, if you are familiar with relational
databases, is to think of a Splunk data model as a sort of database schema. Using the
Splunk Pivot Editor, data models let you generate statistical tables, charts, and
visualizations based on column and row configurations that you select.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

What does a data model search?
Splunk data models are really a group or set of specific information (referred to as
objects) pulled together to create specific Splunk search strings, each used to generate a
search that returns a particular dataset. That dataset, returned by the object you select, is
governed by particular object constraints and attributes.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Data model objects
As I mentioned, data models are constructed from a series of objects and these objects
will be one of four types—event, search, transaction, or child. They are arranged
hierarchically, with child objects inheriting from the parent objects they are associated
with:

Event objects are the most common data model objects, broadly representing a
type of event. Event objects are typically defined by a constraint (which we will
discuss next).
Transaction objects enable you to create data models that represent transactions
(groups of related events that span time) using fields that have already been added
to the model via an event or search object. This means that you can't create data
models that are composed only of transaction objects and their child objects.
Before you create a transaction object, you must already have some event or search
object trees in your model.
Search objects use an arbitrary Splunk search that includes transforming
commands to define the dataset that they represent.
The most top-level objects in a data model are referred to as root objects and each
can be a parent object to many child objects. Splunk calls the relationship of a
parent and child object an object tree. The data that this object tree represents is
first selected by the root and then refined by each of its child objects.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Object constraining
All data model objects are defined by sets of constraints that will filter out information
that is not pertinent to the object. A constraint may be a simple Splunk search (with no
pipes or additional commands), a more complex search, or even a transaction.
Constraints are inherited by child objects. Constraint inheritance ensures that each child
object represents a subset of the data represented by its parent objects. So, for example,
a data model may have a root object that defines a particular indexed source
(sourcetype=speciallogs_*), while a child object of that root might narrow down that search
to only the errors that appear in that datasource (error*). You might use this data model if
you know that you only want to report on errors within the events that belong to the
speciallogs sourcetype.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Attributes
Data model objects also include attributes, which are simply fields (exposed for use in
reporting) associated with the dataset that the object represents. There are five types of
object attributes: auto-extracted (fields that Splunk derives at search time), eval

expressions (field derived from an eval expression that you enter in the attribute
definition), lookups (they add fields from external data sources such as CSV files and
scripts), regular expressions (a field that is extracted from the object event data using a
regular expression) and GeoIP (of a lookup that adds geographical attributes, such as
latitude, longitude, country, and city to events in the object dataset).

Attributes fall into one of three categories: inherited attributes (from the object's
parent), extracted attributes (that you add to an object), or calculated (attributes that
are the result of a calculation or a lookup).

When you define data model attributes, you can define (for each object in the data
model) whether it is visible or hidden. Attributes are visible by default. This is
particularly important if each object in your data model has many attributes but only a
few are essential for your user's needs. Determining which attributes to include in a
Splunk data model and which attributes to expose is a critical part of the overall design
of the model. Typically, it's often helpful if each object exposes only the data that is
relevant to that object, making it easier to understand and use for your average Splunk
user.

In addition to attribute visibility, it is also possible to make any attribute required or
optional. Indicating that an attribute is required means that every event represented by
the object must have that attribute. When you define an attribute as optional, it means
that the object may have events that do not have that attribute at all.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Acceleration in version 7.0
Prior to and along with the release of version 7.0, Splunk posted material that touted
"optimizations to core search technology," promising decreases in the time and
resources required to run data model accelerations as well as accelerated searches
with faster search and DMA performance.

From reported experiences, Splunk Enterprise users appear to be constantly gaining
threefold improvements on their data model acceleration time.

Note: For other types of searches, search performance improvements of two to ten times have
been reported.

Splunk indicates that version 7.0 uses supplementary parallelization to convert
sequential processing into multi-threaded processing in order to utilize multiple
processors simultaneously in a shared-memory. And it uses improved refactored
techniques to improve search performance for some types of searches or (at minimal)
achieve the same performance using one-third of the previously required resources.

To be clear, these improvements were mostly reported when moving from version 5.0,
and, for those environments, these gains make the upgrade worthwhile as the same
hardware can gain significant performance improvements and/or reduce the footprint
required.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Creating a data model
So now that we have a general idea of what a Splunk data model is, let's go ahead and
create one. Before we can get started, we need to verify that our user ID is set up with
the proper access required to create a data model. By default, only users with an admin
or power role can create data models. For other users, the ability to create a data model
depends on whether their roles have write access to an app.

To begin (once you have verified that you do have access to create a data model), you
can click on Settings and then on Data models (under KNOWLEDGE):

This takes you to the Data Models (management) page, shown in the next screenshot.
This is where a list of data models is displayed. From here, you can manage the
permissions, acceleration, cloning, and removal of existing data models. You can also
use this page to upload a data model or create new data models, using the Upload Data
Model and New Data Model buttons on the upper-right corner, respectively.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Since this is a new data model, you can click on the button labeled New Data Model.
This will open the New Data Model dialog box (shown in the following image). We can
fill in the required information in this dialog box:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Filling in the new data model dialog
You have four fields to fill in order to describe your new Splunk data model (Title, ID,
App, and Description):

Title: Here you must enter a Title for your data model. This field accepts any
character, as well as spaces. The value you enter here is what will appear on the
data model listing page.
ID: This is an optional field. It gets prepopulated with what you entered for your
data model title (with any spaces replaced with underscores. Take a minute to
make sure you have a good one, since once you enter the data model ID, you can't
change it.
App: Here you select (from a drop-down list) the Splunk app that your data model
will serve.
Description: The description is also an optional field, but I recommend adding
something descriptive to later identify your data model.

Once you have filled in these fields, you can click on the button labeled Create. This
opens the data model (in our example, Aviation Games) in the Splunk Edit Objects page
as shown in the following screenshot:

The next step in defining a data model is to add the first object. As we have already
stated, data models are typically composed of object hierarchies built on root event
objects. Each root event object represents a set of data that is defined by a constraint,

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

which is a simple search that filters out events that are not relevant to the object.

Getting back to our example, let's create an object for our data model to track purchase
requests on our Aviation Games website.

To define our first event-based object, click on Add Dataset (as shown in the following
screenshot):

Our data model's first object can either be a Root Event, or Root Search. We're going to
add a Root Event, so select Root Event. This will take you to the Add Event Dataset
editor:

Our example event will expose events that contain the phrase error, which represents
processing errors that have occurred within our data source. So, for Dataset Name, we
will enter Processing Errors.

The Dataset ID will automatically populate when you type in the Dataset Name (you can
edit it if you want to change it). For our object's constraint, we'll enter sourcetype=tm1*
error. This constraint defines the events that will be reported on (all events that contain
the phrase error that are indexed in the data sources starting with tml). After providing
Constraints for the event-based object, you can click on Preview to test whether the
constraints you've supplied return the kind of events that you want.

The following screenshot depicts the preview of the constraints given in this example:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

After reviewing the output, click on Save. The list of attributes for our root object is
displayed: host, source, sourcetype, and _time. If you want to add child objects to client
and server errors, you need to edit the attributes list to include additional attributes:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Editing fields (attributes)
Let's add an auto-extracted attribute, as mentioned earlier in this chapter, to our data
model. Remember, auto-extracted attributes are derived by Splunk at search time. To
start, click on Add Field:

Next, select Auto-Extracted. The Add Auto-Extracted Field window opens:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

You can scroll through the list of automatically extracted fields and check the fields that
you want to include. Since my data model example deals with errors that occurred, I've
selected date_mday, date_month, and date_year.

Notice that to the right of the field list, you have the opportunity to rename and type set
each of the fields that you selected. Rename is self-explanatory, but for Type, Splunk
allows you to select String, Number, Boolean, or IPV$ and indicate if the attribute is
Required, Optional, Hidden, or Hidden & Required. Optional means that the
attribute doesn't have to appear in every event represented by the object. The attribute
may appear in some of the object events and not others.

Once you have reviewed your selected field types, click on Save:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Lookup attributes
Let's discuss lookup attributes now. Splunk can use the existing lookup definitions to
match the values of an attribute that you select to values of a field in the specified
lookup table. It then returns the corresponding field/value combinations and applies
them to your object as (lookup) attributes.

Once again, if you click on Add Field and select Lookup, Splunk opens the Add Fields
with a Lookup page (shown in the following screenshot) where you can select from your
currently defined lookup definitions. For this example, we select dnslookup:

The dnslookup converts clienthost to clientip. We can configure a lookup attribute using
this lookup to add that result to the processing errors objects.

Under Input, select clienthost for Field in Lookup and Field in Dataset. Field in Lookup
is the field to be used in the lookup table. Field in Dataset is the name of the field used
in the event data. In our simple example, Splunk will match the field clienthost with the
field host:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Under Output, I have selected host as the output field to be matched with the lookup.
You can provide a Display Name for the selected field. This display name is the name
used for the field in your events. I simply typed AviationLookupName for my display name
(see the following screenshot):

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Again, Splunk allows you to click on Preview to review the fields that you want to add.
You can use the tabs to view the Events in a table, or view the values of each of the
fields that you selected in Output. For example, the following screenshot shows the
values of AviationLookupName:

Finally, we can click on Save:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Children
We have just added a root (or parent) object to our data model. The next step is to add
some children. Although a child object inherits all the constraints and attributes from its
parent, when you create a child, you will give it additional constraints with the intention
of further filtering the dataset that the object represents.

To add a child object to our data model, click on Add Field and select Child:

Splunk then opens the editor window, Add Child Dataset (shown in the following
screenshot):

On this page, follow these steps:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Enter the Object Name: Dimensional Errors.
Leave the Object ID as it is: Dimensional_Errors.
Under Inherit From, select Processing Errors. This means that this child object will
inherit all the attributes from the parent object, Processing Errors.
Add the Additional Constraints, dimension, which means that the data models search
for the events in this object; when expanded, it will look something
like sourcetype=tm1* error dimension.
Finally, click on Save to save your changes:

Following the previously outlined steps, you can add more objects, each continuing to
filter the results until you have the results that you need.

At this point, the next step in implementing a Splunk data model is to use it. So let's
continue and determine how.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

What is a pivot?
As we stated earlier in this chapter, data models drive (Splunk) pivots. So what is a
pivot? A pivot is created by using the Splunk Pivot Editor and can be a simple (or
complex) table, chart, or dashboard. You use the Pivot Editor to map fields of data that
you have defined in a data model to a specific data visualization without having to deal
with the Splunk Enterprise Search Processing Language.

The Splunk pivot is a simple drag-and-drop interface that uses your (predefined) data
models and data model objects. These data models (designed by the knowledge
managers in your organization using the method that we outlined in the previous
sections) are used by the pivot tool to define and subdivide, and to set attributes for the
event data that you are interested in.

In earlier versions of Splunk, one could begin the creation of a Pivot from the home
page and selecting Pivot. In version 7.0, it's a bit different.

You can create a Splunk pivot table by following these steps:

1. Go to the Splunk Home page and click on Settings; then select Data Models.
2. Next, select a data model to pivot (we'll use the previously created Aviation

Games):

3. Once you select your data model, the Datasets Editor page will open, where you
can select Pivot:

4. Next, from the Select a Dataset page, you can indicate a specific dataset
(identifying which dataset to work with):

5. Once you select a dataset, you can select from the list of objects (which can be an

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

event, transaction, search, or child type of object, and represent a specific view or
slice of a Splunk search result) within that dataset to work with (or click on Edit
Datasets to edit or add to the objects within the data model):

1. After you select a specific object, Splunk will take you to the Pivot Editor, where
you can create your pivot:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The Pivot Editor
Splunk will start the Pivot Editor in what is referred to as pivot table mode.

In pivot table mode, the editor displays only one row that represents the object's total
result count over all time, based on the type of object you've selected:

Event type: The total number of events (selected by the object)
Transaction type: The total number of transactions (identified by the object)
Search type: The total number of table rows (returned by the base search in the
object)

Pivot tables are defined by you using Splunk pivot elements, which are of four basic
pivot element categories: Filters, Split Rows, Split Columns, and Column Values.

Only two pivot elements will be defined when you start: a filter element (always set to
All time) and a column values element (always set to Count_of, which is based on the
object type of your selected object, as shown in the following screenshot:).

Using the editor, you can add, define, and remove multiple pivot elements from each
pivot element category to define your pivot table:

Filters: To reduce the result count for the object
Split rows: To split out the pivot results by rows
Split columns: To break up field values by columns
Column values: To show aggregate results such as counts, sums, and averages

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Working with pivot elements
Within the Pivot Editor, all pivot element categories can be managed in the same way:

Click on the + icon to open up the element dialog, where you choose an attribute,
and then define how the element uses that attribute
Click on the pencil icon on the element to open the element dialog and edit how a
pivot element is defined
Drag and drop elements within its pivot element category to reorder them
Drag and drop the elements between pivot element categories to transfer the
element to the desired pivot category (there are some restrictions on what can and
cannot be transferred by drag and drop)
Click on the pencil icon on the element to open the element dialog and click on
Remove to remove the element (or you can click on the element and shake it up and
down until it turns red, then drop it—my favorite method)

The management of the pivot elements is done using the pivot element dialog. The
element dialog is broken up into two steps: Choose (or change) the element, and
configure the element (configuration). Let's look at each category.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Filtering pivots
Splunk Pivots can be filtered using filter elements.

Splunk supports three kinds of filter elements for use with pivots. It's important to
understand each and they are explained as follows:

Time: Always present and cannot be removed. Time defines the time range for
which your pivot will return results.
Match: Enables the ability to set up matching for strings, numbers, timestamps,
Booleans, and IPv4 addresses (although currently only as AND, not OR, matches).
Limit: Enables you to restrict the number of results returned by your pivot.

Configuration options for the match and limit filter elements depend on the type of attribute that
you've chosen for the element.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Split (row or column)
The Splunk configuration options that are available for split (row and column) depend
on the type of attribute you choose for them.

Some split configuration options are specific to either row or column elements while others are
available for either element type.

Those configuration options, regardless of attribute type, are:

Both split row and split column:
Max rows and max columns: This is the maximum number of rows or
columns that can appear in the results table
Totals: Indicates whether to include a row or column that represents the total
of all the others in an attribute called ALL

Only split row elements:
Label: Is used to override the attribute name with a different text or character
string
Sort: Used to reorder the split rows

Only split column:
Group Others: Indicates whether to group any results excluded by the max
columns limit into a separate OTHER column

Configuration options dependent upon attribute type are:

String attributes:
There are no configuration options specific to string attributes that are
common to both split row and split column elements

Numeric attributes:
Create ranges: Indicates whether you want your numeric values represented
as ranges (yes) or listed separately (no)

Boolean attributes:
You can provide alternate labels for true and false values

Timestamp attributes:
Period: Use this to bucket your timestamp results by year, month, day, hour,
minute, or second

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Column values
You will find a column value element providing the total results returned by a selected
object over all time. You have the option to keep this element, change its label, or
remove it. In addition, you can add new column value elements such as:

List distinct values
First/last value
Count/distinct count
Sum
Average
Max/min
Standard deviation
List distinct values
Duration
Earliest/latest

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Pivot table formatting
You can format the results of your pivot in many ways. You can set the number of results
displayed per page (10, 20, or 50) by using the pagination dropdown.

If you use Format dropdown, you can even control table wrapping and the display of
row numbers, and determine drill-down and data overlay behavior. Pivot table drill-
down is set to cell mode by default and works similar to Splunk table drill-down
(discussed earlier in this chapter).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

A quick example
Let's try a quick example. Once we have selected a data model (in our case, Aviation
Games), from the Select a Dataset page, we can choose Processing Errors, which will
land us on the New Pivot (Pivot Editor):

To build a simple pivot, we can do the following quick steps:

1. Add/Verify the filters:

Remember, All time is the default; this will include all results found over all
time. You can click on the pencil and amend this filter to be based upon any of
Splunk's Presets or a specific Date Range:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

For this example, we'll just leave the default selection.

2. Configure the Split Rows.

Directly under Filters is Split Rows. For Split Rows, I've selected date_month:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

3. After making the selection, you are able to provide additional settings for the
selected row:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

I've provided a new name (Label) for the row (my_Month) and left the defaults for
Sort, Max Rows (to display), and Totals.

4. Configure the Split Columns.

Moving to the upper-right side of the Pivot page, we have Split Columns. For
Split Columns, I've selected date_mday:

Once you select date_mday, you are given the opportunity to set some additional
values:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We'll leave the defaults again and click on the button labelled Add To Table.

5. Configure the Column Values. Finally, for the Column Values, (by clicking on the
pencil) you can see that Splunk defaulted to providing a count (of processing
errors) found in the indexed data (shown in the following screenshot). You can
click on the button labeled Update:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

6. View the results of our sample pivot in the following screenshot:

From here, you have the option to Clear the Pivot (and start over), or click on
Save As and save the pivot as a Splunk report or as a dashboard panel for later
use.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Sparklines
Growing in popularity as a data visualization option, sparklines are inline charts that
represent the general shape of a variation (typically over time) in some measurement
(such as miles per gallon or home value), in a simple and highly condensed way. Splunk
provides you the ability to add sparklines to stats and chart searches, improving their
usefulness and overall information density.

Let's look at a simple Splunk search example like the following:

sourcetype=csv "0001" "USD" | chart AVG(Jan) by PERIOD

It creates the following results table:

As you can see, the preceding example of search generates a table that shows average
amounts by the field PERIOD—just two columns.

If you add the keyword sparkline to the search pipeline, you can have Splunk include
sparklines with the results:

The sparklines feature is always used in conjunction with chart and stats because it is a function
(of those two search commands) and not a command by itself.
sourcetype=csv "0001" "USD" | chart sparkline AVG(Jan) by PERIOD

If we run this Splunk search, it generates a table similar to the previous one, except that
now for each row you have a sparkline chart:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Here is an additional example—using sparklines to view the variations of an amount
(the rounded value of Jan) by COMPANY:

sourcetype=csv "0001" "USD" | eval RJan= round(Jan) | chart
 sparkline Sum(RJan) by COMPANY

The results are shown in the following screenshot:

Now you can more easily see patterns in the data that may have been unseen before.

The Splunk sparkline displays information in relation to the events represented in that sparkline
but not in relation to other sparklines.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Summary
In this chapter, we introduced and provided a definition of Splunk's data models, pivots
(along with pivot elements and filters) as well as sparklines. By going through the given
simple examples, the reader has hopefully grasped the power of these features.

Although Splunk has always performed well, version 7.0 added optimizations to its
core modules, which has led to speed up improvement to 20 times against accelerated
log data (tstats), and speed up improvement to 200 times against non-accelerated log or
event data when querying metrics. There is also considerably less usage of resources
with real-time metrics queries. Although these improvements may depend upon specific
environments, you should expect to see a visible improvement in your use.

In the next chapter, we will cover simple XML dashboards; their purpose; using wizards
to build, schedule the generation of, and edit XML directly; and building forms.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Simple XML Dashboards
Dashboards are a way for you to capture, group, and automate tables and charts into
useful and informative views.

In this chapter, we will quickly cover the wizards provided in Splunk 7.0 and then dig
into the underlying XML. With XML, you can easily build interactive forms, further
customize panels, and use the same query for multiple panels, among other things.

XML—an industry-standard meta language—is a powerful tool. It is suggested that the reader
have some knowledge of its fundamentals. A variety of sources are currently available other than
this book.

We will also cover how and when to schedule the generation of dashboards to reduce
both the wait time for users and the load on the server. This chapter will cover the
following topics:

The purpose of dashboards
Using wizards to build dashboards
Scheduling the generation of dashboards
Editing the XML directly
UI examples app
Building forms

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The purpose of dashboards
Any search, table, or chart that you create can be saved and made to appear in menus for
other users to see. With that power, why would you bother creating a dashboard?

Here are a few reasons:

A dashboard can contain multiple panels, each running a different query.
Every dashboard has a unique URL, which is easy to share.
Dashboards are more customizable than an individual query.
The search bar is removed, making it less intimidating to many users.
Forms allow you to present the user with a custom search interface that only
requires specific values.
Dashboards look great. Many organizations place dashboards on projectors and
monitors for at-a-glance information about their environment.
Dashboards can be scheduled for PDF delivery by email. This feature is not the
most robust, but, with some consideration, it can be used effectively. With all that
said, if a saved search is working well the way it is, there is no strong reason to
turn it into a dashboard.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using wizards to build dashboards
Since the goal of this chapter is understanding Splunk dashboards (and not the
fundamentals of searching), we'll utilize several new simple search strings as well as
some of the queries from previous chapters to illustrate certain points. So, let's start by
making an operational dashboard for showing Forecast Events within our indexed data.
The following is a simple search string to begin our exercise:

sourcetype="*" Forecast | timechart count as "Forecast Events" by
 date_month

This is shown in the following screenshot:

In addition to our search string, I've selected Previous Year from the Splunk presets (see
the preceding screenshot).

This will produce a graph like this one:

To add this to a dashboard, we can perform the following steps:

1. Click on Save As and then choose Dashboard Panel:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

2. This opens a dialog that guides you through saving the query as a dashboard:

3. Enter the following details and click on the Save button:
Dashboard-New/Existing: This allows you to indicate whether your search is
to be saved as part of an existing dashboard or as a new one. In our example,

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

I've selected New.
Dashboard Title: Simply provide a title for your dashboard to display.
Dashboard ID: This is the Splunk dashboard ID, which defaults to whatever
you have entered for your title, with special characters (such as spaces)
replaced.
Dashboard Description: This is where you can provide a short note about
what your dashboard does.
Dashboard Permissions: Select whether your dashboard will be private (not
accessible to other users) or shared within an app.
Panel Title: This is a sort of subtitle, which means that it will be the
title/caption displayed for the dashboard panel (where your search runs).
Panel Powered By: This is set by Splunk. Our example is powered by an
inline search string.
Panel Content: This is where you indicate a format for the search results.

4. You should now receive the following message:

Your new dashboard is ready to use. It is that simple.

As you create more dashboards, you will end up creating a lot of searches. A naming
convention will help you keep track of which search belongs to which dashboard. Here
is one possible approach:

Dashboard - [dashboard name] - [search name and panel type]

When the number of dashboards and searches becomes large, apps can be used to group
dashboards and searches together, providing yet another way to organize and share
assets.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

After saving our dashboard, it will be available under the Dashboards menu (see the
following screenshot):

On the Dashboards page, if we click on our dashboard name (Forecast Events), Splunk
displays our single panel dashboard:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Adding another panel
Perhaps we would like to add a second panel to our dashboard. To do that, we can open
the dashboard and click on Edit:

In version 7.0, clicking on Edit opens the Edit Dashboard page:

Splunk now gives us the following selections (where we will—for now—select Add
Panel):

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The following options are displayed:

Here, we have the ability to add a new panel to our dashboard from a variety of
sources:

New: Creates one from scratch
New from Report: Creates a panel from an existing report
Clone from Dashboard: Creates a panel from an existing dashboard
Add Prebuilt Panel: As the name says, it adds a prebuilt panel to our dashboard

So, for our example, let's select New:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Again, various options are displayed. For illustrative purposes, let's select Pie Chart
and fill in the New Pie Chart options (shown in the following screenshot). I simply
plugged in the original time preset (Previous year), added a Content Title, and provided
the same search string. The idea here is to present the same information as our initial
dashboard panel but in a different format:

Next, click on the button labeled Add to Dashboard:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The preceding screenshot is what our new, two-panel dashboard looks like. To be sure,
the pie chart isn't very interesting, so let's make a change. You'll notice four icons in the
upper-right corner of the lower panel. If you click on one second icon from the left
(which looks like a tiny pie chart), you'll see that you have the option of changing the
visualization type, and that Splunk has looked at your data and made some
recommendations.

You can try out the different choices; I selected an Area:

Note that, in version 7.0, the visualization selector is more type more sophisticated, as
shown in the following screenshot:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

A cool trick
By default, each new panel is added to the bottom of the dashboard as you see in the
preceding screenshot. You can rearrange your dashboard panels anyway you like;
typically, page space allows you to have up to three panels distributed horizontally (but
you are not limited to three), which is a great way to show visualizations. If you click on
the upper border of your panel, you can drag panels around the page, like so:

Let's get back to those four icons on our dashboard panels:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Let's click on the first (leftmost) icon that looks like a magnifying glass. Now, in version
7.0, the Edit Search screen appears:

In our dashboard example, our panels use INLINE SEARCH as the base query. An
inline search string lets us build a query directly within our dashboard. This is often
convenient as many searches will have no purpose but for a particular dashboard, so
there is no reason for these searches to appear in the Splunk menus. This also reduces
external dependencies, making it easier to move the dashboard to another app.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

In the preceding Edit Search screen, the edit options include: the search string, the time
range, auto-refresh settings, and the refresh indicator. In addition, you can click
on Convert to Report to convert your panel to a Splunk report. Using these options, you
can modify your dashboard panel any way you like.

In version 7.0, to remove (delete) a panel from the dashboard and start again, you use
the small cross (x) icon in the upper right of the panel.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Converting the panel to a report
You may want to convert your dashboard panel (that is powered by an inline search) to
a Splunk report, so that it can have some of the advantages that report-based panels have
over inline-search-powered panels, such as faster loading times due to report
acceleration.

In the following screenshot, I have clicked on Convert to Report and added a Report
Title and Description on the Convert to Report dialog:

Now our dashboard panel is based on a Splunk report:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Did you notice how our magnifying icon has changed? It is no longer the Search Report
icon. Let's click on it:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We see Prior Year Forecasting Events (which is what we named the report) and get a
confirmation:

Of course, as you can see, Splunk allows us more options for our dashboard panel, such
as: View, Open in Search, Clone (back) to an Inline Search, Select a New Report, and
Use Report's Formatting for this Content. Perhaps a favorite is View, which opens the
panel as a full-featured Splunk report:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Moving on, we've already touched on the middle icon (when we switched the formatting
of our panel from pie to area). So, we'll briefly mention here that in addition to
reformatting your panel, you have the ability to click on View Events, which will list the
raw events in your panel similar to what you see if you run your original search string:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Moving on to the third icon, the one that resembles a paint brush, we see additional
options for our panel (formatting options that will be based upon the selected panel's
format). For example, our left dashboard panel is formatted as a statistical table, so the
following options are selectable:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

You can experiment with the various selections (they are applied dynamically) until you
arrive at what you are happy with, then click on the icon again.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

More options
Also on your panel, in the upper-right corner, you will find an icon resembling a gear
(see the next screenshot). Clicking on this icon allows you to convert it to a prebuilt
panel, or back to an INLINE PANEL:

Maybe this is not so obvious; what does Convert to Prebuilt Panel mean? Well, so far,
our panel has been an inline panel—one that you can edit with the Splunk dashboard
editor and Panel Editor (you can also edit the child elements of a panel element by
editing the simple XML source code; more on this later in this chapter). A prebuilt panel
is a panel that is a simple XML code that can be shared between various dashboards.
You cannot edit the title, search, or visualizations of a prebuilt panel from the dashboard
reference.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Back to the dashboard
Our dashboard menu (changed slightly in version 7.0) includes selections in the upper-
left corner, as shown in the following screenshot. We have already explored the first
(Add Panel) in this chapter. Let's now move on to Add Input (we'll go over UI and
Source a bit later on):

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Add input
Adding an input to your dashboard will convert it to a form. All dashboards are actually
made up of XML code (we touched a bit on this earlier when we introduced prebuilt
panels). In the next section (Edit Source), we will dive deeper into this topic but, for
now, understand that the dashboard that we have created is made up of or defined by the
XML which Splunk is using, and adding any type of input will modify the underlying
XML (in fact, after adding any input, the XML tag <dashboard> is changed to <form>).

Once you click on Add Input, you can select an input type from the list shown in the
following screenshot:

For example, you can select Text to add a text field for user input. You can have more
than just input on your dashboard, and you can drag inputs to rearrange them on your
form (dashboard). You can even drag an input onto a panel within your dashboard and
make that input apply only to the panel. Once you are happy with your inputs, you can
click on Done to indicate that you have finished editing. We will go into this in more
detail later in this chapter, in the section on building forms.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Editing source
Finally, let's go on to our third option, Source. As I have already mentioned, all Splunk
dashboards are defined by XML. If you don't have experience with XML, you can
create, edit, and maintain dashboards using the dashboard editor (similar to what we've
been doing with our examples). However, by using XML, Splunk gives us the ability to
create dashboards as complex and robust as we need them to be.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Edit UI
Lastly, clicking back on the UI puts you back in the mode to edit the user interface
(rather than the source code as described in the previous section).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Editing XML directly
Before proceeding, let me take a moment to tip my hat to Splunk for its dashboard
editor. There are only a couple of reasons why you would still need to edit simplified
XML dashboards: to edit forms and post-processing data. I predict that these reasons
will go away in the future, as more features are added to the dashboard editor.

The documentation for simplified XML panels can be found by searching http://www.splun
k.com/ for panel reference for simple XML. The following link is a good place to start:

http://docs.splunk.com/Documentation/Splunk/latest/Viz/PanelreferenceforSimplifiedXML

||||||||||||||||||||

||||||||||||||||||||

http://www.splunk.com/
http://docs.splunk.com/Documentation/Splunk/latest/Viz/PanelreferenceforSimplifiedXML
https://technet24.ir
https://technet24.ir

UI examples app
Before digging into the XML behind dashboards, it may be a good idea to install the app
Splunk UI examples app for 4.1+, available at Splunkbase (see Chapter 8, Working with
Apps, for information about Splunkbase). The examples provided in this app give a
good overview of the features available in both simplified XML and advanced XML
dashboards.

The simplest way to find this app is from the default Splunk home screen by clicking on
Splunk Apps.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Building forms
Forms allow you to make a template that needs one or more pieces of information
supplied to run. You can build these directly using raw XML, but I find it simpler to
build a simple dashboard and then modify the XML accordingly. The other option is to
copy an existing dashboard and modify it to meet your needs. We will touch on a simple
use case in the following section.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Creating a form from a dashboard
First, let's think of a use case that we might be able to use with our previous example.
How about a form that tells us about the forecast events for a particular year? Let's start
with our previous search example:

sourcetype="*" Forecast | timechart count as "Forecast Events" by
 date_month

Since we have already created a dashboard from this query earlier in this chapter, let's
look at the XML for our dashboard. As we did earlier, click on Source (on the
dashboard editor). The XML for our dashboard looks like the following code. Notice
the occurrence of two <panel> tags within our XML, indicating that there are two panels
in our dashboard:

<dashboard>
 <label>Forecast Events</label>
 <description>This is my wonderful save as dashboard example.</description>
 <row>
 <panel>
 <table>
 <title>Forecast Events From Previous Year</title>
 <search>
 <query>sourcetype="*" Forecast | timechart count as "Forecast Events" by date_month</query>
 <earliest>-1y@y</earliest>
 <latest>@y</latest>
 </search>
 </table>
 </panel>
 <panel>
 <chart>
 <title>Prior Year Forecasting Events</title>
 <search ref="Prior Year Forecasting Events"></search>
 <option name="list.drilldown">full</option>
 <option name="list.wrap">1</option>
 <option name="maxLines">5</option>
 <option name="raw.drilldown">full</option>
 <option name="rowNumbers">0</option>
 <option name="table.drilldown">all</option>
 <option name="table.wrap">1</option>
 <option name="type">list</option>
 <fields>["host","source","sourcetype"]</fields>
 <option name="charting.axisLabelsX.majorLabelStyle.overflowMode">ellipsisNone</option>
 <option name="charting.axisLabelsX.majorLabelStyle.rotation">0</option>
 <option name="charting.axisTitleX.visibility">visible</option>
 <option name="charting.axisTitleY.visibility">visible</option>
 <option name="charting.axisTitleY2.visibility">visible</option>
 <option name="charting.axisX.scale">linear</option>
 <option name="charting.axisY.scale">linear</option>
 <option name="charting.axisY2.enabled">false</option>
 <option name="charting.axisY2.scale">inherit</option>

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 <option name="charting.chart">line</option>
 <option name="charting.chart.bubbleMaximumSize">50</option>
 <option name="charting.chart.bubbleMinimumSize">10</option>
 <option name="charting.chart.bubbleSizeBy">area</option>
 <option name="charting.chart.nullValueMode">gaps</option>
 <option name="charting.chart.sliceCollapsingThreshold">0.01</option>
 <option name="charting.chart.stackMode">default</option>
 <option name="charting.chart.style">shiny</option>
 <option name="charting.drilldown">all</option>
 <option name="charting.layout.splitSeries">0</option>
 <option name="charting.legend.labelStyle.overflowMode">ellipsisMiddle</option>
 <option name="charting.legend.placement">right</option>
 </chart>
 </panel>
 </row>
</dashboard>

That's pretty simple. To convert our dashboard into a form, we have to do the following
things.

First, we change <dashboard> to <form> within our XML. Don't forget the closing tag
</dashboard> to </form>. Next, we create a <fieldset> tag with any form elements.

It can be something like this:

<form>
<label>Chapter 5 Build a Form 1</label>
<fieldset>
<input type="text" token="myyear">
<label>MyYear</label>
</input>
</fieldset>

Now we add the appropriate variable in <query> to reflect the form values:

<query>sourcetype="*" Forecast date_year=$myyear$ | timechart
 count as "Forecast Events" by date_month</query>

When we're through, our XML looks like this:

<form>
 <label>Forecast Events</label>
 <description>This is my wonderful save as dashboard example.</description>
 <label>Chapter 5 Build a Form 1</label>
<fieldset>
<input type="text" token="myyear">
<label>MyYear</label>
</input>
</fieldset>
 <row>
 <panel>
 <table>
 <title>Forecast Events From Previous Yeaar</title>
 <search>
 <query>sourcetype="*" Forecast date_year=$myyear$ | timechart count as "Forecast Events" by date_month</query>

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

 <earliest>-1y@y</earliest>
 <latest>@y</latest>
 </search>
 </table>
 </panel>
 <panel>
 <chart>
 <title>Prior Year Forecasting Events</title>
 <search ref="Prior Year Forecasting Events"></search>
 <option name="list.drilldown">full</option>
 <option name="list.wrap">1</option>
 <option name="maxLines">5</option>
 <option name="raw.drilldown">full</option>
 <option name="rowNumbers">0</option>
 <option name="table.drilldown">all</option>
 <option name="table.wrap">1</option>
 <option name="type">list</option>
 <fields>["host","source","sourcetype"]</fields>
 <option name="charting.axisLabelsX.majorLabelStyle.overflowMode">ellipsisNone</option>
 <option name="charting.axisLabelsX.majorLabelStyle.rotation">0</option>
 <option name="charting.axisTitleX.visibility">visible</option>
 <option name="charting.axisTitleY.visibility">visible</option>
 <option name="charting.axisTitleY2.visibility">visible</option>
 <option name="charting.axisX.scale">linear</option>
 <option name="charting.axisY.scale">linear</option>
 <option name="charting.axisY2.enabled">false</option>
 <option name="charting.axisY2.scale">inherit</option>
 <option name="charting.chart">line</option>
 <option name="charting.chart.bubbleMaximumSize">50</option>
 <option name="charting.chart.bubbleMinimumSize">10</option>
 <option name="charting.chart.bubbleSizeBy">area</option>
 <option name="charting.chart.nullValueMode">gaps</option>
 <option name="charting.chart.sliceCollapsingThreshold">0.01</option>
 <option name="charting.chart.stackMode">default</option>
 <option name="charting.chart.style">shiny</option>
 <option name="charting.drilldown">all</option>
 <option name="charting.layout.splitSeries">0</option>
 <option name="charting.legend.labelStyle.overflowMode">ellipsisMiddle</option>
 <option name="charting.legend.placement">right</option>
 </chart>
 </panel>
 </row>
</form>

Let's click on Save and then search for Forecast Events that occurred in a particular
year. Now, looking at our example dashboard, we notice our input field MyYear and a
Submit button at the top of the panel along with a Search is waiting for input... message:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

We now have a useful form for displaying the forecast events for a particular year.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Driving multiple panels from one form
A single form can also be used to drive multiple panels at once. Earlier, we had our
dashboard with two panels, one of which we converted into a report. Let's revisit the
dashboard in that state for a moment. If we want to (and this would probably make the
most sense), we can again edit the XML source for the dashboard and this time convert
all the searches, as we did in the previous example, to use our form field:

<form>
 <label>Forecast Events</label>
 <description>This is my wonderful save as dashboard example.</description>
 <fieldset>
 <input type="text" token="myyear">
 <label>MyYear</label>
 </input>
 </fieldset>
 <row>
 <panel>
 <table>
 <title>Forecast Events From Previous Yeaar</title>
 <search>
 <query>sourcetype="*" Forecast date_year=$myyear$ | timechart count as "Forecast Events" by date_month</query>
 <earliest>-1y@y</earliest>
 <latest>@y</latest>
 </search>
 </table>
 </panel>
 </row>
 <row>
 <panel>
 <chart>
 <title>Forecast Events From Previous Yeaar</title>
 <search>
 <query>sourcetype="*" Forecast date_year=$myyear$ | timechart count as "Forecast Events" by date_month</query>
 <earliest>-1y@y</earliest>
 <latest>@y</latest>
 </search>
 <option name="wrap">true</option>
 <option name="rowNumbers">true</option>
 <option name="dataOverlayMode">none</option>
 <option name="count">10</option>
 <option name="charting.axisLabelsX.majorLabelStyle.overflowMode">ellipsisNone</option>
 <option name="charting.axisLabelsX.majorLabelStyle.rotation">0</option>
 <option name="charting.axisTitleX.visibility">visible</option>
 <option name="charting.axisTitleY.visibility">visible</option>
 <option name="charting.axisTitleY2.visibility">visible</option>
 <option name="charting.axisX.scale">linear</option>
 <option name="charting.axisY.scale">linear</option>
 <option name="charting.axisY2.enabled">false</option>
 <option name="charting.axisY2.scale">inherit</option>
 <option name="charting.chart">area</option>
 <option name="charting.chart.bubbleMaximumSize">50</option>
 <option name="charting.chart.bubbleMinimumSize">10</option>

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 <option name="charting.chart.bubbleSizeBy">area</option>
 <option name="charting.chart.nullValueMode">gaps</option>
 <option name="charting.chart.sliceCollapsingThreshold">0.01</option>
 <option name="charting.chart.stackMode">default</option>
 <option name="charting.chart.style">shiny</option>
 <option name="charting.drilldown">all</option>
 <option name="charting.layout.splitSeries">0</option>
 <option name="charting.legend.labelStyle.overflowMode">ellipsisMiddle</option>
 <option name="charting.legend.placement">right</option>
 </chart>
 </panel>
 </row>
</form>

After clicking on Save, we should be back at the dashboard; it is now a form with our
field, which drives both the dashboard panels.

In the following screenshot, I've repositioned the panels horizontally for a better view.

There are several other form elements available, with many options to customize their
behavior. To find the official documentation, search on http://www.splunk.com/ for build and
edit forms with simple XML. There are also many useful examples in the documentation
and in the UI examples app (see the UI examples app section earlier in this chapter).

||||||||||||||||||||

||||||||||||||||||||

http://www.splunk.com/
https://technet24.ir
https://technet24.ir

Post-processing search results
You may have noticed that, in our previous example, both of our queries started with the
same actual query:

sourcetype="*" Forecast date_year=$myyear$ | timechart count as
 "Forecast Events" by date_month

It is, of course, wasteful to run the same query four times. In prior versions of Splunk,
using <searchPostProcess>, we can run the query once and then run commands on the results
for each panel. The first step would be to move the initial query out of the panel to the
top level of the XML.

The results from <searchTemplate> would be used by a panel if it has no query of its own,
or it will be used as the source for <searchPostProcess>. One additional piece of
information is needed: the fields that are needed by the panels. We can get this by using
table, like so:

<?xml version='1.0' encoding='utf-8'?>
<form>
<searchTemplate>
sourcetype="*" Forecast date_year=$myyear$ | timechart count as "Forecast Events" by date_month
</searchTemplate>

This technique will work exactly like our previous example but will only run the query
once, drawing more quickly and saving resources for everyone. However, more work is
required, as we'll see in the next section.

Another approach for limiting the number of times a query would run is to use a <search>
tag with an id in the attribute, then just reference the id elsewhere using the base
attribute.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Post-processing limitations
When using <searchPostProcess>, there is one big limitation and there are several smaller
limitations that often require a little extra work:

Only the first 10,000 results are passed from a raw query. To deal with this, it is
necessary to run events through stats, timechart, or table. Transforming commands
such as stats will reduce the number of rows produced by the initial query,
increasing the performance.
Only specifically referenced fields are passed from the original events. This can
be dealt with by using table (as we did in the previous example), or by aggregating
results into fewer rows with stats.

The first limitation is the most common item to affect users. The usual solution is to pre-
aggregate the events into a superset of what is needed by the panels. To accomplish this,
our first task would be to look at the queries and figure out which fields need to be
handed along for all queries to work, and so on.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Features replaced
Moving along, in Splunk, the simple XML <searchString>, <searchTemplate>, <searchName>, and
<searchPostProcess> elements were replaced by the new <search> element.

The following is a two-panel dashboard using the <search> tag and the stats command in
version 6.2 to deal with post-processing limitations. First, the query (the search) is
defined at the dashboard level (not within any panel). This is our base search (notice the
search ID):

<dashboard>
 <label>Dashboard with post-process search</label>
 <!-- Base search cannot pass more than 10,000 events to post-process searches-->
 <!-- This dashboard uses the stats transforming command -->
 <!-- This limits events passed to post-process search -->
 <search id="baseSearch">
 <query>sourcetype=tm1* dimension | stats count by date_month, date_wday</query>
 </search>
 </dashboard>

Now, within our dashboard panels, the search base is defined along with our additional
search strings:

 <panel>
 <chart>
 <title>Dimension Events count by Month</title>
 <search base="baseSearch">
 <query>stats sum(count) AS count by date_month</query>
 </search>
 <!-- post-process search -->
 <option name="charting.axisLabelsX.majorLabelStyle.overflowMode">ellipsisNone</option>
 <option name="charting.axisLabelsX.majorLabelStyle.rotation">0</option>
 <option name="charting.axisTitleX.visibility">visible</option>
 <option name="charting.axisTitleY.visibility">visible</option>
 <option name="charting.axisTitleY2.visibility">visible</option>
 <option name="charting.axisX.scale">linear</option>
 <option name="charting.axisY.scale">linear</option>
 <option name="charting.axisY2.enabled">false</option>
 <option name="charting.axisY2.scale">inherit</option>
 <option name="charting.chart">column</option>
 <option name="charting.chart.bubbleMaximumSize">50</option>
 <option name="charting.chart.bubbleMinimumSize">10</option>
 <option name="charting.chart.bubbleSizeBy">area</option>
 <option name="charting.chart.nullValueMode">gaps</option>
 <option name="charting.chart.sliceCollapsingThreshold">0.01</option>
 <option name="charting.chart.stackMode">default</option>
 <option name="charting.chart.style">shiny</option>
 <option name="charting.drilldown">all</option>
 <option name="charting.layout.splitSeries">0</option>
 <option name="charting.legend.labelStyle.overflowMode">ellipsisMiddle</option>
 <option name="charting.legend.placement">right</option>

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 </chart>
 </panel>
 <panel>
 <chart>
 <title>Dimension Events count by Day</title>
 <search base="baseSearch">
 <query>stats sum(count) AS count by date_wday</query>
 </search>
 <!-- post-process search -->
 <option name="charting.chart">pie</option>
 <option name="charting.axisLabelsX.majorLabelStyle.overflowMode">ellipsisNone</option>
 <option name="charting.axisLabelsX.majorLabelStyle.rotation">0</option>
 <option name="charting.axisTitleX.visibility">visible</option>
 <option name="charting.axisTitleY.visibility">visible</option>
 <option name="charting.axisTitleY2.visibility">visible</option>
 <option name="charting.axisX.scale">linear</option>
 <option name="charting.axisY.scale">linear</option>
 <option name="charting.axisY2.enabled">false</option>
 <option name="charting.axisY2.scale">inherit</option>
 <option name="charting.chart.bubbleMaximumSize">50</option>
 <option name="charting.chart.bubbleMinimumSize">10</option>
 <option name="charting.chart.bubbleSizeBy">area</option>
 <option name="charting.chart.nullValueMode">gaps</option>
 <option name="charting.chart.sliceCollapsingThreshold">0.01</option>
 <option name="charting.chart.stackMode">default</option>
 <option name="charting.chart.style">shiny</option>
 <option name="charting.drilldown">all</option>
 <option name="charting.layout.splitSeries">0</option>
 <option name="charting.legend.labelStyle.overflowMode">ellipsisMiddle</option>
 <option name="charting.legend.placement">right</option>
 <option name="wrap">true</option>
 <option name="rowNumbers">false</option>
 <option name="dataOverlayMode">none</option>
 <option name="count">10</option>
 <option name="mapping.data.maxClusters">100</option>
 <option name="mapping.map.center">(0,0)</option>
 <option name="mapping.map.zoom">2</option>
 <option name="mapping.markerLayer.markerMaxSize">50</option>
 <option name="mapping.markerLayer.markerMinSize">10</option>
 <option name="mapping.markerLayer.markerOpacity">0.8</option>
 <option name="mapping.tileLayer.maxZoom">7</option>
 <option name="mapping.tileLayer.minZoom">0</option>
 </chart>
 </panel>
 </row>
</dashboard>

The following is the dashboard generated by the preceding XML source:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Autorun dashboard
One more important option for your dashboards is the Autorun setting. Prior versions of
Splunk included a checkbox on the edit dashboard page, as is seen in the following
screenshot:

In version 7.0 and newer, Autorun is set within the dashboard source. When you add
fields to submit values (for the search string in a panel, as we did in our example), the
Autorun setting indicates whether the search in the panels of your dashboard should be
run upon loading the page. The default is false. This means that the dashboard will load
and wait for the user to enter or select a value and click on Submit. Suppose, you'd
rather load your dashboard and show data right away using some default or standard
value. To do that, we can modify our XML like this:

<fieldset autoRun="true">
 <input type="text" token="myyear"><default>2014</default>
 <label>MyYear</label>
 </input>
 </fieldset>

In the preceding code, I've added the Autorun setting to the <fieldset> tag and provided
the <default>. When I save my changes, the dashboard will execute (run) the search using
the default value (2014) and my dashboard panels will display the results. Of course, the
user still has the ability to change the search value and resubmit the query.

Depending upon a variety of factors, this convenience may or may not be a viable option
as it would be foolish to rerun a search every time a dashboard loads if the underlying
data is slow to change. In that case, a better option would be to set Autorun to false and
perhaps use scheduled searches, which we will discuss in the next section.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Scheduling the generation of dashboards
As we stepped through the wizard interface to create panels, we accepted the default
value of running the search each time the dashboard loads. As we mentioned earlier, this
means that the user is penalized each and every time the dashboard is loaded in their
web browser. It is silly (and a waste of resources) to rerun what may be multiple
searches that are within a dashboard panel if the data that the search is based upon does
not change very often. For example, if the indexed data is updated every evening, then
rerunning a search on that data multiple times within the same day will not yield
different results and would be a waste of resources.

A more prudent approach would be to convert the dashboard panels to not use inline,
executed-at-load-time searches but reference reports instead (earlier in this chapter, we
covered Convert to Report), or make it use scheduled queries.

If we use reports or scheduled queries in our dashboard, when the dashboard is loaded,
the results from the last scheduled run will be used.

The dashboard will draw as quickly as the browser can draw the panels. This is
particularly useful when multiple users use a dashboard, perhaps in an operations
group. If there are no saved results available, the query will simply be run normally.

Be sure to ask yourself just how fresh the data on a dashboard needs to be. If you are
looking at a week's worth of data, is up to 1 hour old data acceptable? What about 4
hours old? 24 hours old? The less often the search is run, the fewer the resources you
will use, and the more responsive the system will be for everyone else. As your data
volume increases, the searches will take more time to complete. If you notice your
installation becoming less responsive, check the performance of your scheduled
searches in the Jobs or the Status dashboards in the Search app.

For a dashboard that will be constantly monitored, real-time queries are probably more
efficient, particularly if multiple people will be using the dashboard. Real-time queries
are first backfilled. For instance, a real-time query watching 24 hours will first run a
query against the previous 24 hours and then add new events to the results as they
appear. This feature makes real-time queries over fairly long periods practical and
useful.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Summary
Once again, we have really only scratched the surface of what is possible when, using
simplified XML dashboards. I encourage you to dig into the examples in the UI
examples app (see the UI examples app section, earlier in this chapter).

When you are ready to make additional customizations or use some of the cool modules
available from Splunk and the community, you can use advanced XML features, which
we will look at in Chapter 9, Building Advanced Dashboards. In Chapter 6, Advanced
Search Examples, we will dive into advanced search examples, which can be a lot of
fun. We'll expose some really powerful features of the search language and go over a
few tricks that I've learned over the years.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Advanced Search Examples
In this chapter, we will work through a few advanced search examples in great detail.
The examples and data shown are fictitious but will hopefully spark some ideas that you
can apply to your own data. For a huge collection of examples and help topics, check
out Splunk Answers at https://answers.splunk.com.

Our chapter flow will be as follows:

Using subsearches to find loosely related events
Using transaction
Determining concurrency
Calculating events per slice of time
Rebuilding top
Acceleration
Version 7.0 advancements in metrics

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://answers.splunk.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

Using subsearches to find loosely related
events
The number of use cases for subsearches in the real world might be small, but for those
situations where they can be applied, subsearches can be a magic bullet. Let's look at an
example and then talk about some rules.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Subsearch
Let's start with these events:

2015-02-10 12:59:59 msgid=704783 from=tuck@companyx.com to=taylor@VENDOR1.com
2015-02-10 12:59:59 msgid=171755 from=steve@companyx.com to=lou@VENDOR1.com
2015-02-10 12:59:59 msgid=668955 from=lou@companyx.com to=steve@Vendor2.com
2015-02-10 12:59:59 msgid=001404 from=mary@companyx.com to=richard@Vendor2.com
2015-02-10 12:59:59 msgid=284794 from=ronnie@companyx.com to=toto@Vendor2.com
2015-02-10 12:59:59 msgid=362127 from=nanette@companyx.com to=sam@Vendor2.com
2015-02-10 12:59:59 msgid=571419 from=paige@companyx.com to=ronnie@g&r.com

From these events, let's find out to whom mary has sent messages. In these events, we see
that the from and to values are in different entries. We can use stats to pull these events
together and then filter the resulting rows, like this:

sourcetype=webmail to OR from
| stats values(from) as from values(to) as to by msgid
| search from=mary@companyx.com

The problem is that on a busy mail server, this search might retrieve millions of events
and then throw most of the work away. We want to actually use the index efficiently, and
a subsearch can help us do that.

This is how we can tackle this with a subsearch:

[search sourcetype=webmail from=mary@companyx.com | fields msgid]
 sourcetype=webmail to

Let's step through everything that's happening here:

1. The search inside the brackets is run:

sourcetype=webmail from=mary@companyx.com

Given my sample events, this will locate several events, as seen in the following
screenshot:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

2. The second part of our search string is as follows:| fields msgid. This instructs the
subsearch to only return the field msgid.

Behind the scenes, the subsearch results are essentially added to the outer search
as an OR statement, producing this search:

((msgid=123456) OR (msgid=234567) .).. And so on
 sourcetype=webmail to

This will be a much more efficient search, using the index effectively.

3. This new search returns the answer we're looking for. Notice the circled msgid
values. They would be the values that Splunk uses in its internal msgid= search:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Subsearch caveats
To prevent a subsearch from being too expensive, (or, in other words, requiring perhaps
unreasonable time or resources to complete) it is limited by a time and event count:

The default time limit for the subsearch to complete is 60 seconds. If the subsearch
is still running at that point, it is finalized and only the events located up to that
point are added to the outer search.
Likewise, the default event limit for the subsearch is 10,000. After this point, any
further events will be truncated. If either of these limits is reached, there is
probably a better way to accomplish the task at hand.

Another consideration is that the fields returned from the subsearch must be searchable.
There is a magical field called search that will be added to the query as a raw search
term, but you have to do a little more work. See search context later in this chapter for
an example.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Nested subsearches
Subsearches can also be nested, if needed. With mail server logs, it is sometimes
necessary to find all the events related to a particular message. Some fictitious log
entries are given, such as:

... in=123 msgid=123456 from=mary@companyx.com

... msgid=123456 out=987 subject=Important

... out=987 to=bob@vendor1.co.uk

We can see that the first event has the value of from, but there is no longer anything in
common with the event that contains the to field. Luckily, there is an interim event that
does contain out along with msgid, which we have in the first event.

We can write a query like this to find our events:

[search sourcetype=WebMailIfoDatas out
[search sourcetype=WebMailIfoDatas from=mary@companyx.com | fields msgid]
| fields out]
sourcetype=WebMailIfoDatas to

The following are the parts of the search, numbered according to the order of execution:

1. [search sourcetype=WebMailIfoDatas from=mary@companyx.com | fields msgid]
2. [search sourcetype=WebMailIfoDatas out | fields out]
3. sourcetype=WebMailIfoDatas to

Let's step through this example:

1. The innermost nested search (1) is run:

sourcetype=WebMailIfoDatas from=mary@companyx.com | fields msgid

2. This is attached to the next innermost search (2), like this:

sourcetype=WebMailIfoDatas out
(msgid=123456)
| fields out

3. The results of this search are attached to the outermost search (3), like this:

(out=987)
sourcetype=WebMailIfoDatas to

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

4. This is the final query, which returns the answer that we are looking for:

... out=987 to=bob@vendor1.co.uk

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using transaction
The transaction command lets you group events based on their proximity to other events.
This proximity is determined either by ranges of time, or by specifying the text
contained in the first and/or last event in a transaction.

This is an expensive process, but is sometimes the best way to group certain events.
Unlike other transforming commands, when using transaction, the original events are
maintained, and are grouped together into multivalued events.

Some rules of thumb for the usage of transaction are as follows:

If the question can be answered using stats (and it often can), it will almost always
be more efficient.
All the events needed for the transaction have to be found in one search.
When grouping is based on field values, and all the events need at least one field in
common with at least one other event, then it can be considered as part of the
transaction. This doesn't mean that every event must have the same field, but that
all events should have some field from the list of fields specified.
When grouping is based solely on startswith and endswith, it is important that
transactions do not interleave in the search results.
Every effort should be made to reduce the number of open transactions, as an
inefficient query can use a lot of resources. This is controlled by limiting the scope
of time with maxspan and maxpause, and/or by using startswith and endswith.

Let's step through a few possible examples of the transaction command in use.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using transaction to determine session
length
Some fictitious events are given as follows. Assuming that this is a busy server, there
might be a huge number of events occurring between requests from this particular
session:

2012-04-27T03:14:31 user=mary GET /foo?q=1 uid=abcdefg
...hundreds of events...
2012-04-27T03:14:46 user=mary GET /bar?q=2 uid=abcdefg
...hundreds of thousands of events...
2012-04-27T06:40:45 user=mary GET /foo?q=3 uid=abcdefg
...hundreds of events...
2012-04-27T06:41:49 user=mary GET /bar?q=4 uid=abcdefg

The definition of huge depends on the infrastructure that you have dedicated to Splunk.
See Chapter 12, Advanced Deployments, for more information about sizing your
installation, or contact Splunk support.

Let's build a query to see the transactions belonging to mary. We will consider a session
complete when there have been no events for 5 minutes:

sourcetype="impl_splunk_web" user=mary | transaction maxpause=5m
 user

Let's step through everything that's happening here:

1. The initial query is run, simply returning all events for the user mary:

sourcetype="impl_splunk_web" user=mary

2. | transaction starts the command.
3. maxpause=5m indicates that any transaction that has not seen an event for 5 minutes

will be closed. In a large dataset, this time frame might be too expensive, leaving a
huge number of transactions open for longer than necessary.

4. user is the field to use for linking events together. If events have different values of
user, a new transaction will start with the new value of user.

Given our events, we will end up with four groupings of events:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Each of these groupings can then be treated as a single event.

A transaction command has some interesting properties, as follows:

The field _time is assigned the value of _time from the first event in the transaction.
The field duration contains the time difference between the first and the last event in
the transaction.
The field eventcount contains the number of events in the transaction (based on how
your environment's knowledge objects are set up).
All fields are merged into unique sets. In this case, the field user would only ever
contain mary, but the field q would contain the values [1,2] and [3,4] respectively.

With these extra fields, we can render a nice table of transactions belonging to mary, like
this:

sourcetype="impl_splunk_web" user=mary
| transaction maxpause=5m user
| table _time duration eventcount q

This will produce a table like this:

Combining transaction with stats or timechart, we can generate the statistics about the
transactions themselves:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

sourcetype="impl_splunk_web" user=mary
| transaction maxpause=5m user
| stats avg(duration) avg(eventcount)

This would give us a table as shown in the following screenshot:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Calculating the aggregate of transaction
statistics
Using the values added by transaction, we can, somewhat naively, answer the questions
of how long users spend on a site and how many pages they view per session.

Let's create sessions based on the uid field for all events. Using stats, we will then
calculate the average duration value and the average eventcount value, and while we're at
it, we will determine the distinct number of users and session IDs:

sourcetype="impl_splunk_web"
| transaction maxpause=5m uid
| stats avg(duration) avg(eventcount) dc(user) dc(uid)

This will give us a table as shown in the following screenshot:

Transactions have an average length of 892 seconds and 227 events.

For large amounts of web traffic, you will want to calculate transactions over small
slices of time into a summary index. We will cover summary indexes in Chapter 10,
Summary Indexes and CSV Files.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Combining subsearches with transaction
Let's put what we learned about subsearches together with transactions. Let's imagine
that q=1 represents a particular entry point into our site, perhaps a link from an
advertisement. We can use subsearch to find users that clicked on the advertisement,
then use transaction to determine how long these users stayed on our site.

To do this, first we need to locate the sessions initiated from this link. The search can be
as simple as:

sourcetype="impl_splunk_web" q=1

This will return events like the following:

In our fictitious logs, the field uid represents a session ID. Let's use stats to return one
row per unique uid:

sourcetype="impl_splunk_web" q=1
| stats count by uid

This will render a table like this (only the first 10 rows are shown):

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We need to add one more command, fields, to limit the fields that come out of our
subsearch:

sourcetype="impl_splunk_web" q=1
| stats count by uid
| fields uid

Now we feed this back into our outer search:

[search
sourcetype="impl_splunk_web" q=1
| stats count by uid
| fields uid
]
sourcetype="impl_splunk_web"

After the subsearch runs, the combined query is essentially as follows:

((uid=MTAyMjQ2OA) OR (uid=MTI2NzEzNg) OR (uid=MTM0MjQ3NA))
sourcetype="impl_splunk_web"

From this combined query, we now have every event from every uid that clicked on a
link that contained q=1 in our time frame. We can now add transaction, as we saw earlier,
to combine these sessions into groups:

[search sourcetype="impl_splunk_web" q=1

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

| stats count by uid
| fields uid]
sourcetype="impl_splunk_web"
| transaction maxpause=5m uid

This gives us a list of transactions (shown in part in the following screenshot):

Notice that not all of our transactions start with q=1. This means that this transaction did
not start when the user clicked on the advertisement. Let's make sure our transactions
start from the desired entry point of q=1:

[search sourcetype="impl_splunk_web" q=1
| stats count by uid
| fields uid]
sourcetype="impl_splunk_web"
| transaction maxpause=5m
startswith="q=1"
uid

The startswith field indicates that a new transaction should start at the time the search
term q=1 is found in an event.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The startswith field works only on the field _raw (the actual event text). In this case,
startswith="q=1" is looking for the literal phrase "q=1", not the field q.

This will cause any occurrence of q=1 to start a new transaction. We still have a few
transactions that do not contain q=1, which we will eliminate next.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

To discard the transactions that do not contain q=1, add a search command:

[search sourcetype="impl_splunk_web" q=1
| stats count by uid
| fields uid]
sourcetype="impl_splunk_web"
| transaction maxpause=5m startswith="q=1" uid
| search q=1

Finally, let's add stats to count the number of transactions, the distinct values of uid, the
average duration of each transaction, and the average number of clicks per transaction:

[search sourcetype="impl_splunk_web" q=1
| stats count by uid
| fields uid]
sourcetype="impl_splunk_web"
| transaction maxpause=5m startswith="q=1" uid
| search q=1
| stats count dc(uid) avg(duration) avg(eventcount)

This gives us a table as shown in the following screenshot:

We can swap timechart with stats to see how these statistics change over time:

[search sourcetype="impl_splunk_web" q=1
| stats count by uid
| fields uid]
sourcetype="impl_splunk_web"
| transaction maxpause=5m startswith="q=1" uid
| search q=1
| timechart bins=500 avg(duration) avg(eventcount)

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Determining concurrency
Determining the number of users currently using a system is difficult, particularly if the
log does not contain events for both the beginning and the end of a transaction. With web
server logs in particular, it is not quite possible to know when a user has left a site.
Let's investigate a couple of strategies for answering this question.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using transaction with concurrency
If the question you are trying to answer is how many transactions were happening at a
time, you can use transaction to combine related events and calculate the duration of each
transaction. We will then use the concurrency command to increase a counter when the
events start and decrease when the time for each transaction has expired. Let's start with
our searches from the previous section:

sourcetype="impl_splunk_web"
| transaction maxpause=5m uid

This will return a transaction for every uid, assuming that if no requests were made for 5
minutes, the session is complete. This provides results as shown in the following
screenshot:

By simply adding the concurrency command, we can determine the overlap of these
transactions and find out how many transactions were occurring at a time. Let's also add
the table and sort commands to create a table:

sourcetype="impl_splunk_web"
| transaction maxpause=5m uid

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

| concurrency duration=duration
| table _time concurrency duration eventcount
| sort _time

This produces a table as follows:

From these results, we can see that as transactions begin, concurrency increases, and
then it levels off as transactions expire. In our sample data, the highest value of
concurrency we see is 6.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using concurrency to estimate server
load
In the previous example, the number of concurrent sessions was quite low since each
transaction is counted as one event no matter how many events make up that transaction.
While this provides an accurate picture of the number of concurrent transactions, it
doesn't necessarily provide a clear picture of the server load.

Looking at the timeline of our events, we see a large spike of events at the beginning of
our log. This did not affect the previous example, because most of these events belong
to a single-user session.

Some web logs provide the time it took to serve a request. Our log does not have this
duration, so we'll use eval to simulate a value for duration per request:

sourcetype="impl_splunk_web"
| eval duration=2
| concurrency duration=duration
| timechart max(concurrency)

Here we have set the duration of each request to 2 seconds (possibly a reasonable time
for an event?). The concurrency command will use the value of duration, treating each event
as if it were a 2-second-long transaction.

The timechart looks like this:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

As we can see in our sample data, the large spike of requests at certain times in our log
translates to high concurrency.

Later in this chapter, we will calculate events per some period of time, which will
provide a very similar answer more efficiently. But it will not be quite the same answer,
as the count will be by fixed slices of time instead of a running total that changes with
each event.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Calculating concurrency with a by clause
One limitation of the concurrency command is that there is no way to simultaneously
calculate the concurrency for multiple sets of data. For instance, what if you wanted to
know the concurrency per host, as opposed to concurrency across your entire
environment?

In our sample set of data, we have only one host, but we have multiple values for the
network field. Let's use that field for our exercise.

Our fake concurrency example from the previous section looks like this:

sourcetype=impl_splunk_gen network="*"
| eval d=2
| concurrency duration=d
| timechart max(concurrency)

First, let's rebuild this search using the streamstats command. This command will
calculate the rolling statistics and attach the calculated values to the events themselves.
To accommodate streamstats, we will need an event representing the start and end of each
transaction. We can accomplish this by creating a multivalued field, essentially an array,
and then duplicate our events based on the values in this field.

First, let's create our end time. Remember that _time is simply the UTC epoch time at
which this event happened, so we can treat it as a number:

sourcetype=impl_splunk_gen network="*"
| eval endtime=_time+2

Piping that through table _time, network and endtime, we see the following:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Next, we want to combine _time and our endtime into a multivalued field, which we will
call t:

sourcetype=impl_splunk_gen network="*"
| eval endtime=_time+2
| eval t=mvappend(_time,endtime)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Piping that through table _time, network, t, we see the following output:

As you can see, we have our actual _time, which Splunk always draws according to the
user's preferences. Then it draws our network value and then the two values for t,
created using mvappend. Now we can expand each event into two events so that we have a
start and end event:

sourcetype=impl_splunk_gen network="*"
| eval endtime=_time+2
| eval t=mvappend(_time,endtime)
| mvexpand t

The mvexpand command replicates each event for each value in the field specified. In our
case, each event will create two events, as t always contains two values. All other

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

fields are copied into the new event. With the addition of table _time, network, t, our
events now look like this:

Now that we have a start and end event, we need to mark the events as such. We will
create a field named increment that we can use to create a running total. Start events will
be positive, while end events will be negative. As the events stream through streamstats,
the positive value will increment our counter, and the negative value will decrement our
counter.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Our start events will have the value of _time replicated in t, so we will use eval to test
this and set the value of increment accordingly. After setting increment, we will reset the
value of _time to the value of t so that our end events appear to have happened in the
future:

sourcetype=impl_splunk_gen network="*"
| eval endtime=_time+2
| eval t=mvappend(_time,endtime)
| mvexpand t
| eval increment=if(_time=t,1,-1)
| eval _time=t

With the addition of the following table _time, network, and increment, this gives us results
as shown in the following screenshot:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The streamstats command expects events to be in the order in which you want to calculate
your statistics. Currently, our fictitious end events are sitting right next to the start
events, but we want to calculate a running total of increment based on the order of _time.

The sort command will take care of this for us. The 0 value before the field list defeats
the default limit of 10,000 rows.

sourcetype=impl_splunk_gen network="*"
| eval endtime=_time+2
| eval t=mvappend(_time,endtime)
| mvexpand t
| eval increment=if(_time=t,1,-1)
| eval _time=t

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

| sort 0 _time network increment

One thing to note at this point is that we have reset several values in this query using
commands. We have changed _time, and now we have changed increment. A field can be
changed as many times as is needed, and the last assignment in the chain wins.

Now that our events are sorted by _time, we are finally ready for streamstats. This
command calculates statistics over a rolling set of events, in the order in which the
events are seen. In combination with our increment field, this command will act just like
concurrency but will keep separate running totals for each of the fields listed after by:

sourcetype=impl_splunk_gen network="*"
| eval endtime=_time+2
| eval t=mvappend(_time,endtime)
| mvexpand t
| eval increment=if(_time=t,1,-1)
| eval _time=t
| sort 0 _time network increment
| streamstats sum(increment) as concurrency by network
| search increment="1"

The last search statement will eliminate our synthetic end events. Piping the results
through the table _time, network, increment, and concurrency, we get the following results:

With the addition of the timechart max(concurrency) by the network, we see something like
the following screenshot:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

While this has been an interesting exercise, in the real world you probably wouldn't
calculate web server utilization in such a manner. The number of events is often quite
large, and the time that each event takes is normally negligible. This approach would be
more interesting for longer running processes, such as batch or database processes.

The more common approach for web logs is to simply count events over time. We'll
look at several ways to accomplish this next.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Calculating events per slice of time
There are a number of ways to calculate events per a specified period of time. All these
techniques rely on rounding _time down to some period of time and then grouping the
results by the rounded buckets of _time.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using timechart
The simplest approach to counting events over time is simply to use timechart, like this:

sourcetype=impl_splunk_gen network=prod
| timechart span=1m count

In the table view, we see the following:

Charts in Splunk do not attempt to show more points than the pixels present on the
screen. The user is, instead, expected to change the number of points to graph, using the
bins or span attributes. Calculating average events per minute or per hour shows another
way of dealing with this behavior.

If we only wanted to know about the minutes that actually had events instead of every
minute of the day, we could use bucket and stats, like this:

sourcetype=impl_splunk_gen network=prod
| bucket span=1m _time
| stats count by _time

The bucket command rounds the _time field of each event down to the minute in which it

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

occurred, which is exactly what timechart does internally. This data will look the same,
but any minutes without events will not be included. Another way to accomplish the
same thing would be as follows:

sourcetype=impl_splunk_gen network=prod
| timechart span=1m count
| where count>0

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Calculating average requests per minute
If we take our previous queries and send the results through stats, we can calculate the
average events per minute, like this:

sourcetype=impl_splunk_gen network=prod
| timechart span=1m count
| stats avg(count) as "Average events per minute"

This gives us exactly one row:

Alternatively, we can use bucket to group events by minute, and stats to count by each
minute that has values, as shown in the following code:

sourcetype=impl_splunk_gen
| bucket span=1m _time
| stats count by _time
| stats avg(count) as "Average events per minute"

We are now presented with a somewhat higher number:

Why? In this case, our fictitious server was down for some time. In our second example,
only minutes that actually had events were included in the results because stats does not
produce an event for every slice of time, as timechart does. To illustrate this difference,
look at the results of two queries:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

sourcetype=impl_splunk_gen
| timechart span=1h count

This query produces the following table:

Let's use bucket and stats, as follows:

sourcetype=impl_splunk_gen
| bucket span=1m _time
| stats count by _time

We get this table as the output:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

In this case, we used a 1 minute (1m) time slot.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Calculating average events per minute,
per hour
One limitation of graphing in Splunk is that only a certain number of events can be
drawn, as there are only so many pixels available to draw. When counting or adding
values over varying periods of time, it can be difficult to know what timescale is being
represented. For example, consider the following query:

earliest=-1h sourcetype=impl_splunk_gen
| timechart count

Splunk will produce this graph for the preceding query:

Each of these bars represents 1 minute. Let's change the time frame to 24 hours:

earliest=-24h sourcetype=impl_splunk_gen
| timechart count

We are presented with this graph:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

There is no indication as to what period of time is represented by each bar unless you
roll over the chart. In this case, each bar represents 30 minutes. This makes the
significance of the y axis difficult to judge. In both cases, we can add span=1m to
timechart, and we would know that each bar represents one minute. This would be fine
for a chart representing 1 hour, but a query for 24 hours would produce too many points
and we would see a truncated chart.

Another approach would be to calculate the average events per minute, and then
calculate that value over whatever time frame we are looking at. The Splunk timechart
command provides a convenient function to accomplish this, but we have to do a little
extra work:

earliest=-24h sourcetype=impl_splunk_gen
| eval eventcount=1
| timechart span=1h per_minute(eventcount)

The per_minute command calculates the sum of eventcount per minute, then finds the
average value for the slice of time that each bar represents. In this case, we are seeing
the average number of events per hour:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This scale looks in line with our 1 hour query, as we are now looking at the event count
per minute.

Like in the Calculating average requests per minute section, we can also ignore
minutes that had no data. We accomplish this as shown in the following code:

earliest=-24h sourcetype=impl_splunk_gen
| bucket span=1m _time
| stats count by _time
| timechart span=1h avg(count)

This approach does not penalize incomplete hours, for instance, the current hour.

The graph looks like this:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

This gives us a better understanding of events for the current hour, but it is arguably not
entirely truthful about the first hour in the graph.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Rebuilding top
The top command is very simple to use but is actually doing a fair amount of interesting
work. I often start with top, then switch to stats count, but then wish for something that top
provides automatically. This exercise will show you how to recreate all the elements so
that you might pick and choose what you need.

Let's recreate the top command by using other commands.

Here is the query that we will replicate:

sourcetype="impl_splunk_gen" error
| top useother=t limit=5 logger user

The output looks like this:

To build count, we can use stats like this:

sourcetype="impl_splunk_gen" error
| stats count by logger user

This gets us most of the way towards our final goal:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

To calculate the percentage that top includes, we will first need the total number of
events. The eventstats command lets us add statistics to every row without replacing the
rows:

sourcetype="impl_splunk_gen" error
| stats count by logger user
| eventstats sum(count) as totalcount

The following adds our totalcount column in the result:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Now that we have our total, we can calculate the percentage for each row. While we're
at it, let's sort the results in descending order by count:

sourcetype="impl_splunk_gen" error
| stats count by logger user
| eventstats sum(count) as totalcount
| eval percent=count/totalcount*100
| sort -count

This gives us the following output:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

If not for useother=t, we can simply end our query with head 5, which would return the
first five rows. To accomplish the other row, we will have to label everything beyond
row 5 with a common value, and collapse the rows using stats. This will take a few
steps.

First, we need to create a counter field, which we will call rownum:

sourcetype="impl_splunk_gen" error
| stats count by logger user
| eventstats sum(count) as totalcount
| eval percent=count/totalcount*100
| sort -count
| eval rownum=1

This gives us the following result (only the first 10 rows are shown):

Next, using accum, we will increment the value of rownum:

sourcetype="impl_splunk_gen" error
| stats count by logger user
| eventstats sum(count) as totalcount
| eval percent=count/totalcount*100
| sort -count
| eval rownum=1
| accum rownum

This gives us the following output (only the first 10 rows are shown):

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Now, using eval, we can label everything beyond row 5 as OTHER and flatten rownum beyond
5:

sourcetype="impl_splunk_gen" error
| stats count by logger user
| eventstats sum(count) as totalcount
| eval percent=count/totalcount*100
| sort -count
| eval rownum=1
| accum rownum
| eval logger=if(rownum>5,"OTHER",logger)
| eval user=if(rownum>5,"OTHER",user)
| eval rownum=if(rownum>5,6,rownum)

We get the following output (only the first 10 rows are shown):

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Next, we will recombine the values using stats. Events are sorted by the fields listed
after by, which will maintain our original order:

sourcetype="impl_splunk_gen" error
| stats count by logger user
| eventstats sum(count) as totalcount
| eval percent=count/totalcount*100
| sort -count
| eval rownum=1
| accum rownum
| eval logger=if(rownum>5,"OTHER",logger)
| eval user=if(rownum>5,"OTHER",user)
| eval rownum=if(rownum>5,6,rownum)
| stats
sum(count) as count
sum(percent) as percent
by rownum logger user

This gives us the following:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We're almost done. All that's left to do is hide the rownum column. We can use fields for
this purpose:

sourcetype="impl_splunk_gen" error
| stats count by logger user
| eventstats sum(count) as totalcount
| eval percent=count/totalcount*100
| sort -count
| eval rownum=1
| accum rownum
| eval logger=if(rownum>5,"OTHER",logger)
| eval user=if(rownum>5,"OTHER",user)
| eval rownum=if(rownum>5,6,rownum)
| stats
sum(count) as count
sum(percent) as percent
by rownum logger user
| fields - rownum

This finally gives us what we are after:

And we're done. Just a reminder of what we were reproducing:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

top useother=t limit=5 logger user

That is a pretty long query to replicate a one-liner. While completely recreating top is
not something that is practically needed, hopefully this example has shed some light on
how to combine commands in interesting ways.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Acceleration
With Splunk, you can search through enormous volumes of data (proportional to the
ever-growing number of events to summarize, as well as the number of users accessing
the data), potentially increasing the amount of time it takes to complete beyond
acceptable lengths.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Big data – summary strategy
Generally speaking, you create summaries of data to report on big data. These
summaries are created by background runs of the search on which your report is based.
When a user runs a report against data that has been pre-summarized, it runs
considerably faster because the summaries it uses are much smaller bits of the total
number of events to be searched.

This concept of pre-summarizing events can be used with your reports, data models, and
indexes. Right now, we will focus on report summary acceleration.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Report acceleration
As we've already stated, summary acceleration uses summaries of events to speed up
completion times for certain kinds of reports, and report summary acceleration uses
automatically created (by Splunk) summaries. You can get Splunk to create these
summaries by enabling report acceleration for an eligible existing report by performing
the following steps:

On the Reports page, you can select a report and click on Edit to open the Edit
Acceleration dialog, which is seen in the next screenshot:

If this report qualifies for acceleration and your permissions allow for report
acceleration, the Edit Acceleration dialog will display a checkbox labeled Accelerate
Report. Select it. The Summary Range field should appear (see the following
screenshot):

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Select the range of time over which you plan to run the report; then click on Save. Now
Splunk will create a summary of the events (consisting of events only within the
selected time range) that the report will run against, which reduces the amount of data
that the report needs to process and thus accelerates the report.

Another method for accelerating a report is to go to Settings and then Searches, reports,
and alerts:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

From the Searches, reports, and alerts page, you can locate a report, then click on Edit,
and then on Edit Acceleration:

Accelerated reports are indicated on the Searches, reports, and alerts page with a

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

lightning bolt graphic, as shown in the following screenshot:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Report acceleration availability
Report acceleration should always be on your mind while designing reports. However,
not all your reports can be accelerated. You can't accelerate your report in the following
cases:

It was created via pivot
Your permissions do not enable you to accelerate searches (you require the
schedule_search and accelerate_search capabilities), or WRITE is not granted to you for the
report
The underlying search uses the verbose search mode

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Version 7.0 advancements in metrics
In any business, there are important or, at least, interesting metrics. These metrics are
simply indicators which one can use to visualize or measure something important. From
a more technical perspective, metrics are defined as:

"...groups of numbers that describe some process or activity (always measured over a period of time) ..."

Metrics is a featured enhancement in Splunk version 7.0 and will perhaps be most
interesting to system administrators and IT tools engineers. This is because the feature
focuses on collecting, investigating, monitoring, and sharing metrics from technology
infrastructure, security systems, and business applications in real time—areas that are of
primary interest to these folk.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Definition of a Splunk metric
Splunk metrics use a custom index type that is optimized for metric storage and
retrieval. Metrics are made-up of a timestamp, a name (for the metric), a value and
dimensions. These components are straight-forward:

Timestamp: This is the indicator showing exactly when a metric was recorded
Name: A character string identifying the metric
Value: The value of the metric, such as a count or calculated value
Dimensions: The metadata that defines the metric

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Splunk metrics
Splunk gathers metrics from different sources and stores this data in a new type of index
that is enhanced for efficient assimilation and retrieval of metrics data. This index can
be used only for metrics data. Splunk offers (or supports) two popular methods for
gathering metrics data: collectId and StatsD.

Generally, the idea is to install and configure one of the preceding tools that listens for
metric data, aggregates it, and releases the data every few seconds to where Splunk has
a metric index created.

Note: The StatsD program is available on GitHub (https://github.com/etsy/statsd) and has the
configuration files necessary to compile it into a configurable package.

||||||||||||||||||||

||||||||||||||||||||

https://github.com/etsy/statsd
https://technet24.ir
https://technet24.ir

Creating a metrics index
Splunk stores metrics data in a new type of index that is specifically for metrics data; in
fact, this type of index can only be used for metrics data. The best way to create a
metrics index is through Splunk Web:

1. Go to Settings and then Indexes.
2. On the Indexes page, click on New.
3. For Index Name, type a name for your index. User-defined index names must

consist of only numbers, lowercase letters, underscores, and hyphens. Index names
cannot begin with an underscore or hyphen, or contain the word kvstore.

4. For Index Data Type, click on Metrics.
5. Enter the remaining properties of the index as needed.
6. Click on Save.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Once you choose a tool, download, compile, and configure it; then set up a metric index.
The final step—setting up an input for the metrics data—is also easily done within the
Splunk web interface.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Creating a UDP or TCP data input
As we mentioned, Splunk will need to listen for StatsD (metrics) data on an open port.
To do this, you need to set up a data input:

1. On the Splunk main page, go to Settings and then Data inputs.
2. Under Local inputs, click on Add new next to UDP or TCP (depending on the

type of input you want to create).
3. For Port, enter the number of the port you are using for StatsD.
4. Click Next | Select Source Type.
5. Select Metrics | statsd.
6. For Index, select the metrics index you set up in the previous section.
7. Finally, click on Review, then click on Submit.

That's all there is to it!

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Summary
I hope this chapter was informative and sparked some ideas that you can apply to your
own data. As stated in the introduction, Splunk answers (https://answers.splunk.com) is a
fantastic place to find examples and help in general. You can ask your questions there
and contribute answers back to the community.

In the next chapter, we will use more advanced features of Splunk to help extend the
search language and enrich data at search time.

||||||||||||||||||||

||||||||||||||||||||

https://answers.splunk.com
https://technet24.ir
https://technet24.ir

Extending Search
In this chapter, we will look at some of the features that Splunk provides beyond its
already powerful search language. We will cover the following with the help of
examples:

Tags and event types that help you categorize events, for both search and reporting
Lookups that allow you to add external fields to events as though they were part of
the original data
Macros that let you reuse snippets of search in powerful ways
Workflow actions that let you build searches and links based on the field values in
an event
External commands that allow you to use Python code to work with search results

In this chapter, we will investigate a few of the many commands included in Splunk. We
will write our own commands in Chapter 13, Extending Splunk.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using tags to simplify search
Tags allow you to attach a marker to the fields and event types in Splunk. You can then
search and report on these tags later. Let's attach a tag to a couple of users who are
administrators. Start with the following search:

sourcetype="impl_splunk_gen"
| top user

This search gives us a list of our users such as ronnie, tuck, jarde, shelby, and so on:

Let's say that in our group, shelby and steve are administrators. Using a standard search,
we can simply search for these two users like this:

sourcetype="impl_splunk_gen" (user=shelby OR user=steve)

Searching for these two users while going forward will still work. However, if we
search for the tag value, we can avoid being forced to update multiple saved queries in

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

the future.

To create a tag, we first need to locate the field:

If the user field isn't already visible, click on it in the field picker, and then click on
Select and show in results:

From our listed events, you can select an event and click on the arrow in the column i:

Next, we can click the Actions arrow for the field to create a tag for, and select Edit
Tags:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This opens the Create Tags dialog as shown in the following screenshot:

Let's tag user=steve with admin:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We now see our tag next to the field user:

Once this is done, follow the same steps for user=shelby. With these two users tagged, we

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

can search for the tag value instead of the actual usernames:

sourcetype="impl_splunk_gen" tag::user="admin"

Under the covers, this query is unrolled into exactly the same query that we started with.
The advantage is that if this tag is added to new values or removed from existing ones,
no queries have to be updated.

Some other interesting features of tags are as follows:

Tags can be searched globally simply by using tag=tag_name; in this case, tag=admin.
Using this capability, you can apply any tag to any field or event type, and simply
search for the tag. This is commonly used in security applications to tag hosts,
users, and event types that need special monitoring.
Any field or event type can have any number of tags. Simply choose the tag editor
and enter multiple tag values separated by spaces.
To remove a tag, simply edit the tags again and remove the value(s) you want to
remove.
Tags can also be edited in Settings at Settings | Tags.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using event types to categorize results
An event type is essentially a simple search definition, with no pipes or commands.

To define an event type, first make a search. Let's search for the following:

sourcetype="impl_splunk_gen_SomeMoreLogs" logger=AuthClass

Let's say these events are login events. To make an event type, choose Settings and then
Event types, as shown in the following screenshot:

This presents us with the Event types page, where we view existing event types and, as
we want to do here, create a new event:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

First, click the button labeled New. Splunk will display the Add New page:

Let's name our event type login.

We can now search for the same events using the event type:

eventtype=login

Event types can be used as part of another search, as follows:

eventtype=login loglevel=error

Event type definitions can also refer to other event types. For example, let's assume that
all login events that have a loglevel value of error are in fact failed logins. We can now
save this into another event type using the same steps mentioned previously. Let's call it
failed_login. We can now search for these events using the following:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

eventtype="failed_login"

Now, let's combine this event type with the users that we tagged as admin in the previous
section:

eventtype="failed_login" tag::user="admin"

This will find all failed logins for administrators. Let's now save this as yet another
event type, failed_admin_login. We can now search for these events, as follows:

eventtype="failed_admin_login"

As a final step, let's tag this event type. First, make sure that the field eventtype is visible.
Your events should look like this:

Note the three values of eventtype in this case. We are searching only for
eventtype=failed_admin_login, but this event also matches the definitions of
eventtype=failed_login and eventtype=login. Also note our tagged user.

We are not searching for the admin tag, but steve matches tag::user=admin, so the value is
tagged accordingly.

Following the steps in the previous section, tag eventtype=failed_admin_login with the value
actionable:

We can now search for these events with the following query:

tag::eventtype="actionable"

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This technique is very useful for building up definitions of events that should appear in
alerts and reports. For example, consider the following query:

sourcetype="impl_splunk_gen_SomeMoreLogs"
 tag::eventtype="actionable" | table _time eventtype user

This will now give us a very useful report, as follows:

Think about the ways that these event types are being used in this seemingly simple
query:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Search: An event type definition is defined as a search, so it seems only natural
that you can search for events that match an event type definition.
Categorization: As events are retrieved, if the events match the definition of any
event type, those events will have the name of that event type added to the eventtype
field.
Tagging: Since event types can also be tagged, tag values assigned to certain event
types can be used for both search and categorization. This is extremely powerful
for assigning common tags to varied sets of results; for instance, events that belong
in a report or should cause an alert.

For clarity, let's unroll this query to see what Splunk is essentially doing under the
covers.

The query is expanded from the tag and event type definitions, as follows:

tag::eventtype="actionable"
eventtype="failed_admin_login"
eventtype="failed_login" tag::user="admin"
(eventtype=login loglevel=error) tag::user="admin"
((sourcetype="impl_splunk_gen" logger="AuthClass")
loglevel=error) tag::user="admin"
((sourcetype="impl_splunk_gen" logger="AuthClass")
loglevel=error) (user=steve OR user=shelby)

Let's explain what happens at each step:

1. The initial search.
2. All event types that are tagged actionable are substituted. In this case, we only have

one, but if there were multiple, they would be combined with OR.
3. The definition of the event type failed_admin_login is expanded.
4. The definition of failed_login is expanded.
5. The definition of login is expanded.
6. All values of user with the tag admin are substituted, separated by OR.

Any changes to tagged values or event type definitions will be reflected the next time
they are used in any search or report.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using lookups to enrich data
Sometimes, information that would be useful for reporting and searching is not located
in the logs themselves, but is available elsewhere. Lookups allow us to enrich data, and
even search against the fields in the lookup as if they were part of the original events.

The source of data for a lookup can be either a comma-separated values (CSV) file or
a script. We will cover the most common use of a CSV lookup in the next section. We
will cover scripted lookups in Chapter 13, Extending Splunk.

There are three steps for fully defining a lookup: creating the file; defining the lookup
definition; and, optionally, wiring the lookup to run automatically.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Defining a lookup table file
A lookup table file is simply a CSV file. The first line is treated as a list of field names
for all the other lines.

Lookup table files are managed at Settings | Lookups | Lookup table files. Simply upload
a new file and give it a filename, preferably ending in .csv. An example lookup file
(users.csv) is shown as follows:

user,city,department,state
steve,Dallas,HR,TX
shelby,Dallas,IT,TX
mary,Houston,HR,TX
nanette,Houston,IT,TX
tuck,Chicago,HR,IL

With this file uploaded, we can immediately use it with the lookup command. In the
simplest case, the format of the lookup command is as follows:

lookup [lookup definition or file name] [matching field]

An example of its usage is as follows:

sourcetype=" impl_splunk_gen_SomeMoreLogs"
| lookup users.csv user

We can now see all the fields from the lookup file as if they were in the events:

We can use these fields in reports:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

sourcetype=" impl_splunk_gen_SomeMoreLogs"
| lookup users.csv user
| stats count by user city state department

This will produce results as shown in the following screenshot:

This is all that is required to use a CSV lookup to enrich data, but if we do a little more
configuration work, we can make the lookup even more useful.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Defining a lookup definition
Though you can access a lookup immediately by the filename, defining the lookup
allows you to set other options, reuse the same file, and later make the lookup run
automatically. Creating a definition also eliminates a warning message that appears
when simply using the filename.

Navigate to Settings | Lookups | Lookup definitions and click on the New button:

Stepping through these fields, we have the following:

Destination app: This is where the lookup definition will be stored. This matters
because you may want to limit the scope of a lookup to a particular application for
performance reasons.
Name: This is the name that you will use in search strings.
Type: The options here are File-based or External. We will cover External, or
scripted, in Chapter 13, Extending Splunk.
Lookup file: We have chosen users.csv in this case.
Configure time-based lookup: Using a time-based lookup, you can have a value
that changes at certain points in time while going forward. For instance, if you built

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

a lookup for the versions of software deployed to the various hosts at different
times, you could generate a report on errors or response times by the software
version.
Advanced options: This simply exposes the remaining fields.
Minimum matches: This defines the number of items in the lookup that must be
matched. With a value of 1, the value of Default matches will be used if no match is
found.
Maximum matches: This defines the maximum number of matches before stopping.
For instance, if there were multiple entries for each user in our lookup file, this
value would limit the number of rows that would be applied to each event.
Default matches: This value will be used to populate all fields from the lookup
when no match is found and Minimum matches is greater than 0. After clicking on
Save, we can use our new lookup in the following manner:

sourcetype="impl_splunk_gen_SomeMoreLogs"
| lookup userslookup user
| stats count by user city state department

This will produce results as shown in the following screenshot:

Lookup tables have other features, including wildcard lookups, CIDR lookups, and
temporal lookups. We will use those features in later chapters.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Defining an automatic lookup
Automatic lookups are, in the author's opinion, one of the coolest features in Splunk. Not
only are the contents of the lookup added to events as if they were always there, but you
can also search against the fields in the lookup file as if they were part of the original
event.

To define the automatic lookup, navigate to Settings | Lookups | Automatic lookups and
click on the New button:

Let's step through the fields in this definition:

Destination app: This is the application where the definition will live. We'll
discuss the implications of this choice in Chapter 8, Working with Apps.
Name: This name is used in the configuration. It should not contain spaces or
special characters. We will discuss its significance in Chapter 11, Configuring
Splunk.
Lookup table: This is the name of the lookup definition.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Apply to: This lets us choose which events are acted upon. The usual case is
sourcetype, which must match a sourcetype name exactly. Alternatively, you can
specify source or host, with or without wildcards.
Lookup input fields: This defines the fields that will be queried in the lookup file.
One field must be specified, but multiple fields can also be specified. Think of this
as a join in a database. The left-hand side is the name of the field in the lookup file.
The right-hand side is the name of the existing field in our events.
Lookup output fields: This section lets you decide what columns to include from
the lookup file and optionally override the names of those fields. The left-hand
side is the name of the field in the lookup file. The right-hand side is the field to be
created in the events. If left blank, the default behavior is to include all fields from
the lookup, using the names defined in the lookup file.
Overwrite field values: If this option is selected, any existing field values in an
event will be overwritten by a value with the same name from the lookup file.

After clicking on Save, we see the listing of Automatic lookups. Initially, the Sharing
option is Private, which will cause problems if you want to share searches with others.
To share the lookup, first click on Permissions:

This presents us with the Permissions page. Change the value of Object should appear in
to All apps. We will discuss these permissions in greater detail in Chapter 11,
Configuring Splunk:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

We now have a fully automatic lookup, enriching our sourcetype based on the value of
user in each event. To show the power of this lookup, let's search for a field in the
lookup file as if it were part of the events:

sourcetype="impl_splunk_gen_SomeMoreLogs" department="HR" | top user

Even though department isn't in our events at all, Splunk will reverse lookup, find the
values of user that are in department, and run the search for those users.

This returns the following result:

Let's combine this search with an event type that we defined earlier. To find the most
recent failed login for each member of HR, we can run the following code:

sourcetype="impl_splunk_gen_SomeMoreLogs" department="HR" eventtype="failed_login"
| dedup user
| table _time user department city state

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This returns the following:

The purpose of the dedup command is simply to keep only one event for each value of
user. As events are returned in the most recent first order, this query will return the
most recent login for each user. We will configure more advanced lookups in later
chapters.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Troubleshooting lookups
If you are having problems with a lookup, very often the cause lies within permissions.
Check permissions at all three of these paths:

Settings | Lookups | Lookup table files
Settings | Lookups | Lookup definitions
Settings | Lookups | Automatic lookups

Once permissions are squared away, be sure to keep the following points in mind:

Check your spelling of the fields.
By default, lookup values are case-sensitive.
If your installation is using multiple indexers, it may take some time for the lookup
files and definitions to be distributed to your indexers, particularly if the lookup
files are large or you have installed many apps that have assets to be distributed.
A rule of thumb is that a lookup file should not have more than two million rows. If
a lookup is too large, an external lookup script may be required.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using macros to reuse logic
A macro serves the purpose of replacing bits of search language with expanded phrases
(additionally, macros have other uses, such as assisting in workflow creation).

Using macros can help you reuse logic and greatly reduce the length of queries.

Let's use the following as our example case:

sourcetype="impl_splunk_gen_SomeMoreLogs" user=mary
| transaction maxpause=5m user
| stats avg(duration) avg(eventcount)

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Creating a simple macro
Let's take the last two lines of our query and convert them to a macro. First, navigate to
Settings | Advanced search | Search macros and click on New:

Walking through our fields, we have the following:

Destination app: This is where the macro will live.
Name: This is the name we will use in our searches.
Definition: This is the text that will be placed in our search.
Use eval-based definition?: If checked, the Definition string is treated as an eval
statement instead of the raw text. We'll use this option later.

The remaining fields are used if arguments are specified. We will use these in our next
example.

After clicking on Save, our macro is now available for use. We can use it like this:

sourcetype="impl_splunk_gen_SomeMoreLogs" user=mary

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

 `webtransactions`

The phrase webtransactions is enclosed by backticks. This is similar to the usage of
backticks on a Unix command line, where a program can be executed to generate an
argument. In this case, `webstransactions` is simply replaced with the raw text defined in
the macro, recreating the query that we started with.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Creating a macro with arguments
Let's collapse the entire search into a macro that takes two arguments; the user and a
value for maxpause:

Be sure to remove newlines from your search definition. Macros do not appear to work
with embedded newlines.

Walking through our fields, we have the following:

Name: This is the name we will use in our searches. The parentheses and integer,
(2), specify how many arguments this macro expects.
Definition: We have defined the entire query in this case. The variables are defined
as $user$ and $maxpause$. We can use these names because we have defined the
variables under Arguments.
Arguments: This list assigns variable names to the values handed in to the macro.

After clicking on Save, our macro is now available for use. We can use it like this:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

webtransactions_user_maxpause(mary,5m)

or:

`webtransactions_user_maxpause("mary","5m")`
We will use this feature in conjunction with a workflow action later in this chapter. See the
Building a workflow action to show field context section later in this chapter.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Creating workflow actions
Workflow actions allow us to create custom actions based on the values in search
results. The two supported actions either run a search or link to a URL.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Running a new search using values from
an event
To build a workflow action, navigate to Settings | Fields | Workflow actions and click on
New. You are presented with a form as seen in the following screenshot:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Let's walk through the following fields:

Destination app: This is the app where the workflow action definition will live.
Name: This is the name used in configuration files. This name cannot contain
spaces, but underscores are fine.
Label: This is what will appear in the menu. It can contain variables. In this case,
we have included $user$, which will be populated with the value of the user field
from the event.
Apply only to the following fields: This workflow action will only appear on an
event if all the fields specified in this list have a value. Show action in will
determine which menus can contain the workflow action.
Apply only to the following event types: Only shows this workflow action for
events that match a particular event type. For instance, if you defined an event type
called login, you might want a custom workflow action to search for all logins for
this particular user over the last week.
Show action in: The three options are Event menu, Fields menus, and Both.

The Event menu option is to the left of the event. If Apply only to the
following fields is not empty, the workflow action will only be present if all
the fields specified are present in the event.
The Fields menus option falls to the right of each field under the events. If
Apply only to the following fields is not empty, only the fields listed will
contain the workflow action. Both will show the workflow action at both
places, following the same rules.
Action type: The choices here are search or link. We have chosen search.

We will try link in the next section.

Search string: This is the search template to run. You will probably use field
values here, but it is not required.
Run in app: If left blank, the current app will be used, otherwise the search will be
run in the app that is specified. You would usually want to leave this blank.
Open in view: If left blank, the current view will be used. If you expect to use an
events listing panel on dashboards, you probably want to set this to flashtimeline.
Run search in: The choices here are New window or Current window.
Time range: You can specify a specific time range here, either in epoch time or
relative time. Leaving Latest time empty will allow you to search the latest data
available.
Use the same time range as the search that created the field listing: In most cases,
you will either check this checkbox or provide a value in at least Earliest time. If

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

you do not, the query will run over all time, which is not usually what you want. It
is also possible to specify the time frame in our query.

After we click on Save, we now see our action in the event workflow action menu like
this:

After we choose the option, a new window appears with our results, like this:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Linking to an external site
A workflow action can also link to an external site, using information from an event.

Let's imagine that your organization has some other web-based tool. If that tool can
accept arguments via GET or POST requests, then we can link directly to it from the Splunk
results.

Create a new workflow action as we did in the previous example, but change Action
type to link. The options change to those shown in the following screenshot:

Splunk will encode any variables in the URL so that special characters survive. If you
need a variable to not be encoded—for instance, if the value is actually part of the URL
—add an exclamation point before the variable name, like this:

$!user$

If Link method is set to POST, then more input fields appear, allowing you to specify post
arguments like this:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Choosing this workflow action will open a new window with the URL that we
specified, either in the current window or in a new window, according to the value of
Open link in.

The fields used by a workflow action can also come from automatic lookups. This is
useful in cases where the external tool needs some piece of information that is not in
your events, but can be derived from your events.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Building a workflow action to show field
context
Show Source is available as a workflow action on all events. When chosen, it runs a
query that finds events around the current event for the same source and host. While this
is very useful, sometimes it would be nice to see events that have something else in
common besides the source, and to see those events in the regular search interface,
complete with the timeline and field picker.

To accomplish this, we will make a workflow action and macro that work in tandem to
build the appropriate query. This example is fairly advanced, so don't be alarmed if it
doesn't make a lot of sense.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Building the context workflow action
First, let's build our workflow action. As before, make a workflow action with Action
type set to search as seen in the following screenshot:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Let's step through our values, which are as follows:

Name: This can be anything. Let's name it after our time frame.
Label: This is what will appear in the menu. You may notice two special fields,
@field_name and @field_value. These two fields only make sense when Show action in
is set to Fields menus.
There are a number of @variables available to workflow actions. Search http://docs.s
plunk.com/ for Create workflow actions in Splunk to find the complete
documentation.

Apply only to the following fields: This can be blank, or * to indicate all fields.
Show action in: We have chosen Fields menus in this case.
Action type: We are running a search. It's a fairly strange search, as we are using a
macro, but it is still technically a search.
Search string: The fact that this query is a macro doesn't matter to the workflow
action, `context("$@field_name$", "$@field_value$", "$_ time$", "-1m", "+5m")`. We will
create the context macro next.
Run in app: With nothing chosen, this macro will execute the search in the current
app.
Open in view: We want to make sure that our query executes in flashtimeline, so
we set it explicitly.
Run search in: We choose New window.
Time: Contrary to the previous advice, we have left the time frame unspecified. We
will be overriding the search times in the search itself. Anything specified here
will be replaced.

After clicking on Save, the workflow action is available on all the field menus:

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://docs.splunk.com/
https://technet24.ir
https://technet24.ir
https://technet24.ir

Choosing the preceding menu item generates this search:

'context("ip", "1.22.3.3", "2012-05-16T20:23:59-0500", "-1m", "+5m")'

Let's consider our query definition:

'context("$@field_name$", "$@field_value$", "$_time$", "-1m", "+5m")'

We can see that the variables were simply replaced, and the rest of the query was left
unchanged. The variable _time is not in the format I would expect (I would have
expected the epoch value), but we can work with it.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Building the context macro
When searching, you can specify the time ranges in the query itself. There are several
fields that allow us to specify the time. They are as follows:

earliest: This is the earliest time, inclusive. It can be specified as either a relative
time or an epoch time in seconds.
latest: This is the latest time, exclusive. Only events with a date before this time
will be returned. This value can be specified as either a relative time or an epoch
time in seconds.
now: Using this field, you can redefine the relative values in Earliest and Latest
that are calculated against. It must be defined as epoch time in seconds.

Now, given our inputs, let's define our variable names:

field_name = ip

field_value = 1.22.3.3

event_time = 2012-05-16T20:23:59-0500

earliest_relative = -1m

latest_relative = +5m

The query we want to run looks like this:

earliest=-1m latest=+5m now=[epoch event time] ip=1.22.3.3

The only value we don't have is now. To calculate this, there is a function available to
eval called strptime. To test this function, let's use |stats to create an event, build an
event_time field, and parse the value. Consider the following code:

|stats count
| eval event_time="2012-05-16T20:23:59-0500"
| eval now=strptime(event_time,"%Y-%m-%dT%H:%M:%S%z")

This gives us the following table:

Good references for strptime formats can be found on modern Linux systems by running
man strptime or man date, or by searching http://www.google.com. Splunk has several special

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.google.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

extensions to strptime that can be found by searching for enhanced strptime() support at htt
p://docs.splunk.com/.

Now that we have our epoch value for now, we can build and test our query like this:

earliest=-1m latest=+5m now=1337217839 ip=1.22.3.3

This gives us a normal event listing, from one minute before our event to five minutes
after our selected event, only showing events that have the field in common.

Now that we have our search, and our eval statement for converting the value of now, we
can actually build our macro in Settings | Advanced search | Search macros | Add new:

This macro is using a few interesting features, as follows:

Macros can take arguments. The number of arguments is specified in the name of
the macro by appending ([argument count]) to the name of the macro. In this case, we
are expecting five arguments.
The definition of a macro can actually be an eval statement. This means we can use
eval functions to build our query based on some value handed to the macro. In this
case, we are using strptime. Things to note about this feature are as follows:

The eval statement is expected to return a string. If your statement fails to
return a string, for some reason, the user will see an error.
The variable names specified are replaced before the eval statement is
executed. This means that there may be issues with escaping the values in the
variables, so some care is required to make sure whether your value contains
quotes or not is as expected.

||||||||||||||||||||

||||||||||||||||||||

http://docs.splunk.com/
https://technet24.ir
https://technet24.ir

Use eval-based definition? is checked to indicate that this macro is expected to be
parsed as an eval statement.
In the Arguments field, we specify the names for the arguments handed in.

These are the names we refer to in the Definition field. After clicking on Save, we have
a working macro. You might make adjustments to this workflow action to better suit
your needs. Let's change the definition to sort events by ascending time, and prevent
searching across indexes. Change the workflow action definition Search string to:

'context("$@field_name$", "$@field_value$", "$_time$", "-1m",
 "+5m")'
index=$index$ | reverse

Let's expand this just for clarity, like this:

'context("$@field_name$", "$@field_value$", "$_time$", "-1m", "+5m")'
index=$index$ | reverse
'context("ip", "1.22.3.3", "2012-05-16T20:23:59-0500", "-1m", "+5m")'
index=implsplunk | reverse
earliest=-1m latest=+5m now=1337217839 ip=1.22.3.3
index=implsplunk | reverse

You can create multiple workflow actions that specify different time frames, or include
other fields; for instance, host.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using external commands
The Splunk search language is extremely powerful, but at times, it may be either
difficult or impossible to accomplish some piece of logic by using nothing but the
search language. To deal with this, Splunk allows external commands to be written in
Python. A number of commands ship with the product, and a number of commands are
available in apps at http://splunk-base.splunk.com/.

Let's try out a few of the included commands. The documentation for the commands is
included with other search commands at http://docs.splunk.com/. You can find a list of all
included commands, both internal and external, by searching for all search commands.
We will write our own commands in Chapter 13, Extending Splunk.

||||||||||||||||||||

||||||||||||||||||||

http://splunk-base.splunk.com/
http://docs.splunk.com/
https://technet24.ir
https://technet24.ir

Extracting values from XML
Fairly often, machine data is written in XML format. Splunk will index this data without
any issue, but it has no native support for XML. Though XML is not an ideal logging
format, it can usually be parsed simply enough. Two commands are included in the
search app that can help us pull fields out of XML.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

xmlkv
xmlkv uses regular expressions to create fields from tag names. For instance, given the
following XML:

<doc><a>foobar</doc>

xmlkv will produce the fields a=foo and b=bar. To test, try this:

|stats count
| eval _raw="<doc><a>foobar</doc>"
| xmlkv

This produces a table, as shown in the following screenshot:

As this command is using regular expressions, its advantage is that malformed or
incomplete XML statements will still produce results.

Using an external command is significantly slower than using the native search language,
particularly if you are dealing with large sets of data. If it is possible to build the
required fields using rex or eval, it will execute faster and it will introduce a smaller
load on your Splunk servers. For instance, in the previous example, the fields could be
extracted using:

| rex "<a.*?>(?<a>.*?)<" | rex "<b.*?>(?.*?)<"

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

XPath
XPath is a powerful language for selecting values from an XML document. Unlike
xmlkv, which uses regular expressions, XPath uses an XML parser. This means that the
event must actually contain a valid XML document.

For example, consider the following XML document:

<d>
foo
foo2
bar
</d>

If we wanted the value for a tag whose x attribute equals 2, the XPath code would look
like this:

//d/a[@x='2']

To test this, let's use our |stats trick to generate a single event and execute the xpath
statement:

|stats count
| eval _raw="<d>foofoo2bar</d>"
| xpath outfield=a "//d/a[@x='2']"

This generates an output as shown in the following screenshot:

The xpath command will also retrieve multivalue fields. For instance, this xpath statement
simply instructs to find any field:

|stats count
| eval _raw="<d>foofoo2bar</d>"
| xpath outfield=a "//a"

The result of this query is as shown:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

There are many XPath references available online. My favorite quick reference is at the
Mulberry Technologies website: http://www.mulberrytech.com/quickref/xpath2.pdf.

||||||||||||||||||||

||||||||||||||||||||

http://www.mulberrytech.com/quickref/xpath2.pdf
https://technet24.ir
https://technet24.ir

Using Google to generate results
External commands can also act as data generators, similar to the stats command that we
used to create test events. There are a number of these commands, but let's try a fun
example, Google (some organizations may not have an internet connection for use in
your Splunk apps, but we'll assume you do have access for these examples). This
command takes one argument, a search string, and returns the results as a set of events.
Let's execute a search for Splunk:

|google "splunk"

This produces a table, as shown in the following screenshot:

This example may not be terribly useful, but you can probably think of external sources
that you would like to query as a starting point, or even to populate a subsearch for
another Splunk query. We'll write an example data generator in Chapter 13, Extending
Splunk.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Summary
In this chapter, we quickly covered tags, event types, lookups, macros, workflow
actions, and external commands. I hope these examples and discussions will serve as a
starting point for your apps. More examples can be found in the official Splunk
documentation at http://docs.splunk.com/ and at http://splunk-base.splunk.com/.

In the next chapter, we will dive into creating and customizing our own apps.

||||||||||||||||||||

||||||||||||||||||||

http://docs.splunk.com/
http://splunk-base.splunk.com/
https://technet24.ir
https://technet24.ir

Working with Apps
Splunk apps are what the industry calls knowledge, or, sometimes, apps are a collection
of knowledge objects. A knowledge object is a prearrangement of configurations within
Splunk, based on some logic and agreed upon due to some consideration or need. With
Splunk, you have the ability to create these apps to extend or customize users' Splunk
experience. In this chapter, we will explore what makes up a Splunk app, as well as
exploring the latest self-service app management (originally introduced in version 6.6)
updated in version 7.0.

We will:

Inspect included apps
Install apps from Splunkbase
Build our own app
Customize app navigation
Customize the look and feel of apps
Self-service app management

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Defining an app
In the strictest sense, an app is a directory of configurations, and sometimes code. The
directories and files inside have a particular naming convention and structure.

All configurations are in plain text and can be edited using your choice of text editor.
Apps generally serve one or more of the following purposes:

Acting as a container for searches, dashboards, and related configurations:
This is what most users will do with apps. This is useful not only for logical
grouping but also for limiting what configurations are applied and at what time.
This kind of app usually does not affect other apps.
Providing extra functionality: Many objects can be provided in an app for use by
other apps. These include field extractions, lookups, external commands, saved
searches, workflow actions, and even dashboards. These apps often have no user
interface at all; instead, they add functionality to other apps.
Configuring a Splunk installation for a specific purpose: In a distributed
deployment, there are several different purposes that are served by the multiple
installations of Splunk. The behavior of each installation is controlled by its
configuration, and it is convenient to wrap those configurations into one or more
apps. These apps completely change the behavior of a particular installation.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Included apps
Without apps, Splunk has no user interface, rendering it essentially useless. Luckily,
Splunk comes with a few apps to get us started. We'll now take a look at a few of these
apps.

The Splunk Web Framework is not really an app, but a framework for developers who
want to create experiences using Splunk and its analytical capabilities. The Splunk Web
Framework lets you quickly create custom apps by using prebuilt components, styles,
templates, and reusable samples and adding your own custom logic, interactions,
reusable components, and UI:

Introspection_generator_addon: Refers to the data that Splunk Enterprise logs
and uses to populate the _introspection index, generating data about your Splunk
instance and environment. It writes that data to log files to aid in reporting on
system resource utilization and troubleshooting problems.
splunk_monitoring_console (or previously referred to as distributed
management console): Provides the ability to view detailed performance
information about your Splunk Enterprise deployment.
gettingstarted: This app provides help screens; you can access them from the
launcher. There are no searches, only a single dashboard that simply includes an
HTML page.
Search and Reporting: This is the app where users spend most of their time. It
contains the main search dashboard that can be used from any app, external search
commands that can be used from any app, admin dashboards, custom navigation,
custom CSS, a custom app icon, a custom app logo, and many other useful
elements.
SplunkForwarder and SplunkLightForwarder: These apps, which are disabled
by default, simply disable portions of a Splunk installation so that the installation
is lighter in weight. We will discuss these in greater detail in Chapter 12, Advanced
Deployments. If you never create or install another app, and instead simply create
saved searches and dashboards in the app search, you can still be quite successful
with Splunk. Installing and creating more apps, however, allows you to take
advantage of others' work, organize your own work, and ultimately share your
work with others.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Installing apps
Apps can either be installed from Splunkbase or uploaded through the admin interface.
To get started, from the Splunk Home page, you can click on Splunk Apps (shown in the
following screenshot):

From there, the Apps page is displayed:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Installing apps from Splunkbase
If your Splunk server has direct access to the internet, you can install apps from
Splunkbase with just a few clicks. From the Apps page, you can click on Browse More
Apps, where some of the most popular apps will be available:

In an earlier edition of this book, we chose to use a MAXMIND app, which was
popular first in Splunk version 5.0, has been updated to work with the latest version of
Splunk (the app is now version 10.6), and is still worth installing and reviewing. Let's
get started!

To install the Geo Location Lookup Script (powered by MAXMIND) app, you may
have to scroll through the list of apps to find it. Or, you can also locate the app using
your web browser by going to https://apps.splunk.com, searching for the app by name,
downloading it as a file, and then uploading it into Splunk:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://apps.splunk.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

Note: You will be prompted for your https://www.splunk.com login. This is the same login that you
created when you downloaded Splunk. If you don't have an account, you will need to create one.

Next (as in earlier editions), we'll install the Google Maps app. This app was built by a
Splunk customer who contributed back to the Splunk community. It (may) prompt you to
restart Splunk.

Once you have restarted and logged back in, check out the menu:

||||||||||||||||||||

||||||||||||||||||||

https://www.splunk.com
https://technet24.ir
https://technet24.ir

Google Maps is now visible, but where is the Geo Location Lookup Script? Remember
that not all apps have dashboards, nor do they necessarily have any visible components
at all.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Geo Location Lookup Script
The Geo Location Lookup Script is a lookup script used to provide geolocation
information for IP addresses. Looking at the documentation, we see this example:

eventtype=firewall_event | lookup geoip clientip as src_ip

You can find the documentation for any Splunkbase app by searching for it at https://splu
nkbase.com, or by clicking on View details on Splunk apps (next to any installed app),
clicking on Apps, and viewing the Apps page.

Let's go through the arguments of the lookup command:

geoip: This is the name of the lookup provided by Geo Location Lookup Script. You
can see the available lookups by going to Settings | Lookups | Lookup definitions.

clientip: This is the name of the field in the lookup that we are matching against.
as src_ip: This says to use the value of src_ip to populate the field before it, in this
case, clientip. I personally find this wording confusing. In my mind, I read this as
using instead of as.

Included in the ImplementingSplunkDataGenerator app (available at http://packtpub.com/
support) is a sourcetype instance named impl_splunk_ips, which looks like this:

2012-05-26T18:23:44 ip=64.134.155.137

The IP addresses in this fictitious log are from one of my websites. Let's see some
information about these addresses:

sourcetype="impl_splunk_ips" | lookup geoip clientip AS ip | top
 client_country

This gives us a table similar to the one shown in the following screenshot (note that
after running the command, new fields are added, such as client_country):

||||||||||||||||||||

||||||||||||||||||||

https://splunkbase.com
http://packtpub.com/support
https://technet24.ir
https://technet24.ir

That's interesting. I wonder who is visiting my site from Slovenia.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Google Maps
Now, let's do a similar search in the Google Maps app. Choose Google Maps from the
App menu. The interface looks like the standard search interface, but with a map instead
of an event listing. Let's try this remarkably similar (but not identical) query using a
lookup provided in the Google Maps app:

sourcetype="impl_splunk_ips"
| lookup geo ip

The map generated looks like this:

Unsurprisingly, most of the traffic to this little site came from the author's house in
Austin, Texas. We'll use the Google Maps app for something more interesting in Chapter
9, Building Advanced Dashboards.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Installing apps from a file
It is not uncommon for Splunk servers to not have access to the internet, particularly in a
data center. In this case, follow these steps:

1. Download the app from https://splunkbase.com. The file will have a .spl or .tgz
extension.

2. Navigate to Splunk Apps, then to the Apps page.
3. Click on Install app from the file.
4. Upload the downloaded file using the form provided.
5. Restart if the app requires it.
6. Configure the app if required.

That's it. Some apps have a configuration form. If this is the case, you will see a Setup
link next to the app when you go to Manager | Apps. If something goes wrong, contact
the author of the app.

If you have a distributed environment, in most cases the app only needs to be installed
on your search head. The components that your indexers need will be distributed
automatically by the search head. Check the documentation for the app.

||||||||||||||||||||

||||||||||||||||||||

https://splunkbase.com
https://technet24.ir
https://technet24.ir

Building your first app
For our first app, we will use one of the templates provided with Splunk. To get started,
navigate to the Splunk Apps page (as we described earlier in this chapter) and then
click on Create app. The following page will open:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Set the fields as follows:

Set Name to Implementing Splunk App One. This name will be visible on the home
screen, in the App menu, and in the app banner on the upper-left side of the
window.
Set Folder name to is_app_one. This value will be the name of the app directory on
the filesystem, so you should limit your name to letters, numbers, and underscores.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Set Version to 1.0 (it's our first version of the app!).
Set Visible to Yes. If your app simply provides resources for other apps to use,
there may be no reason for it to be visible.
Fill in the Author (your name!) and Description (describe your app).
Set Template to barebones. The barebones template contains sample navigation
and the minimal configuration required by an app. The sample_app template contains
many example dashboards and configurations.
Upload asset you can leave alone for now (we'll touch on this later).

After clicking on Save, we can visit our app by going back to the Splunk Apps page or
returning to our home page. Look at the following screenshot and you will notice that we
can see the apps we've installed thus far (Goggle Maps, MAXMIND, and Implementing
Splunk App One):

Now that we have our app, we can create searches and dashboards, and maintain them
in our app. The simplest way to ensure that your objects end up in your app is to verify
that the app banner is correct before creating objects or before entering the Splunk
manager. Our app banner looks like this:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Create a dashboard called Errors using the following searches (refer to Chapter 5, Simple
XML Dashboards, for detailed instructions):

error sourcetype="impl_splunk_gen" | timechart count by user
error sourcetype="impl_splunk_gen" | top user
error sourcetype="impl_splunk_gen" | top logger

This produces the following result:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Our new dashboard appears in the navigation menu under Dashboards:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Editing navigation
Navigation is controlled by an XML file that can be accessed by going to Settings | User
interface | Navigation menus:

There can only be one active navigation file per app, and it is always called default.

After clicking on the name, we see the XML provided by the barebones template:

<nav search_view="search" color="#65A637">
 <view name="search" default='true' />
 <view name="data_models" />
 <view name="reports" />
 <view name="alerts" />
 <view name="dashboards" />
</nav>

Note that if you check the navigation for another app (search), you will notice the same
XML.

The structure of the XML is essentially the following:

nav
view
saved
collection
view
a href
saved
divider
collection

The logic of navigation is probably best absorbed by simply editing it and seeing what
happens. You should keep a backup as this XML is somewhat fragile and Splunk does
not provide any kind of version control. Here are some general details about nav:

Children of nav appear in the navigation bar.
collection: Children of collection tags appear in a menu or submenu. If the child tags
do not produce any results, the menu will not appear. The divider tag always
produces a result, so it can be used to ensure that a menu appears.
view: This tag represents a dashboard, with the following attributes:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

name is the name of the dashboard filename, without the .xml extension.
The first view element with the attribute default='true' will load automatically
when the app is selected.
The label of each view is based on the contents of the label tag in the
dashboard XML, not the name of the dashboard filename.
match="dashboard" selects all dashboards whose filename contains dashboard. If
you want to group dashboards, you may want to follow a naming convention
to make grouping more predictable.
source="unclassified" essentially means all views that have not been previously
associated to a menu. In other words, this will match dashboards that were
not explicitly referenced by name or matched using the match attribute or a
different view tag.

a href: You can include standard HTML links of the form .

The link is untouched and passed along as written.

saved: This tag represents a saved search, with the following attributes:
name is equal to the name of a saved search.
match="report" selects all the saved searches that have report in their names.
source="unclassified" essentially means all searches that have not yet been
previously associated to a menu. In other words, this will match searches
that were not explicitly referenced by name or matched using the match

attribute or a different saved tag.

Let's customize our navigation. We'll make a few changes like these:

Create an entry specifically for our errors dashboard
Add default='true' so that this dashboard loads by default
Simplify the Views and Searches collections

These changes are reflected in the following code:

<nav>
<view name="errors" default='true' />
<view name="flashtimeline" />
<collection label="Views">
<view source="unclassified" />
</collection>
<collection label="Searches">
<saved source="unclassified" />
</collection>
</nav>

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Our navigation now looks like this screenshot:

With this navigation in place, all new dashboards will appear under Views, and all new
saved searches will appear under Searches. Notice that Advanced Charting and Google
Maps appear under Views. Neither of these dashboards are part of our app, but are
visible because of the permissions in their respective apps. We will discuss
permissions in more detail in the Object permissions section.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Customizing the appearance of your app
It is helpful to further customize the appearance of your application, if for no other
reason than to make it more obvious which app is currently active.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Customizing the launcher icon
The launcher icon is seen both in the Home app and in Splunkbase if you decide to share
your app. The icon is a 36 x 36 PNG file named appIcon.png. I have created a simple icon
for our sample app (please don't judge my art skills):

To use the icon, follow these steps:

1. Navigate to Apps | Manage Apps
2. Click on Edit properties next to our app, Implementing Splunk App One
3. Click on Upload asset and select the file
4. Click on Save

Our icon will now appear on the launcher screen, like the following screenshot:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using custom CSS
In earlier versions of Splunk, you could utilize CSS stylesheets to override the default
look of a Splunk application. One common element to change was the application icon
in the application bar. You could follow these steps to do just that:

1. First, create a file named application.css. This file will be loaded on every
dashboard of the application containing it. The CSS is listed later in this section.
As of Splunk Version 4.3.2, the first time application.css is added to an app of
Version 4.3.2, a restart is required before the file is served to the users. Subsequent
updates do not require a restart.

2. Next, create a file named appLogo.png. This file can be called anything, as we will
reference it explicitly in our CSS file.

3. For each file, follow the same steps as for uploading the launcher icon:
1. Navigate to Apps | Manage Apps
2. Click on Edit properties next to our app, Implementing Splunk App One
3. Click on Upload asset and select the file
4. Click on Save

As of Splunk version 6.2, this feature was not supported. You should check back at https
://www.splunk.com for updates on this feature.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://www.splunk.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

Using custom HTML
In some apps, you will see static HTML blocks. This can be accomplished using both
simple and complex dashboards.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Custom HTML in a simple dashboard
In a simple dashboard, you can simply insert an <html> element inside a <row> element
(inside a dashboard tag, of course) and include static HTML inline. For example, after
uploading an image named graph.png, the following block can be added to any dashboard:

<dashboard>
<row>
<html>
<table>
<tr>
<td></td>
<td>
<p>Lorem ipsum ...</p>
<p>Nulla ut congue ...</p>
<p>Etiam pharetra ...</p>
</td>
</tr>
</table>
</html>
</row>
<dashboard>

The XML would render this panel:

This approach has the advantage that no other files are needed. The disadvantage,
however, is that you cannot build the HTML document in an external program and
upload it untouched.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

You can also reference custom CSS using this method by adding classes to
application.css and then referencing those classes in your HTML block.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using server-side include in a complex
dashboard
You can also develop static pages as HTML documents, referencing other files in the
same directory. Let's build a slightly more complicated page using graph.png, and also a
style from application.css, as follows:

1. Place graph.png and application.css into a directory.
2. Create a new HTML file. Let's name it intro.html.
3. Add any styles for your page to application.css.
4. Upload the new HTML file and the modified CSS file.
5. Create the dashboard referencing the HTML file.

Starting with the HTML from our previous example, let's make it a complete document.
Move the image to a CSS style and add a class to our text, like this:

<html>
<head>
<link rel="stylesheet" type="text/css"
href="application.css" />
</head>
<body>
<table>
<tr>
<td class="graph_image"></td>
<td>
<p class="lorem">Lorem ipsum ...</p>
<p class="lorem">Nulla ut congue ...</p>
<p class="lorem">Etiam pharetra ...</p>
</td>
</tr>
</table>
</body>
</html>

Maintaining the classes for the navigation bar, add our page classes to the application
CSS, like this:

.appHeaderWrapper h1 {
display: none;
}
.appLogo {
height: 43px;
width: 155px;
padding-right: 5px;
float: left;

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

background: url(appLogo.png) no-repeat 0 0;
}
.appHeaderWrapper {
background: #612f00;
}
.lorem {
font-style:italic;
background: #CCCCCC;
padding: 5px;
}
.graph_image {
height: 306px;
width: 235px;
background: url(graph.png) no-repeat 0 0;
}

We can now open this file in a browser. Clipped for brevity, the page looks like this:

To include this external HTML document, we have to use advanced XML. We will
cover advanced XML more thoroughly in Chapter 9, Building Advanced Dashboards.

First, build a minimal dashboard like this:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

<view template="dashboard.html">
<label>Included</label>
<!-- chrome here -->
<module
name="ServerSideInclude"
layoutPanel="panel_row1_col1">
<param name="src">intro.html</param>
</module>
</view>

All simple XML dashboards are converted to advanced XML behind the scenes. We
will take advantage of this later.

Now, we upload our files as we did earlier under the Customizing the launcher icon
section. The page should render nearly identically to how the file did in the browser,
with the addition of the border around the panel:

A few things to note from this overly simplified example are as follows:

1. Your CSS classes may end up merging with styles included by Splunk in
unexpected ways. Using the developer tools in any modern browser will help
greatly.

2. The navigation and dashboard title were excluded for brevity. They would
normally go where we see <!-- chrome here -->. This is interesting because there are
cases where you would want to exclude the navigation, something that cannot be
done with simple XML.

3. The static files, such as application.css, can be edited directly on the filesystem and
the changes will be seen immediately. This is not true for the dashboard XML file.
We will cover these locations later in the App directory structure section.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Object permissions
Almost all objects in Splunk have permissions associated with them. These permissions
essentially have the following three options:

Private: Only the user that created the search can see or use the object, and only in
the app where it was created
App: All users that have permission to read an object may use that object in the
context of the app that contains the object
Global: All users that have permission to read an object may use that object in any
app

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

How permissions affect navigation
To see a visible instance of permissions in action, let's look at our navigation.

In our application, Implementing Splunk App One, our navigation looks like this:

If you recall the navigation XML we built earlier, this menu is controlled by the
following XML:

<collection label="Views">
<view source="unclassified" />
</collection>

There is no mention of any of these dashboards. This is where they are coming from:

Advanced Charting is inherited from the Search app. Its permissions are set to
Global.
Included is from this app. Its permissions are set to App.
Google Maps is inherited from the Google Maps app. Its permissions are set to
Global.

If the permissions of a dashboard or search are set to Private, a green dot appears next
to the name in the navigation.

Dashboards or searches shared from other apps can also be referenced by name.

For example, most apps, including ours, will include a link to flashtimeline, which
appears as Search, the label in that dashboard's XML:

<view name="flashtimeline" />

This allows us to use this dashboard in the context of our app so that all the other
objects that are scoped solely to our app will be available.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

How permissions affect other objects
Almost everything you create in Splunk has permissions. To see all objects, navigate to
Settings | All configurations:

Everything with the value system in the App column ships with Splunk. These items live
in the $SPLUNK_HOME/etc/system directory. We will cover these different configuration types in
Chapter 11, Configuring Splunk, but the important takeaway is that the Sharing settings
affect nearly everything.

When you create new objects and configurations, it is important to share all related
objects. For instance, in Chapter 7, Extending Search, we created lookups.

It is important that all three parts of the lookup definition are shared appropriately, or
users will be presented with error messages.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Correcting permission problems
If you see errors about permissions, it is more than likely that some object still has
Sharing set to Private, or is shared at the App level but needs to be Global.

A common point of confusion is when an app is created within the Splunk search app,
but with the expectation that they will be visible within another app.

Follow these steps to find the object:

1. Navigate to Settings | All configurations.
2. Change App context to All.
3. Sort by using the Sharing status. Click twice so that Private objects come to the

top.
4. If there are too many items to look through, filter the list by adding terms to the

search field in the upper-right corner, or changing the App context value.
5. Fix the permissions appropriately. In most cases, the permissions you want will

look like this:

You should choose All apps with care. For instance, when building a lookup, it is
common to share the lookup table file and lookup definition across all apps. This
allows the lookup to be used in searches by other apps. It is less common to share the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

automatic lookup, as this can affect the performance in other apps in unforeseen ways.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

App directory structure
If you do much beyond building searches and dashboards, sooner or later you will need
to edit files in the filesystem directly. All apps live in $SPLUNK_HOME/etc/apps/. On UNIX
systems, the default installation directory is /opt/splunk. On Windows, the default
installation directory is C:\Program Files\Splunk.

This is the value that $SPLUNK_HOME will inherit on startup.

Stepping through the most common directories, we have:

appserver: This directory contains files that are served by the Splunk web app.
The files that we uploaded in earlier sections of this chapter are stored in
appserver/static.
bin: This is where command scripts belong. These scripts are then referenced in
commands.conf. This is also a common location for scripted inputs to live, though they
can live anywhere, although best practice it to keep all scripts contained in the bin
folder.
default and local: These two directories contain the vast majority of the
configurations that make up an app.

We will discuss these configurations and how they merge in Chapter 11,
Configuring Splunk.

Here is a brief look:

Newly created, unshared objects live in:

$SPLUNK_HOME/etc/users/USERNAME/APPNAME/local

Once an object is shared at the App or Global level, the object is moved to
the following path:

$SPLUNK_HOME/etc/APPNAME/local

Files in the local directory take precedence over their equivalent value in
default

Dashboards live in (default|local)/data/ui/views
Navigations live in (default|local)/data/ui/nav

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

When editing files by hand, my general rule of thumb is to place
configurations in the local directory unless the app will be redistributed.
We'll discuss this in more detail in the Adding your app to Splunkbase
section.

lookups: Lookup files belong in this directory. They are then referenced in
(default|local)/transforms.conf.
metadata: The files default.meta and local.meta in this directory tell Splunk how
configurations in this app should be shared. It is generally much easier to edit these
settings through the Settings interface.

Let's look at the contents of our is_app_one app, which we created earlier:

appserver/static/appIcon.png
appserver/static/application.css
appserver/static/appLogo.png
appserver/static/graph.png
appserver/static/intro.html
bin/README
default/app.conf
default/data/ui/nav/default.xml
default/data/ui/views/README
local/app.conf
local/data/ui/nav/default.xml
local/data/ui/views/errors.xml
local/data/ui/views/included.xml
local/savedsearches.conf
local/viewstates.conf
metadata/default.meta
metadata/local.meta

The metadata/default.meta file and all files in default/ were provided in the template app.
We created all the other files. With the exception of the PNG files, all files are plain
text.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Adding your app to Splunkbase
Splunkbase (https://splunkbase.splunk.com/) is a wonderful community-supported site that
Splunk put together for users and Splunk employees alike to share Splunk apps. The
apps on Splunkbase are a mix of fully realized apps, add-ons of various sorts, and just
example code.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://splunkbase.splunk.com/
https://technet24.ir
https://technet24.ir
https://technet24.ir

Preparing your app
Before we upload our app, we need to make sure that all our objects are shared
properly, move our files to default, and configure app.conf.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Confirming sharing settings
To see sharing settings for all our objects, navigate to Settings | All configurations and
set the App context option:

In the case of a self-contained app like ours, all objects should probably be set to App
under Sharing. If you are building an app to share lookups or commands, the value
should be Global.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Cleaning up our directories
When you upload an app, you should move everything out of local and into default. This
is important because all changes that a user makes will be stored in local.

When your app is upgraded, all files in the app (except local files) will be replaced,
and the user's changes will be lost. The following Unix commands illustrate what needs
to be done:

1. First, let's copy our app to another location, perhaps /tmp:

cp -r $SPLUNK_HOME/etc/apps/is_app_one /tmp/

2. Next, let's move everything from local to default. In the case of .xml files, we can
simply move the files; but .conf files are a little more complicated, and we need to
merge them manually. The following command does this:

cd /tmp/is_app_one
mv local/data/ui/nav/*.xml default/data/ui/nav/
mv local/data/ui/views/*.xml default/data/ui/views/
#move conf files, but don't replace conf files in default
mv -n local/*conf default/

3. Now, we need to merge any .conf files that remain in local. The only configuration
we have left is app.conf:

local/app.conf default/app.conf
[ui]
[launcher]
[package]
check_for_updates = 1
[install]
is_configured = 0
[ui]
is_visible = 1
label = Implementing Splunk
App One
[launcher]
author =
description =
version = 1.0

Configuration merging is additive, with any values from local added to the
values in default. In this case, the merged configuration would be as follows:

[install]

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

is_configured = 0
[ui]
Working with Apps
[198]
is_visible = 1
label = Implementing Splunk App One
[launcher]
author =
description =
version = 1.0
[package]
check_for_updates = 1

4. Place this merged configuration in default/app.conf and delete local/app.conf.

We will cover configuration merging extensively in Chapter 11, Configuring Splunk.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Packaging your app
To package an app, we need to be sure that there are a few values in default/app.conf, and
only then will we build the archive.

First, edit default/app.conf like this:

[install]
is_configured = 0
build = 1
[ui]
is_visible = 1
label = Implementing Splunk App One
[launcher]
author = My name
description = My great app!
version = 1.0
[package]
check_for_updates = 1
id = is_app_one

The identifier build is used in all URLs, so it should be incremented to defeat browser
caching and the identifier ID should be a unique value in Splunkbase—you will be
alerted if the value is not unique.

Next, we need to build a .tar file compressed with gzip. With a modern version of tar,
the command is simply the following:

cd /tmp
tar -czvf is_app_one.tgz is_app_one
#optionally rename as spl
mv is_app_one.tgz is_app_one.spl

The Splunk documentation (https://dev.splunk.com/view/webframework-developapps/SP-CAAAEMY)
covers this extensively, including hints and best practices.

||||||||||||||||||||

||||||||||||||||||||

https://dev.splunk.com/view/webframework-developapps/SP-CAAAEMY
https://technet24.ir
https://technet24.ir

Uploading your app
Now that we have our archive, all we have to do is send it up to Splunkbase. In version
7.0, submitting apps is done by pointing your browser to
https://splunkbase.splunk.com/new/ and following the directions there:

If your app meets the rigid criteria, and once the Splunk personnel approve your app, it
will appear in Splunkbase, ready for others to download.

To help get your app approved, you might want to consider AppInspect, which appraises your
Splunk app against a set of Splunk-defined criteria so that you can be assured of its quality and
robustness.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://splunkbase.splunk.com/new/
https://technet24.ir
https://technet24.ir
https://technet24.ir

Self-service app management
As we've seen within this chapter, Splunk apps are composed of dashboards, reports,
alerts, and workflows, all optimized for a particular purpose. Splunk add-ons are a type
of app that provide specific capabilities to other apps, such as getting data in, mapping
data, or providing saved searches and macros.

When it comes to the Splunk Cloud environment, only pre-approved apps and add-ons
can be installed. Approved apps are those apps that have been examined by Splunk to
ensure they comply with the security requirements of Splunk Cloud.

Once deployed to the Cloud environment, management of an app starts with opening a
support ticket. Sometimes timing is not optimal and in some cases, a fee is involved. To
address this, there is the concept of self-service app management and the Splunk
Packaging Toolkit.

The Splunk Packaging Toolkit is the tool for authoring, packaging, and validating your
Splunk app in a way that eases up app management, including installation, configuration,
and updating.

A note from the Splunk documentation:

"The Packaging Toolkit provides support for all phases of Splunk app lifecycle management. For Splunk app
developers, that means they can focus on building apps without concerning themselves with different
deployment topologies or the details of the deployment process"

Like an on-premise installation, app management in the cloud now allows you to update
your app directly, without relying on support services or even creating a support ticket.

Additionally, in version 7.0, there are a larger number of Splunk-approved apps in the
cloud, as well as support for multiple search head configurations.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Summary
In this chapter, we covered installing, building, customizing, and sharing apps. Apps are
a loose concept in Splunk, with many different purposes served by a simple directory of
files. Hopefully, we have covered the basics well enough for you to get started on your
own great apps. In later chapters, we will build even more complicated object types, as
well as custom code to extend Splunk in unique ways.

Updated as part of the latest versions of Splunk, we also covered self-service app
management.

In the next chapter, we will dig into advanced dashboards, covering what can be done
with Splunk alone, and what can be done with the help of a few popular apps.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Building Advanced Dashboards
In Chapter 5, Simple XML Dashboards, we covered building dashboards using simple
XML. We first used the wizards provided in Splunk and then edited the resultant XML
code. When you reach the limits of what can be accomplished with simple XML, one
option is to dive into Splunk's advanced XML.

In this chapter, we will explore advanced XML practices while also discussing the
following topics:

The pipe symbol
Using top to show common field values
Using stats to aggregate values
Using chart to turn data
Using timechart to show values over time
Working with fields

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Reasons for working with advanced
XML
Here are a few reasons to use advanced XML:

More control over layout: With advanced XML, you have better control over
where form elements and chrome appear and somewhat improved control over the
placement of the output.
Custom drilldowns: It is only possible to create custom drilldowns from tables
and charts using advanced XML.
Access to more parameters: The modules in simple XML actually use advanced
XML modules, but many parameters are not exposed. Sometimes, the desire is
actually to disable features, and this is only possible using advanced XML.
Access to more modules: There are many modules that are not available when we
are using simple XML, for example, the search bar itself. All extra modules
provided by the apps at Splunkbase, for example, Google Maps, are for use in
advanced XML.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Reasons for not working with advanced
XML
There are also a number of reasons not to work with advanced XML:

Steep learning curve: Depending on what technologies you are comfortable
working with, and possibly on how well the rest of this chapter is written, the
learning curve for advanced XML can be steep.
No direct control over HTML: If there is a particular HTML that you want to
produce from search results, this may not be as simple as you had hoped. Short of
writing your own module, you must work within the bounds of the options
provided to the existing modules, modify the CSS with the application, or modify
the HTML code using JavaScript.
No direct control over logic: If you need specific things to happen when you click
on specific table cells, particularly based on other values in the same row, this can
only be accomplished by modifying the document using JavaScript. This is
possible, but it is not well documented. Examples can be found at https://splunkbase.
splunk.com, both in answer posts and in sample applications. Check out
customBehaviors in the third-party app called Sideview Utils (LGPL) for an
alternative.

If you have specific layout or logic requirements, you may be better served by using one
of the Splunk APIs available at https://dev.splunk.com and writing applications in your
favorite language.

||||||||||||||||||||

||||||||||||||||||||

https://splunkbase.splunk.com
https://dev.splunk.com
https://technet24.ir
https://technet24.ir

Development process
When building dashboards, my approach is generally as follows:

1. Create the required queries.
2. Add the queries to a simple XML dashboard. Use the GUI tools to tweak the

dashboard as much as possible. If possible, finish all graphical changes at this
stage.

3. If form elements are needed, convert the simple XML dashboard to a form. If
possible, make all logic work with simple XML.

4. Convert the simple XML dashboard to an advanced XML dashboard. There is no
reverse conversion possible, so this should be done as late as possible and only if
needed.

5. Edit the advanced XML dashboard accordingly.

The idea is to take advantage of the Splunk GUI tools as much as possible, letting the
simple XML conversion process add all of the advanced XML that you
would otherwise have to find yourself. We covered steps 1-3 in the previous chapters.
Step 4 is covered in the Converting simple XML to advanced XML section.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Advanced XML structure
Before we dig into the modules provided, let's look at the structure of XML itself and
cover a couple of concepts.

The tag structure of an advanced XML document is essentially as follows:

view
module
param
...
module
...

The main concept of Splunk's XML structure is that the effects of the upper modules
flow downstream to the child modules.

This is a vital concept to understand. The XML structure has almost nothing to do with
layout and everything to do with the flow of data.

Let's look at the following simple example:

<view
template="dashboard.html">
<label>Chapter 9, Example 1</label>
<module
name="HiddenSearch"
layoutPanel="panel_row1_col1"
autoRun="True">
<param name="earliest">-99d</param>
<param name="search">error | top user</param>
<module name="SimpleResultsTable"></module>
</module>
</view>

This document produces the following sparse dashboard with one panel:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Let's step through this example line by line:

<view: This opens the outer tag. This tag begins all advanced XML dashboards.
template="dashboard.html">: This sets the base HTML template. Dashboard layout
templates are stored in the following path:

$SPLUNK_HOME/share/splunk/search_mrsparkle/templates/view/

Among other things, the templates define the panels available for use in layoutPanel.

<label>Chapter 9, Example 1</label>: This sets the label used for navigation.
<module: This begins our first module declaration.
name="HiddenSearch": This is the name of the module to use. HiddenSearch runs a search
but displays nothing, relying instead on child modules to render the output.
layoutPanel="panel_row1_col1": This states where in the dashboard to display our panel.
It seems strange to give this attribute to a module that displays nothing, but
layoutPanel must be specified on every immediate child of view. See the
Understanding layoutPanel section for more details.
autoRun="True">: Without this attribute, the search does not run when the dashboard
loads, and instead waits for user interaction from form elements. Since we have no
form elements, we need this attribute in order to see the results.
<param name="earliest">-99d</param>: It is very important to specify a value at the
earliest as the query will, by default, run over all time. param values affect only the
module tag they are nested directly inside.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

<param name="search">error | top user</param>: This is the actual query to run.
<module name="SimpleResultsTable"></module>: This module simply displays a table of the
events produced by a parent module. Since there are no param tags specified, the
defaults for this module are used.
</module>: Close the HiddenSearch module. This is required for valid XML, but it also
implies that the scope of influence of this module is closed. To reiterate, only the
downstream modules of the HiddenSearch module receive the events it produces.
</view>: This closes the document.

This is a very simple dashboard. It lacks navigation, form elements, job status, and
drilldowns. Adding all of these things is initially somewhat complicated to understand.
Luckily, you can build a dashboard in simple XML, convert it to advanced XML, and
then modify the provided XML as needed.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Converting simple XML to advanced
XML
Let's go back to one of the dashboards we created in Chapter 5, Simple XML Dashboards
—errors_user_form.

We built this before our app, so it still lives in the Search app.

Just to refresh your memory, the simple XML code behind this dashboard looks like
this:

<?xml version='1.0' encoding='utf-8'?>
<form>
<fieldset>
<input type="text" token="user">
<label>User</label>
</input>
<input type="time" />
</fieldset>
<label>Errors User Form</label>
<row>
<chart>
<searchString>
sourcetype="impl_splunk_gen" loglevel=error user="$user$" | timechart count as "Error count" by network
</searchString>
<title>
Dashboard - Errors - errors by network timechart
</title>
<option name="charting.chart">line</option>
</chart>
</row>
<row>
<chart>
<searchString>
sourcetype="impl_splunk_gen" loglevel=error user="$user$" | bucket bins=10 req_time | stats count by req_time
</searchString>
<title>
Error count by req_times
</title>
<option name="charting.chart">pie</option>
</chart>
<chart>
<searchString>
sourcetype="impl_splunk_gen" loglevel=error user="$user$" | stats count by logger
</searchString>
<title>Errors by logger</title>
<option name="charting.chart">pie</option>
</chart>
</row>
<row>
<event>

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

<searchString>
sourcetype="impl_splunk_gen" loglevel=error user="$user$"
</searchString>
<title>Error events</title>
<option name="count">10</option>
<option name="displayRowNumbers">true</option>
<option name="maxLines">10</option>
<option name="segmentation">outer</option>
<option name="softWrap">true</option>
</event>
</row>
</form>

In simple XML, the layout and logic flow are tied together. Before simple XML is
rendered to the user, Splunk first dynamically converts it to advanced XML in memory.
We can access advanced XML by appending ?showsource=advanced to any URL, as follows:

http://localhost:8000/en-US/app/is_app_one/errors?showsource=advanced

This produces a page (somewhat different from the earlier version of Splunk, when you
used showsource=1) similar to this:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

This is followed by a textbox containing raw XML, as shown here:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

An abbreviated version of the advanced XML version of errors_user_form follows:

<view
... template="dashboard.html">
<label>Errors User Form</label>
<module name="AccountBar" layoutPanel="appHeader"/>
<module name="AppBar" layoutPanel="navigationHeader"/>
<module name="Message" layoutPanel="messaging">
...<module name="Message" layoutPanel="messaging">
...<module name="TitleBar" layoutPanel="viewHeader">
...<module name="ExtendedFieldSearch" layoutPanel="viewHeader">
<param name="replacementMap">
<param name="arg">
<param name="user"/>
</param>
</param>
<param name="field">User</param>
<param name="intention">
... <module name="TimeRangePicker">
<param name="searchWhenChanged">False</param>
<module name="SubmitButton">
<param name="allowSoftSubmit">True</param>
<param name="label">Search</param>
<module
name="HiddenSearch"
layoutPanel="panel_row1_col1"
group="Dashboard - Errors - errors by network timechart"
autoRun="False">
<param name="search">
sourcetype="impl_splunk_gen"
loglevel=error user="$user$"
| timechart count as "Error count" by network
</param>
<param name="groupLabel">

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Dashboard - Errors - errors by network timechart
</param>
<module name="ViewstateAdapter">
<param name="suppressionList">
<item>charting.chart</item>
</param>
<module name="HiddenFieldPicker">
<param name="strictMode">True</param>
<module name="JobProgressIndicator">
<module name="EnablePreview">
<param name="enable">True</param>
<param name="display">False</param>
<module name="HiddenChartFormatter">
<param name="charting.chart">line</param>
<module name="JSChart">
<param name="width">100%</param>
<module name="Gimp"/>
<module name="ConvertToDrilldownSearch">
<module name="ViewRedirector">
... </module>
<module name="ViewRedirectorLink">
... </module>
<module
name="HiddenSearch"
layoutPanel="panel_row2_col1"
group="Error count by req_times"
autoRun="False">
<param name="search">
sourcetype="impl_splunk_gen" loglevel=error
user="$user$"
| bucket bins=10 req_time | stats count by req_time
</param>
<param name="groupLabel">Error count by req_times</param>
... </module>
<module
name="HiddenSearch"
layoutPanel="panel_row2_col2"
group="Errors by logger"
autoRun="False">
<param name="search">
sourcetype="impl_splunk_gen"
loglevel=error user="$user$"
| stats count by logger
</param>
<param name="groupLabel">Errors by logger</param>
... </module>
<module
name="HiddenSearch"
layoutPanel="panel_row3_col1"
group="Error events"
autoRun="False">
<param name="search">
sourcetype="impl_splunk_gen"
loglevel=error
user="$user$"
</param>
<param name="groupLabel">Error events</param>
<module name="ViewstateAdapter">
... <module name="HiddenFieldPicker">
... <module name="JobProgressIndicator"/>
<module name="Paginator">
<param name="count">10</param>

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

... <module name="EventsViewer">

... <module name="Gimp"/>

... </module>

...
</view>

This XML code is more verbose than we actually need, but luckily, it is easier to delete
code than to create it.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Module logic flow
The main concept of nested modules is that parent (upstream) modules affect child
(downstream) modules. Looking at the first panel, the full module flow is as follows:

<module name="ExtendedFieldSearch">
<module name="TimeRangePicker">
<module name="SubmitButton">
<module name="HiddenSearch">
<module name="ViewstateAdapter">
<module name="HiddenFieldPicker">
<module name="JobProgressIndicator">
<module name="EnablePreview">
<module name="HiddenChartFormatter">
<module name="JSChart">
<module name="ConvertToDrilldownSearch">
<module name="ViewRedirector">
<module name="ViewRedirectorLink">

A reference to the modules installed in your instance of Splunk is available at /modules. In
my case, the full URL is as follows:

http://localhost:8000/en-US/modules

Let's step through these modules in turn and discuss what each of them accomplishes:

ExtendedFieldSearch: This provides a textbox for entry. The parameters for this
module are complicated and represent arguably the most complicated aspect of
advanced XML intentions. Intentions affect child modules, specifically HiddenSearch.
We will cover them in the Using intentions section.
TimeRangePicker: This provides the standard time picker. It affects child HiddenSearch
modules that do not have times specified either using param values or in the query
itself. The precedence of times used in a query is as follows:

Times specified in the query itself
Times specified via the earliest and latest param values to the search module
A value provided by TimeRangePicker

SubmitButton: This draws the Search button and fires off any child search modules
when clicked on.
HiddenSearch: As we saw before, this runs a query and produces events for
downstream modules. In this case, autoRun is set to false so that the query waits for
the user.
ViewstateAdapter: A viewstate describes what settings a user has selected in the GUI,
for instance, sort order, page size, or chart type. Any time you change a chart

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

setting or pick a time range, you create a viewstate that is saved by Splunk. This
module is used to access an existing viewstate or to suppress specific viewstate
settings. By suppressing specific settings, the default or specified values of child
modules will be used instead. This module is rarely needed unless you are using a
saved search with an associated viewstate.
HiddenFieldPicker: This module limits what fields are accessible by downstream
modules. This is useful when we run a query that produces many fields but only
certain fields are needed. This affects the fields shown below events in an events
listing or the columns displayed in a table view. This module is rarely needed.
JobProgressIndicator: This module displays a progress bar until the job is completed.
In this case, because of the placement of the module in XML, it appears above the
results. This module does not affect downstream modules, so it can be listed on its
own.
EnablePreview: This module allows you to specify whether searches should refresh
with incomplete results while the query is running.
The default appears to be true for Splunk-provided modules, but this module
allows you to control this behavior. This module does not affect downstream
modules, so it can be listed on its own.
Disabling the preview can improve the performance dramatically but it provides
no information until the query is complete, which is less visually appealing,
particularly during a long-running query.

HiddenChartFormatter: This module is where the chart settings are specified. These
settings affect any child modules that draw charts.
JSChart: This draws a chart using JavaScript. Prior to Splunk 4.3, all charts were
drawn using Flash. The FlashChart module is still included for backward
compatibility.
ConvertToDrilldownSearch: This module takes the values from a click on a parent
module and produces a query based on the query that produced the results. This
usually works, but not always, depending on the complexity of the query. We will
build a custom drill-down search later.
ViewRedirector: This module accepts the query from its upstream module and
redirects the user to use viewTarget with the query specified in the URL. Usually,
flashtimeline is specified as viewTarget param, but it could be any dashboard. The
query affects a HiddenSearch or SearchBar module.
ViewRedirectorLink: This module sends the user to a new search page with the search
results for this module.

Thinking about what we have seen in this flow, we can say that modules can do the
following things:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Generate events
Modify a query
Modify the behavior of a downstream module
Display an element on the dashboard
Handle actions produced by clicks

It is also possible for a module to do the following:

Post-process the events produced by a query
Add custom JavaScript to the dashboard

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Understanding layoutPanel
In an advanced XML dashboard, the value of the layoutPanel attribute determines which
panel a module is drawn to. This separation of logic and layout can be useful—for
instance, allowing you to reuse data generated by a query with multiple modules—but
displays the results on different parts of the page.

A few rules for this attribute are as follows:

The layoutPanel attribute must appear on all immediate children of <view>.
The layoutPanel attribute can appear on descendant child module tags.
If a module does not have a layoutPanel attribute, it will inherit the value from the
closest upstream module that does.
Modules that have visible output are added to their respective layoutPanel attributes
in the order they appear in, in the XML.
Modules flow in the panel they are placed in. Most modules take the entire width
of the panel, but some do not, and flow from left to right before wrapping.

Looking through our XML, we find these elements with the layoutPanel attribute, as
shown here:

<module name="AccountBar" layoutPanel="appHeader"/>
<module name="AppBar" layoutPanel="navigationHeader"/>
<module name="Message" layoutPanel="messaging">
<module name="TitleBar" layoutPanel="viewHeader">
<module name="ExtendedFieldSearch" layoutPanel="viewHeader">
<module name="TimeRangePicker">
<module name="SubmitButton">
<module name="HiddenSearch" layoutPanel="panel_row1_col1">...
<module name="HiddenSearch" layoutPanel="panel_row2_col1">...
<module name="HiddenSearch" layoutPanel="panel_row2_col2">...
<module name="HiddenSearch" layoutPanel="panel_row3_col1">
...

The first set of layoutPanel values are panels included in the chrome of the page. This
displays the account information, navigation, and messages to the user. The second set
of modules makes up the title and form elements. Note that TimeRangePicker and SubmitButton
have no layoutPanel value but inherit from ExtendedFieldSearch.

The results panels all begin with a HiddenSearch module. All the children of each of these
modules inherit this layoutPanel value.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Panel placement
For your dashboard panels, you will almost always use a layoutPanel value of the
panel_rowX_colY form.

A simple visualization of the layout produced by our modules would look similar to the
following screenshot:

In our simple XML version of this dashboard, the layout was tied directly to the order of
the XML, as shown here:

<row>
<chart></chart>
</row>
<row>
<chart></chart>
<chart></chart>
</row>
<row>
<event></event>
</row>

Just to reiterate, the simple XML structure translates to the following code:

<row>
<chart></chart> == panel_row1_col1
</row>
<row>
<chart></chart> == panel_row2_col1
<chart></chart> == panel_row2_col2
</row>
<row>
<event></event> == panel_row3_col1
</row>

There is another extension available, _grp1, that allows you to create columns inside a
panel. We will try that out in the Creating a custom drill-down section later.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Reusing a query
One example of separating layout from data would be using a single query to populate
both a table and a chart.

The advanced XML for this can look like the following code:

<view template="dashboard.html">
<label>Chapter 9 - Reusing a query</label>
<module
name="StaticContentSample"
layoutPanel="panel_row1_col1">
<param name="text">Text above</param>
</module>
<module
name="HiddenSearch"
layoutPanel="panel_row1_col1"
autoRun="True">
<param name="search">
sourcetype="impl_splunk_gen" loglevel=error | top user
</param>
<param name="earliest">-99d</param>
<module name="HiddenChartFormatter">
<param name="charting.chart">pie</param>
<module name="JSChart"></module>
<module
name="StaticContentSample"
layoutPanel="panel_row1_col1">
<!-- this layoutPanel is unneeded, but harmless -->
<param name="text">Text below</param>
</module>
</module>
<module name="SimpleResultsTable"
layoutPanel="panel_row1_col2"></module>
</module>
</view>

This XML renders a dashboard similar to the following screenshot:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

There are some things to notice in this XML:

The data produced by HiddenSearch is used by both child modules.
JSChart inherits layoutPanel="panel_row1_col1" from HiddenSearch.
SimpleResultsTable has its own layoutPanel attribute set to panel_row1_col2, so the table
draws to the right.
Both StaticContentSample modules specify layoutPanel="panel_row1_col1" and, therefore,
appear in the same panel as the chart. Even though they are at different depths in
the XML, the order drawn follows the order seen in the XML.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using intentions
Intentions allow you to affect downstream searches using values provided by other
modules, for instance, form fields or the results of a click. There are a number of
available intention types, but we will cover the two most common ones, stringreplace and
addterm. You can see examples of other types of intentions in the UI examples app
available at http://splunkbase.com.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://splunkbase.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

stringreplace
This is the most common intention to use and maps directly to the only available action
in simple XML-variable replacement. Let's look at our search field from our advanced
XML example:

<module name="ExtendedFieldSearch" layoutPanel="viewHeader">
<param name="replacementMap">
<param name="arg">
<param name="user"/>
</param>
</param>
<param name="field">User</param>
<param name="intention">
<param name="name">stringreplace</param>
<param name="arg">
<param name="user">
<param name="fillOnEmpty">True</param>
</param>
</param>
</param>

Stepping through the param instances, we have the following terms and their descriptions:

field: This is the label for the field displayed in the dashboard.
replacementMap: This parameter names the variable that the ExtendedFieldSearch module
is creating. I have been told that the nested nature means nothing, and we should
simply copy and paste the entire block of XML, changing nothing but the value of
the deepest param tag, in this case to user.
intention: Intentions have specific structures that build blocks of queries from
structured XML. In the case of stringreplace (which is the most common use case),
we can essentially copy the entire XML and, once again, change nothing but the
value of the third-level param, which is currently user. The fillOnEmpty value
determines whether to make the substitution when the user variable is empty.
All of this code simply tells us to replace $user$ in any searches with the value of
the input field. Our first HiddenSearch value looks like the following:

<module name="HiddenSearch" ...
<param name="search">
sourcetype="impl_splunk_gen"
loglevel=error user="$user$"
| timechart count as "Error count" by network
</param>

The value of $user$ will be replaced and the query will be run.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

If you want to see exactly what is happening, you can insert a SearchBar module as a child
of the form elements, and it will render the resultant query. For example, see the code of
the drilldown_chart1 dashboard in the UI examples app available at http://splunkbase.com.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://splunkbase.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

addterm
This intention is useful to add search terms to a query with or without user interaction.
For example, let's say you always want to ensure that a particular value of the field
source is queried. You can then modify the query that will be run, appending a search
term. Here is an example from the advanced_lister_with_ dashboard.

The searchbar in the UI examples app is available at http://splunkbase.com. The following
code encapsulates this discussion:

<module name="HiddenIntention">
<param name="intention">
<param name="name">addterm</param>
<param name="arg">
<param name="source">*metrics.log</param>
</param>
<!-- tells the addterm intention to put our term in the first search clause no matter what. -->
<param name="flags"><list>indexed</list></param>
</param>

Stepping through the param instances, we have the following terms and their descriptions:

name: This parameter sets the type of intention—in this case, addterm.
arg: This is used to set the field to add to the query.
The nested param tag sets the fieldname and value to use in the query.
In this case, source="*metrics.log" is added to the query.
Variables can be used in either the name attribute or body of this nested param tag. We
will see an example of this under the Creating a custom drilldown section.

flags: Every example of addterm that I can find includes this attribute exactly as
written. It essentially says that the term to be added to the search should be added
before the first pipe symbol and not at the end of the full query.

For example, consider the following query:

error | top logger

This param tag would amend our query like this:

error source="*metrics.log" | top logger

||||||||||||||||||||

||||||||||||||||||||

http://splunkbase.com
https://technet24.ir
https://technet24.ir

Creating a custom drilldown
A drilldown is a query built using values from a previous query. The
ConvertToDrilldownSearch module will build a query automatically from the table or graph
that it is nested inside. Unfortunately, this works well only when the query is fairly
simple and when you want to see raw events. To build a custom drilldown, we will
combine intentions and the nested nature of modules.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Building a drilldown to a custom query
Looking back at our chart in the Reusing a query section, let's build a custom drilldown
that shows the top instances of another field when it is clicked on.

Here is an example dashboard that draws a chart and then runs a custom query when
clicked on:

<view template="dashboard.html">
<label>Chapter 9 - Drilldown to custom query</label>
<!-- chrome -->
<module
name="HiddenSearch"
layoutPanel="panel_row1_col1"
autoRun="True"
group="Errors by user">
<param name="search">
sourcetype=* loglevel=error | top user
</param>
<param name="earliest">-99d</param>
<!-- draw the chart -->
<module name="HiddenChartFormatter">
<param name="charting.chart">pie</param>
<module name="JSChart">
<!-- nested modules are invoked on click -->
<!-- create a new query -->
<module name="HiddenSearch">
<param name="search">
sourcetype=* loglevel=error
| top logger
</param>
<!-- create an intention using the value from the chart.
Use addterm to add a user field to the query. -->
<module name="ConvertToIntention">
<param name="intention">
<param name="name">addterm</param>
<param name="arg">
<param name="user">$click.value$</param>
</param>
<param name="flags">
<item>indexed</item>
</param>
</param>
<!-- Send the user to flashtimeline
with the new query. -->
<module name="ViewRedirector">
<param name="viewTarget">flashtimeline</param>
</module>
</module>
</module>
</module>
</module>
</module>
</view>

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Everything should look very similar up until the JSChart module. Inside this module, we
find a HiddenSearch module. The idea is that the downstream modules of display modules
are not invoked until the display module is clicked on.

HiddenSearch is used to build a query in this case, but instead of the query being handed to
a display module, it is handed to the ViewRedirector module.

The magical field in all of this is click.value. This field contains the value that was
clicked on in the chart.

Let's look at what this dashboard renders:

The resultant query when we click on the slice of the pie for the user shelby looks like
the following screenshot:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Look back to the addterm section for more details on how this intention works.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Building a drilldown to another panel
Another option for a drilldown is to draw a new panel on the same dashboard. This lets
you create various drilldowns without redrawing the screen, which might be less jarring
to the user. Here is the XML code:

<?xml version="1.0"?>
<view template="dashboard.html">
<label>Chapter 9 - Drilldown to new graph</label>
<!-- chrome should go here -->
<module
name="HiddenSearch"
layoutPanel="panel_row1_col1"
autoRun="True"
group="Errors by user">
<param name="search">
sourcetype=impl_splunk_gen_more error loglevel=error | top user
</param>
<param name="earliest">-99d</param>
<module name="HiddenChartFormatter">
<param name="charting.chart">pie</param>
<!-- draw the first chart -->
<module name="JSChart">
<!-- the modules inside the chart will wait for
interaction from the user -->
<module name="HiddenSearch">
<param name="earliest">-99d</param>
<param name="search">
Sourcetypeimpl_splunk_gen_more error loglevel=error
user=$user$ | timechart count by logger
</param>
<module name="ConvertToIntention">
<param name="intention">
<param name="name">stringreplace</param>
<param name="arg">
<param name="user">
<param name="value">$click.value$</param>
</param>
</param>
</param>
<!-- print a header above the new chart -->
<module name="SimpleResultsHeader">
<param name="entityName">results</param>
<param name="headerFormat">
Errors by logger for $click.value$
</param>
</module>
<!-- draw the chart. We have not specified another
layoutPanel, so it will appear below the first
chart -->
<module name="HiddenChartFormatter">
<param name="charting.chart">area</param>
<param name="chart.stackMode">stacked</param>
<module name="JSChart"/>
</module>

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

</module>
</module>
</module>
</module>
</module>
</view>

Here's what the dashboard looks like after clicking on shelby in the pie chart:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Building a drilldown to multiple panels
using HiddenPostProcess
Taking the last dashboard further, let's build a number of panels from a single custom
drilldown query. As we covered in Chapter 5, Simple XML Dashboards, search results
can be post processed, allowing you to use the same query results in multiple ways. In
advanced XML, this is accomplished using the HiddenPostProcess module.

We will also add the chrome for our first complete dashboard. Here is an abbreviated
example. The complete dashboard is in the
Chapter9_drilldown_to_new_graph_with_postprocess.xml file in the Implementing Splunk App One app:

<view template="dashboard.html">
<Label>Chapter 9 - Drilldown to new graph with postprocess</label>
<!-- The chrome at the top of the dashboard
containing navigation and the app header -->
<module name="AccountBar" layoutPanel="appHeader"/>
<module name="AppBar" layoutPanel="navigationHeader"/>
<module name="Message" layoutPanel="messaging">
<param name="filter">*</param>
<param name="clearOnJobDispatch">False</param>
<param name="maxSize">1</param>
</module>
<module name="DashboardTitleBar" layoutPanel="viewHeader"/>
<module name="Message" layoutPanel="navigationHeader">
<param name="filter">splunk.search.job</param>
<param name="clearOnJobDispatch">True</param>
<param name="maxSize">1</param>
<param name="level">warn</param>
</module>
<! -- Begin our initial search
which will populate our pie chart -->
<module
name="HiddenSearch" layoutPanel="panel_row1_col1"
autoRun="True" group="Errors by user">
<param name="search">
sourcetype="impl_splunk_gen" loglevel=error | top user
</param>
<param name="earliest">-99d</param>
<module name="HiddenChartFormatter">
<param name="charting.chart">pie</param>
<module name="JSChart">
<!-- Initially, only the pie chart will be drawn
After a click on a user wedge, this nested query will run -->
<module name="HiddenSearch">
<param name="earliest">-24h</param>
<param name="search">
sourcetype="impl_splunk_gen" loglevel=error
user="$user$" | bucket span=30m _time
| stats count by logger _time

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

</param>
<module name="ConvertToIntention">
<param name="intention">
<param name="name">stringreplace</param>
<param name="arg">
<param name="user">
<param name="value">$click.value$</param>
...
<!-- The remaining modules are downstream from the pie chart
and are invoked when a pie wedge is clicked -->
<module name="SimpleResultsHeader"
layoutPanel="panel_row2_col1">
<param name="entityName">results</param>
<param name="headerFormat">
Errors by logger for $click.value$
</param>
</module>
<!-- The SingleValue modules -->
<module name="HiddenPostProcess">
<param name="search">
stats sum(count) as count by logger
| sort -count | head 1
| eval f=logger + " is most common (" + count + ")" |
table f </param>
<module name="SingleValue"
layoutPanel="panel_row2_col1"></module>
</module>
...
<!-- The chart -->
<module name="HiddenPostProcess">
<param name="search">
timechart span=30m sum(count) by logger
</param>
<module name="HiddenChartFormatter">
<param name="charting.chart">area</param>
<param name="chart.stackMode">stacked</param>
<module
name="JSChart"
layoutPanel="panel_row4_col1_grp1"/>
</module>
</module>
<!-- The table -->
<module name="HiddenPostProcess">
<param name="search">
stats sum(count) as count by logger
</param>
<module name="SimpleResultsTable"
layoutPanel="panel_row4_col1_grp2"/>
</module>
...
</module>
</view>

This dashboard contains the chrome, which is very useful as it displays the errors in
your intentions and query statements.

Let's step through the new queries. The initial query is the same and is shown here:

sourcetype="impl_splunk_gen" loglevel=error | top user

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The next query may seem strange, but there's a good reason for this:

sourcetype="impl_splunk_gen" loglevel=error user="$user$"
| bucket span=30m _time
| stats count by logger _time

If you look back at Chapter 6, Advanced Search Examples, we used buckets and stats to
slice events by _time and other fields. This is a convenient way to break down events for
post processing, where one or more of the post-process queries use timechart. This query
produces a row with the field count for every unique value of logger in each 30-minute
period.

Post processing has a limit of 10,000 events. To accommodate this limit, all aggregation
possible should be done in the initial query. Ideally, only what is needed by all child
queries should be produced by the initial query. It is also important to note that all fields
needed by post-process queries must be returned by the initial query.

The first HiddenPostProcess value builds a field for a module we haven't used yet,
SingleValue, which takes the first value it sees and renders that value in a rounded
rectangle. The following code shows this:

stats sum(count) as count by logger
| sort -count
| head 1
| eval f=logger + " is most common (" + count + ")"
| table f
The query is additive, so the full query for this module is essentially:
sourcetype="impl_splunk_gen" loglevel=error user="bob"
| bucket span=30m _time
| stats count by logger _time
| stats sum(count) as count by logger
| sort -count
| head 1
| eval f=logger + " is most common (" + count + ")"
| table f

The remaining SingleValue modules do similar work to find the count of unique loggers,
the maximum errors per hour, and the average errors per hour. To step through these
queries, simply copy each piece and add it to a query in the search bar.

Other things to notice in this dashboard are as follows:

grp builds columns inside a single panel, for instance, in
layoutPanel="panel_row4_col1_grp2"

SingleValue modules do not stack vertically but rather flow horizontally, overflowing
to the next line when the window width is reached

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

span is used in the bucket statement and is the minimum needed by any post-process
statements but as large as possible to minimize the number of events returned

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Third-party add-ons
There are many excellent apps available at http://splunkbase.com, a number of which
provide custom modules. We will cover two of the most popular, Google Maps and
Sideview Utils.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://splunkbase.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

Google Maps
As we saw in Chapter 8, Working with Apps, the Google Maps app provides a dashboard
and lookup to draw results on a map. The underlying module is also available to use in
your own dashboards.

Here is a very simple dashboard that uses the GoogleMaps module:

<?xml version="1.0"?>
<view template="search.html">
<!-- chrome -->
<label>Chapter 9 - Google Maps Search</label>
<module name="AccountBar" layoutPanel="appHeader"/>
<module name="AppBar" layoutPanel="navigationHeader"/>
<module name="Message" layoutPanel="messaging">
<param name="filter">*</param>
<param name="clearOnJobDispatch">False</param>
<param name="maxSize">1</param>
</module>
<!-- search -->
<module name="SearchBar" layoutPanel="splSearchControls-inline">
<param name="useOwnSubmitButton">False</param>
<module name="TimeRangePicker">
<param name="selected">Last 60 minutes</param>
<module name="SubmitButton">
<!-- map -->
<module
name="GoogleMaps"
layoutPanel="resultsAreaLeft"
group="Map" />
</module>
</module>
</module>
</view>

This code produces a search bar with a map under it, as seen here in the following
screenshot:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

When using the GoogleMaps module, you would usually convert a set of values to
geographic coordinates. This is usually accomplished using the geoip lookup (for
examples, see Chapter 8, Working with Apps) to convert IP addresses to locations or by
using a custom lookup of some sort.

Just to show that the data can come from anywhere, let's make a graph by setting the _geo
field on events from one of our example source types:

sourcetype="impl_splunk_gen_more" req_time
| eventstats max(req_time) as max
| eval lat=(req_time/max*360)-180
| eval lng=abs(lat)/2-15
| eval _geo=lng+","+lat

This query produces a V from our random req_time field, as shown in the following
screenshot. See the map documentation at http://www.splunkbase.com for more information
about the _geo field:

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.splunkbase.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

This is a very simplistic example that uses the default settings for nearly everything.

For a more complete example, see the Google Maps dashboard included with the
Google Maps app. You can see the source code in the manager or using the showsource
attribute. On my server, that URL is http://localhost:8000/en-US/app/maps/maps?

showsource=advanced.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Sideview Utils
Sideview Utils is a third-party app for Splunk that provides an alternative set of
modules for most of what you need to build an interactive Splunk dashboard. These
modules remove the complexity of intentions and make it much easier to build forms,
make it possible to use variables in HTML, and make it much simpler to handle values
between panels and dashboards.

We will use a few of the modules to build forms and link multiple dashboards together
based on URL values.

An older but still functional version of SideviewUtils is available through Splunkbase.
You can download the latest version from http://sideviewapps.com/, which adds a number
of features, including a visual editor to assemble dashboards.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://sideviewapps.com/
https://technet24.ir
https://technet24.ir
https://technet24.ir

The Sideview search module
Let's start with a simple search:

<?xml version="1.0"?>
<view template="dashboard.html">
<!-- add sideview -->
<module layoutPanel="appHeader" name="SideviewUtils"/>
<!-- chrome -->
<label>Chapter 9 - Sideview One</label>
<module name="AccountBar" layoutPanel="appHeader"/>
<module name="AppBar" layoutPanel="navigationHeader"/>
<module name="Message" layoutPanel="messaging">
<param name="filter">*</param>
<param name="clearOnJobDispatch">False</param>
<param name="maxSize">1</param>
</module>
<!-- search -->
<module
name="Search"
autoRun="True"
group="Chapter 9 - Sideview One"
layoutPanel="panel_row1_col1">
<param name="earliest">-99d</param>
<param name="search">source="impl_splunk_gen_more" | top user</param>
<!-- chart -->
<module name="HiddenChartFormatter">
<param name="charting.chart">pie</param>
<module name="JSChart"/>
</module>
</module>
</view>

This dashboard renders identically to the first panel, previously described in the
Building a drilldown to a custom query section. There are two things to notice in this
example:

The SideviewUtils module is needed to include the code needed by all Sideview
Utils apps
We use the alternative Search module as a replacement for the HiddenSearch module to
illustrate our first SideviewUtils module

In this simplistic example, HiddenSearch still works.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Linking views with Sideview
Starting from our simple dashboard, let's use the Redirector module to build a link. This
link could be to anything, but we will link to another Splunk dashboard, which we will
build next. Here's the XML code:

...
<module name="JSChart">
<module name="Redirector">
<param name="arg.user">$click.value$</param>
<param name="url">chapter_9_sideview_2</param>
</module>
</module>
...

After clicking on shelby, a new URL is built using the user value. In my case, the URL
is:

http://localhost:8000/en-US/app/is_app_one/chapter_9_sideview_2?user=shelby

The dashboard referenced does not exist yet, so this URL returns an error.

Let's create the second dashboard now.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Sideview URLLoader
The URLLoader module provides us with the ability to set variables from the query string
of a URL—a very useful feature. For our next dashboard, we will draw a table showing
the error counts for the user value provided in the URL:

<view template="dashboard.html">
<!-- add sideview -->
<module name="SideviewUtils" layoutPanel="appHeader"/>
<!-- chrome -->
 <Label>Chapter 9 - Sideview Two</Label>
<module name="AccountBar" layoutPanel="appHeader"/>
<module name="AppBar" layoutPanel="navigationHeader"/>
<module name="Message" layoutPanel="messaging">
<param name="filter">*</param>
<param name="clearOnJobDispatch">False</param>
<param name="maxSize">1</param>
</module>
<!-- search -->
<module
name="URLLoader"
layoutPanel="panel_row1_col1"
autoRun="True">
<module name="HTML">
<param name="html"><![CDATA[
<h2>Errors by logger for $user$.</h2>
]]>
</param>
</module>
<module name="Search" group="Chapter 9 - Sideview Two">
<param name="earliest">-199d</param>
<param name="search">
sourcetype="*" user="$user$" | top user
</param>
<!-- table -->
<module name="SimpleResultsTable">
<param name="drilldown">row</param>
<module name="Redirector">
<param name="url">chapter_9_sideview_3</param>
<param name="arg.logger">
$click.fields.logger.rawValue$
</param>
<param name="arg.user">$user$</param>
<param name="arg.earliest">
$search.timeRange.earliest$
</param>
</module>
</module>
</module>
</module>
</view>

It is very important that autoRun="true" be placed in one module—most likely URLLoader—

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

and that it exists only in a single module.

With the value of the user as shelby in our URL, this dashboard (using my data) creates
the simple view (notice the logged errors for shelby seem to be of only one type), as
shown in the following screenshot:

Looking at the modules in this example that are of interest, we have the following terms
and their descriptions:

SideviewUtils: This module is required to use any of the other Sideview modules. It
is invisible to the user but is still required.
URLLoader: This module takes any values specified in the URL query string and turns
them into variables to be used by the descendant modules. Our URL contains
user=mary, so $user$ is replaced with the value mary.
HTML: This module draws a snippet of HTML inline. Variables from URLLoader and
from form elements are replaced.
Search: This replacement for HiddenSearch understands variables from URLLoader and
form elements. This completely obviates the need for intentions. In our case, $user$
is replaced.
Redirector: In this example, we are going to hand along two values to the next
dashboard—user from URLLoader and logger from the table itself.

Notice the following code terms and their descriptions:

logger is populated with $click.fields.logger.rawValue$.
When a table is clicked on, the variable called click.fields contains all fields from
the row of the table clicked on.
rawValue makes sure that an unescaped value is returned. As the Sideview
documents say:

"Rule of Thumb for displaying in headers and sending via redirects, use $foo.rawValue$. For
searches, use foo."

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This rule applies to values in Redirector and not in display.
search.timeRange contains information about the times used by this search as to
whether it comes from the URL, a TimeRangePicker, or params to the Search module.
arg.earliest adds the value to the URL.

With a click on the table row for LogoutClass, we are taken to the following URL:

http://localhost:8000/en-US/app/is_app_one/chapter_9_sideview_3? user=mar&ylogger=LogoutClass&earliest=1344188377

We will create the dashboard at this URL in the next section.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Sideview forms
For our final dashboard using Sideview modules, we will build a dashboard with a
form that can be prefilled from a URL and allows the changing of the time range. The
advantage of this dashboard is that it can be used as a destination of a click without
being linked to from elsewhere. If the user accesses this dashboard directly, the default
values specified in the dashboard will be used instead. Let's look at the code:

<?xml version="1.0"?>
<view template="dashboard.html">
<!-- add sideview -->
<module name="SideviewUtils" layoutPanel="appHeader"/>
<!-- chrome -->
<label>Chapter 9 - Sideview Three</label>
<module name="AccountBar" layoutPanel="appHeader"/>
<module name="AppBar" layoutPanel="navigationHeader"/>
<module name="Message" layoutPanel="messaging">
<param name="filter">*</param>
<param name="clearOnJobDispatch">False</param>
<param name="maxSize">1</param>
</module>
<!-- URLLoader -->
<module
name="URLLoader"
layoutPanel="panel_row1_col1"
autoRun="True">
<!-- form -->
<!-- user dropdown -->
<module name="Search" layoutPanel="panel_row1_col1">
<param name="search">
source="impl_splunk_gen" user user="*"
| top user
</param>
<param name="earliest">-24h</param>
<param name="latest">now</param>
<module name="Pulldown">
<param name="name">user</param>
<!-- use valueField in SideView 2.0 -->
<param name="searchFieldsToDisplay">
<list>
<param name="value">user</param>
<param name="label">user</param>
</list>
</param>
<param name="label">User</param>
<param name="float">left</param>
<!-- logger textfield -->
<module name="TextField">
<param name="name">logger</param>
<param name="default">*</param>
<param name="label">Logger:</param>
<param name="float">left</param>
<module name="TimeRangePicker">

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

<param name="searchWhenChanged">True</param>
<param name="default">Last 24 hours</param>
<!-- submit button -->
<module name="SubmitButton">
<param name="allowSoftSubmit">True</param>
<!-- html -->
<module name="HTML">
<param name="html"><![CDATA[
<h2>Info for user $user$, logger $logger$.</h2>
]]></param>
</module>
<!-- search 1 -->
<module
name="Search"
group="Chapter 9 - Sideview Three">
<param name="search">
source="impl_splunk_gen" user="$user$"
logger="$logger$"
| fillnull value="unknown" network
| timechart count by network
</param>
<!-- JobProgressIndicator -->
<module name="JobProgressIndicator"/>
<!-- chart -->
<module name="HiddenChartFormatter">
<param name="charting.chart">area</param>
<param name="charting.chart.stackMode">
stacked
</param>
<module name="JSChart"/>
</module>
</module>
<!-- search 2 -->
<module
name="Search"
group="Chapter 9 - Sideview Three">
<param name="search">
source="impl_splunk_gen" user="$user$"
logger="$logger$"
| fillnull value="unknown" network
| top network
</param>
<!-- table -->
<module name="SimpleResultsTable"/>
</module>
</module>
</module>
</module>
</module>
</module>
</module>
</view>

This draws a dashboard that is similar to the following screenshot:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

There are quite a few things to cover in this example, so let's step through portions of
the XML.

Include SideviewUtils to enable the other Sideview modules. In this case, URLLoader, HTML,
Pulldown, Search, and TextField are Sideview modules. This is done using the following code:

<module layoutPanel="appHeader" name="SideviewUtils"/>

Wrap everything in URLLoader so that we get values from the URL:

<module
name="URLLoader"
layoutPanel="panel_row1_col1"
autoRun="True">

Start a search to populate the user dropdown. This query will find all the users who
have been active in the last 24 hours:

<module name="Search" layoutPanel="panel_row1_col1">
<param name="search">
source="impl_splunk_gen" user user="*"
| top user
</param>
<param name="earliest">-24h</param>
<param name="latest">now</param>

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using a query to populate a dropdown can be very expensive, particularly as your data
volumes increase. You may need to precalculate these values, either storing the values
in a CSV using outputcsv and inputcsv or using a summary index. For examples of
summary indexing and using CSV files for transient data, see Chapter 10, Summary
Indexes and CSV Files.

This module draws the user selector. The menu is filled by the Search module, but notice
that the value selected is from our URL value:

<module name="Pulldown">
<!-- use valueField in SideView 2.0 -->
<param name="searchFieldsToDisplay">
<list>
<param name="value">user</param>
<param name="label">user</param>
</list>
</param>
<param name="name">user</param>
<param name="label">User</param>
<param name="float">left</param>

Next is a text field for our logger. This is a Sideview version of ExtendedFieldSearch. It
will prepopulate using upstream variables:

<module name="TextField">
<param name="name">logger</param>
<param name="default">*</param>
<param name="label">Logger:</param>
<param name="float">left</param>

The TimeRangePicker module honors the earliest and latest values in the URL. Note that
searchWhenChanged must be True to work properly in this case. As a rule of thumb,
searchWhenChanged should always be True:

<module name="TimeRangePicker">
<param name="searchWhenChanged">True</param>
<param name="default">Last 24 hours</param>

The SubmitButton module kicks off a search when values are changed. allowSoftSubmit
allows outer modules to start the query either by choosing a value or by hitting return in
a text field:

<module name="SubmitButton">
<param name="allowSoftSubmit">True</param>

The following are two Search modules, each containing an output module:

<module
name="Search"

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

group="Chapter 9 - Sideview Three">
<param name="search">
source="impl_splunk_gen" user="$user$"
logger="$logger$"
| fillnull value="unknown" network
| timechart count by network
</param>
<!-- JobProgressIndicator -->
<module name="JobProgressIndicator"/>
<!-- chart -->
<module name="HiddenChartFormatter">
<param name="charting.chart">area</param>
<param name="charting.chart.stackMode">
stacked
</param>
<module name="JSChart"/>
</module>
</module>
<!-- search 2 -->
<module
group="Chapter 9 - Sideview Three"
name="Search">
<param name="search">
source="impl_splunk_gen" user="$user$"
logger="$logger$"
| fillnull value="unknown" network
| top network
</param>
<!-- table -->
<module name="SimpleResultsTable">
<param name="drilldown">row</param>
</module>

For greater efficiency, these two searches can be combined into one query and the
PostProcess module can be used.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Summary
We have covered an enormous amount of ground in this chapter. The toughest concepts
we touched on were module nesting, layoutPanel, intentions, and an alternative to
intentions with SideView Utils. As with many skills, the best way to become proficient
is to dig in and, hopefully, have some fun along the way! The examples in this chapter
should give you a head start.

In the next chapter, we will cover summary indexing, a powerful part of Splunk that can
improve the efficiency of your queries greatly.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Summary Indexes and CSV Files
As the number of events retrieved by a query increases, the performance decreases
linearly. Summary indexing allows you to calculate the statistics in advance and then run
reports against these roll ups, dramatically increasing performance.

In this chapter, we will cover the following topics:

Understanding summary indexes
When to use a summary index
When not to use a summary index
Populating summary indexes with saved searches
Using summary index events in a query
Using sistats, sitop, and sitimechart
How latency affects summary queries
How and when to backfill summary data
Reducing summary index size
Calculating top for a large time frame
Using CSV files to store transient data
Speeding up queries and backfilling

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Understanding summary indexes
A summary index is a place to store events calculated by Splunk. Usually, these events
are aggregates of raw events broken up over time, for instance, the number of errors that
occurred per hour. By calculating this information on an hourly basis, it is cheap and
fast to run a query over a longer period of time, for instance, days, weeks, or months.

A summary index is usually populated from a saved search with summary indexing
enabled as an action. This is not the only way, but it is certainly the most common one.

On disk, a summary index is identical to any other Splunk index. The difference is
solely the source of data. We create the index through configuration or through the GUI
like any other index, and we manage the index size in the same way.

Think of an index like a table, or possibly a tablespace, in a typical SQL database.
Indexes are capped by size and/or time, much like a tablespace, but all the data is stored
together, much like a table. We will discuss index management in Chapter 11, Configuring
Splunk.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Creating a summary index
To create an index, navigate to Settings | Indexes | New Index:

Note: The New Index page has changed a bit in version 7.0 but for now, let's simply give our new
index a name and accept the default values.

We will discuss these settings under the indexes.conf section in Chapter 11, Configuring
Splunk. I like to put the word summary at the beginning of any summary index, but the
name does not matter. I would suggest you follow some naming convention that makes
sense to you.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Now that we have an index to store events in, let's do something with it.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

When to use a summary index
When the question you want to answer requires looking at all or most events for a given
source type, the number of events can become huge very quickly. This is what is
generally referred to as a dense search.

For example, if you want to know how many page views happened on your website, the
query to answer this question must inspect every event. Since each query uses a
processor, we are essentially timing how fast our disk can retrieve the raw data and
how fast a single processor can decompress that data. Doing a little math, we get the
following:

1,000,000 hits per day /

10,000 events processed per second =

100 seconds

If we use multiple indexers, or possibly buy much faster disks, we can cut this time, but
only linearly. For instance, if the data is evenly split across four indexers, without
changing disks, this query will take roughly 25 seconds.

If we use summary indexing, we should be able to improve our time dramatically.

Let's assume we have calculated the hit counts per five minutes. Now, doing the math:

24 hours * 60 minutes per hour / 5-minute slices =

288 summary events

If we then use those summary events in a query, the math looks like the following:

288 summary events /

10,000 events processed per second =

.0288 seconds

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This is a significant increase in performance. In reality, we would probably store more
than 288 events. For instance, let's say we want to count the events by their HTTP
response code. Assuming that there are 10 different status codes we see on a regular
basis, we have:

24 hours * 60 minutes per hour / 5-minute slices * 10 codes = 2880 events

The math then looks as follows:

2,880 summary events /

10,000 events processed per second =

.288 seconds

That's still a significant improvement over 100 seconds.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

When to not use a summary index
There are several cases where summary indexes are either inappropriate or inefficient.
Consider the following:

When you need to see the original events: In most cases, summary indexes are
used to store aggregate values. A summary index could be used to store a separate
copy of events, but this is not usually the case. The more events you have in your
summary index, the less advantage it has over the original index.
When the possible number of categories of data is huge: For example, if you
want to know the top IP addresses seen per day, it may be tempting to simply
capture a count of every IP address seen. This can still be a huge amount of data,
and may not save you a lot of search time, if any. Likewise, simply storing the top
10 addresses per slice of time may not give an accurate picture over a long period
of time. We will discuss this scenario under the Calculating top for a large time
frame section.
When it is impractical to slice the data across sufficient dimensions: If your
data has a large number of dimensions or attributes, and it is useful to slice the data
across a large number of these dimensions, then the resulting summary index may
not be sufficiently smaller than your original index to bother with.
When it is difficult to know the acceptable time slice: As we set up a few
summary indexes, we have to pick the slice of time to which we aggregate. If you
think that 1 hour is an acceptable time slice and find out later that you actually need
10 minutes of resolution, it is not the easiest task to recalculate the old data into
these 10-minute slices. It is, however, very simple to later change your 10-minute
search to 1 hour, as the 10-minute slices should still work for your hourly reports.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Populating summary indexes with saved
searches
A search to populate a summary index is much like any other saved search (see Chapter 3,
Understand Search, for more details on creating saved searches).

The differences are that this search will run periodically, and the results will be stored
in the summary index.

So, let's build a simple summary search by following these steps:

1. Start with a search that produces some statistic:

source="impl_splunk_gen" | stats count by user

2. Save this search as summary - count by user.
3. Edit the search in Settings by navigating to Settings | Searches, reports and alerts|

summary - count by user.
4. Set the appropriate times. This is a somewhat complicated discussion. See the

How latency affects summary queries section discussed later:

Let's look at the following fields:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Search: source="impl_splunk_gen" | stats count by user. This is our query. Later we will
use sistats, a special summary index version of stats.

You can stipulate absolute or relative time ranges using time modifiers:

Earliest time: -62m@m. It may seem strange that we didn't simply say -60m@m, but we
need to take latency into account. See the How latency affects summary queries
section discussed later for more details.
Latest time: -2m@m.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using summary index events in a query
After the query to populate the summary index has run for some time, we can use the
results in other queries.

If you're in a hurry or need to report against slices of time before the query was created,
you will need to backfill your summary index. See the How and when to backfill
summary data section for details about calculating the summary values for past events.

First, let's look at what actually goes into the summary index:

08/15/2012 10:00:00, search_name="summary - count by user",
search_now=1345046520.000, info_min_time=1345042800.000, info_max_
time=1345046400.000, info_search_time=1345050512.340, count=17,
user=mary

Breaking this event down, we have the following:

08/15/2012 10:00:00: This is the time at the beginning of this block of data. This is
consistent with how timechart and bucket work.
search_name="summary - count by user": This is the name of the search. This is usually the
easiest way to find the results you are interested in.
search_now ... info_search_time: These are informational fields about the summary
entry, and are generally not useful to users.
count=17, user=mary: The rest of the entry will be whatever fields were produced by
the populating query.

There will be one summary event per row produced by the populating query.

Now, let's build a query against this data. To start the query, we need to specify the
name of the index and the name of the search:

index="summary_impl_splunk" search_name="summary - count by user"

On my machine (different data will of course yield different results), this query loads 48
events, as compared to the 22,477 original events.

Using stats, we can quickly find the statistics by user:

index="summary_impl_splunk" | stats sum(count) count by user

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

This produces a very simple table, similar to the following screenshot:

We are calculating the sum(count) and count in this query, which you might expect to
produce the same number, but they are doing very different things:

sum(count): If we look back at our raw event, count contains the number of times
that a user appeared in that slice of time. We are storing the raw value in this count
field. See the Using sistats, sitop, and sitimechart section for a completely
different approach.
count: This actually represents the number of events in the summary index.

The generator that is producing these events is not very random, so all users produce at
least one event per hour. Producing a timechart is no more complicated:

index="summary_impl_splunk" | timechart span=1h sum(count) by user

This produces our graph, as shown in the following screenshot:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The main thing to remember here is that we cannot make a graph more detailed than the
schedule of our populating query. In this case, the populating query uses a span of 1
hour. An hour is granular enough for most daily reports, and certainly fine for weekly or
monthly reports, but it may not be granular enough for an operations dashboard.

The following are a few other interesting queries you can make with this simple set of
data:

index="summary_impl_splunk" search_name="summary - count by user"
| stats avg(count) as "Average events per hour"

The previous code snippet tells us the average number of events per slice of time, which
we know is an hour. Adding bucket and another stats command, we can calculate for a
custom period of time, as follows:

index="summary_impl_splunk" search_name="summary - count by user"
| bucket span=4h _time
| stats sum(count) as count by _time
| stats avg(count) as "Average events per 4 hours"

This query would give us the user with the maximum number of events in a given hour,
and the hour that it occurred in:

index="summary_impl_splunk" search_name="summary - count by user"
| stats first(_time) as _time max(count) as max by user
| sort -max
| head 1
| rename max as "Maximum events per hour"

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using sistats, sitop, and sitimechart
First, let's define some new functions:

sistats: sistats is the summary indexing version of the stats command, which
calculates the aggregate statistics over the dataset
sitop: This is the summary indexing version of the top command, which returns the
most frequent value of a field or a combination of fields
sitimechart: sitimechart is the summary indexing version of the timechart command,
which creates a time series chart visualization with the corresponding table of
statistics

So far, we have used the stats command to populate our summary index. While this
works very well, the si* variants have a couple of advantages:

The remaining portion of the query does not have to be rewritten. For instance,
stats count still works as if you were counting the raw events.
The stats functions that require more data than what happened in that slice of time,
will still work. For example, if your time slices each represent an hour, it is not
possible to calculate the average value for a day using nothing but the average of
each hour. The sistats function keeps enough information to make this work.

There are also a few fairly serious disadvantages to be aware of:

The query using the summary index must use a subset of the functions, and split
fields that were in the original populating query. If the subsequent query strays
from what is in the original sistats data, the results may be unexpected and difficult
to debug. For example, see the following code:

source="impl_splunk_gen"
| sitimechart span=1h avg(req_time) by user
| stats avg(req_time)

The following code returns unpredictable and wildly incorrect values:

source="impl_splunk_gen"
| sitimechart span=1h avg(req_time) by user
| stats max(req_time)

Notice that avg went into sistats, but we tried to calculate max from the results.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using distinct count (dc) with sistats can produce huge events. This happens
because to accurately determine unique values over slices of time, all original
values must be kept. One common use case is to find the top IP addresses that hit a
public-facing server. See the Calculating top for a large time frame section for
alternate approaches to this problem.
The contents of the summary index are quite difficult to read as they are not meant
to be used by humans.

To see how all this works, let's build a few queries. We start with a simple stats query
as follows:

sourcetype=impl_splunk_gen
| stats count max(req_time) avg(req_time) min(req_time) by user

This produces results like you would expect:

Now, we can save this and send it straight to the summary index, but the results are not
terribly nice to use, and the average of the average would not be accurate.

On the other hand, we can use the sistats variant as follows:

sourcetype=impl_splunk_gen
| sistats count max(req_time) avg(req_time) min(req_time) by user

The results have a lot of extra information which may be difficult to understand, as
shown in the following screenshot:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Splunk knows how to deal with these results, and can use them in combination with the
stats functions as if they were the original results. You can see how sistats and stats
work together by chaining them together, as follows:

sourcetype=impl_splunk_gen
| sistats
count max(req_time) avg(req_time) min(req_time)
by user
| stats count max(req_time) avg(req_time) min(req_time) by user

Even though the stats function is not receiving the original events, it knows how to work
with these sistats summary events. We are presented with exactly the same results as the
original query, as shown in the following screenshot:

sitop and sitimechart work in the same fashion.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Let's step through the procedure to set up summary searches as follows:

1. Save the query using sistats:

sourcetype=impl_splunk_gen
| sistats count max(req_time) avg(req_time) min(req_time) by
user

2. Set the times accordingly, as we saw previously in the Populating summary
indexes with saved searches section. See the How latency affects summary
queries section for more information.

3. Build a query that queries the summary index, as we saw previously in the Using
summary index events in a query section. Assuming that we saved this query as a
testing sistats, the query would be:

index="summary_impl_splunk"
search_name="testing sistats".

4. Use the original stats function against the results, as follows:

index="summary_impl_splunk" search_name="testing sistats"
| stats count max(req_time) avg(req_time) min(req_time) by
 user

This should produce exactly the same results as the original query.

The si* variants still seem somewhat magical to me, but they work so well that it is in
your own best interest to dive in and trust the magic. Be very sure that your functions
and fields are a subset of the original.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

How latency affects summary queries
Latency is the difference between the time assigned to an event (usually parsed from the
text) and the time it was written to the index. These times are captured in _time and
_indextime, respectively.

This query will show us what our latency is:

sourcetype=impl_splunk_gen
| eval latency = _indextime - _time
| stats min(latency) avg(latency) max(latency)

In my case, these statistics look as shown in the following screenshot:

The latency in this case is exaggerated, because the script behind impl_splunk_gen is
creating events in chunks. In most production Splunk instances, the latency is just a few
seconds. If there is any slowdown, perhaps because of network issues, the latency may
increase dramatically, and so it should be accounted for.

This query will produce a table showing the time for every event:

sourcetype=impl_splunk_gen
| eval latency = _indextime - _time
| eval time=strftime(_time,"%Y-%m-%d %H:%M:%S.%3N")
| eval indextime=strftime(_indextime,"%Y-%m-%d %H:%M:%S.%3N")
| table time indextime latency

The previous query produces the following table:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

To deal with this latency, you should add enough delay in your query that populates the
summary index. The following are a few examples:

Confidence Time slice Earliest Latest cron
2 minutes 1 hour -62m@m -2m@m 2 * * * *
15 minutes 1 hour -1h@h -0h@h 15 * * * *
5 minutes 5 minutes -10m@m -5m@m */5 * * * *
1 hour 15 minutes -75m@m -60m@m */15 * * * *
1 hour 24 hours -1d@d -0d@d 0 1 * * * *

Sometimes you have no idea when your logs will be indexed as they are delivered in
batches on unreliable networks.

This is what I call unpredictable latency. For one possible solution, take a look at the
app indextime search available at http://splunkbase.com.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://splunkbase.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

How and when to backfill summary data
If you are building reports against summary data, you need enough time represented in
your summary index. If your report represents only a day or two, then you can probably
just wait for the summary to have enough information. If you need the report to work
sooner rather than later, or if the time frame is longer, then you can backfill your
summary index.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using fill_summary_index.py to backfill
The fill_summary_index.py script allows you to backfill the summary index for any time
period that you like. It does this by running the saved searches which you have defined
to populate your summary indexes, but only for the time periods you specify.

To use the script, follow the given procedure:

1. Create your scheduled search, as detailed previously in the Populating summary
indexes with saved searches section.

2. Log in to the shell on your Splunk instance. If you are running a distributed
environment, log in to the search head.

3. Change directories to the Splunk bin directory:

cd $SPLUNK_HOME/bin

$SPLUNK_HOME is the root of your Splunk installation. The default installation
directory is /opt/splunk on Unix operating systems and c:ProgramFilesSplunk on
Windows.

4. Run the fill_summary_index command. An example from inside the script is as
follows:

./splunk cmd python fill_summary_index.py -app is_app_one -name
"summary - count by user" -et -30d -lt now -j 8 -dedup true -auth
admin:changeme

Let's break down these arguments in the following manner:

./splunk cmd: This essentially sets the environment variables so that whatever runs
next has the appropriate settings to find the Splunk libraries and included Python
modules.
python fill_summary_index.py: This runs the script itself using the Python executable
and the modules included with the Splunk distribution.
-app is_app_one: This is the name of the app that contains the summary populating
queries in question.
-name "summary - count by user": This is the name of the query to run. * will run all
summary queries contained in the app specified.
-et -30d: This is the earliest time to consider. The appropriate times are determined
and used to populate the summary index.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

-lt now: This is the latest time to consider.
-j 8: This determines how many queries to run simultaneously.
-dedup true: This is used to determine whether there are no results already for each
slice of time. Without this flag, you could end up with duplicate entries in your
summary index. For some statistics, this won't matter, but for most it would.
If you are concerned that you have summary data that is incomplete—perhaps
because summary events were produced while an indexer was unavailable—you
should investigate the delete command to remove these events first. The delete
command is not efficient and should be used sparingly, if at all.

-auth admin:changeme: The auth to run the query (the admin default or if they were
changed, the new credentials).

When you run this script, it will run the query with the appropriate times as if the
query had been run at those times in the past. This can be a very slow process,
particularly if the number of slices is large. For instance, slices every 5 minutes for
a month would be 30 * 24 * (60/5) = 8,640 queries.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using collect to produce custom
summary indexes
If the number of events destined for your summary index could be represented in a
single report, we can use the collect function to create our own summary index entries
directly. This has the advantage that we can build our index in one shot. That could be
much faster than running the backfill script, which must run one search per slice of time.
For instance, if you want to calculate 15-minute slices over a month, the script will fire
off 2,880 queries.

If you dig into the code that actually produces summary indexes, you will find that it
uses the collect command to store events into the specified index. The collect command
is available to us, and with a little knowledge, we can use it directly.

First, we need to build a query that slices our data by buckets of time as follows:

source="impl_splunk_gen"
| bucket span=1h _time
| stats count by _time user

This gives us a simple table, as shown in the following screenshot:

Notice that there is a row per slice of time, and for each user that produced events
during that slice of time.

Let's add a few more fields to make it more interesting:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

source="impl_splunk_gen"
| bucket span=1h _time
| eval error=if(loglevel="ERROR",1,0)
| stats count avg(req_time) dc(ip) sum(error) by _time user

This gives us the table shown in the following screenshot:

Now, to get ready for our summary index, we switch to sistats and add a search_name field
as the saved search would. Use testmode to make sure that everything is working as
expected, in the following manner:

source="impl_splunk_gen"
| bucket span=1h _time
| eval error=if(loglevel="ERROR",1,0)
| sistats count avg(req_time) dc(ip) sum(error) by _time user
| eval search_name="summary - user stats"
| collect index=summary_impl_splunk testmode=true

The results of this query show us what will actually be written to the summary index,
but as this is not designed for humans, let's simply test the round trip by adding the
original stats statement at the end, as follows:

source="impl_splunk_gen"
| bucket span=1h _time
| eval error=if(loglevel="ERROR",1,0)
| sistats count avg(req_time) dc(ip) sum(error) by _time user
| eval search_name="summary - hourly user stats - collect test"
| collect index=summary_impl_splunk testmode=true
| stats count avg(req_time) dc(ip) sum(error) by _time user

If we have done everything correctly, the results should be identical to the original
table:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

To actually run this query, we simply remove testmode from collect, as follows:

source="impl_splunk_gen"
| bucket span=1h _time
| eval error=if(loglevel="ERROR",1,0)
| sistats count avg(req_time) dc(ip) sum(error) by _time user
| eval search_name="summary - user stats"
| collect index=summary_impl_splunk

Beware that you will end up with duplicate values if you use the collect command over a
time frame that already has results in the summary index. Either use a custom time frame
to ensure that you do not produce duplicates, or investigate the delete command, which
as mentioned earlier, is not efficient and should be avoided if possible.

No results will be available until the query is complete and the file created behind the
scenes is indexed. On my installation, on querying 1 month of data, the query inspected
2.2 million events in 173 seconds, producing 2,619 summary events.

Let's use the summary data now:

index=summary_impl_splunk
search_name="summary - hourly user stats - collect test"
| timechart sum(error) by user

This will give us a neat graph, as shown in the following screenshot:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Because this is created from the summary, instead of three minutes, this query completes
in around 1.5 seconds.

In this specific case, using collect was four times faster than using the fill_summary_index.py
script. That said, it is much easier to make a mistake, so be very careful. Rehearse with
collect testmode=true and a trailing stats or timechart command.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Reducing summary index size
If the saved search populating a summary index produces too many results, the summary
index is less effective at speeding up searches. This usually occurs because one or more
of the fields used for grouping has more unique values than expected.

One common example of a field that can have many unique values is the URL in a web
access log. The number of URL values might increase in instances where:

The URL contains a session ID
The URL contains search terms
Hackers are throwing URLs at your site trying to break in
Your security team runs tools looking for vulnerabilities

On top of this, multiple URLs can represent exactly the same resource, as follows:

/home/index.html

/home/

/home/index.html?a=b

/home/?a=b

We will cover a few approaches to flatten these values. These are just examples and
ideas, and your particular case may require a different approach.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using eval and rex to define grouping
fields
One way to tackle this problem is to make up a new field from the URL using rex.

Perhaps you only really care about the hits by directories. We can accomplish this with
rex, or if needed, multiple rex statements.

Looking at the fictional source type impl_splunk_web, we see results that look like the
following:

2012-08-25T20:18:01 user=bobby GET /products/x/?q=10471480 uid=Mzg2NDc0OA
2012-08-25T20:18:03 user=user3 GET /bar?q=923891 uid=MjY1NDI5MA
2012-08-25T20:18:05 user=user3 GET /products/index.html?q=9029891
uid=MjY1NDI5MA
2012-08-25T20:18:08 user=user2 GET /about/?q=9376559 uid=MzA4MTc5OA

URLs are tricky, as they might or might not contain certain parts of the URL. For
instance, the URL may or may not have a query string, a page, or a trailing slash. To deal
with this, instead of trying to make an all-encompassing regular expression, we will
take advantage of the behavior of rex, which is used to make no changes to the event if
the pattern does not match.

Consider the following query:

sourcetype="impl_splunk_web"
| rex "s[A-Z]+s(?P<url>.*?)s"
| rex field=url "(?P<url>.*)?"
| rex field=url "(?P<url>.*/)"
| stats count by url

In our case, this will produce the following report:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Stepping through these rex statements, we have:

rex "s[A-Z]+s(?P<url>.*?)s": This pattern matches a space followed by uppercase
letters, followed by a space, and then captures all characters until a space into the
field url. The field attribute is not defined, so the rex statement matches against the
_raw field. The values extracted look like the following:

/products/x/?q=10471480

/bar?q=923891

/products/index.html?q=9029891

/about/?q=9376559

rex field=url "(?P<url>.*)?": Searching the field url, this pattern matches all
characters until a question mark. If the pattern matches, the result replaces the
contents of the url field. If the pattern doesn't match, url stays the same. The values
of url will now be as follows:

/products/x/

/bar

/products/index.html

/about/

rex field=url "(?P<url>.*/)": Once again, while searching the field url, this pattern
matches all characters until, and including, the last slash. The values of url are then
as follows:

/products/x/

/

/products/

/about/

This should effectively reduce the number of possible URLs and hopefully make
our summary index more useful and efficient. It may be that you only want to
capture up to three levels of depth. You can accomplish that with the following

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

rex statement:

rex field=url "(?P<url>/(?:[^/]/){,3})"

The possibilities are endless. Be sure to test as much data as you can when building
your summary indexes.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using a lookup with wildcards
Splunk lookups also support wildcards, which we can use in this case.

One advantage is that we can define arbitrary fields for grouping, independent of the
values of url.

For a lookup wildcard to work, first we need to set up our url field and the lookup:

1. Extract the url field. The rex pattern we used before should work:

s[AZ]+s(?P<url>.*?)s. See Chapter 5, Tables, Charts, and Fields, for detailed
instructions on setting up a field extraction. Don't forget to set permissions on the
extraction.

2. Create our lookup file. Let's call the lookup file flatten_summary_lookup.csv. Use the
following contents for our example log:

url,section
/about/*,about
/contact/*,contact
/*/*,unknown_non_root
/*,root
*,nomatch

If you create your lookup file in Excel on a Mac, be sure to save the file using
the Windows comma-separated values (.csv) format.

3. Upload the lookup table file and create our lookup definition and automatic lookup.
See the Using lookups to enrich the data section in Chapter 7, Extending Search,
for detailed instructions. The automatic lookup definition should look like the
following screenshot (the value of Name doesn't matter):

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

4. Set the permissions on all the objects. I usually opt for All Apps for Lookup table
files and Lookup definitions, and This app only for Automatic lookups. See Chapter
7, Extending Search, for details.

5. Edit transforms.conf. In this version (actually as of Splunk 4.3), not all the features of
lookups can be defined through the admin interface. To access these features, the
configuration files that actually drive Splunk must be edited manually.

We will cover configuration files in greater detail in Chapter 11, Configuring Splunk, but
for now, let's add two lines to one file and move on:

1. Edit $SPLUNK_HOME/etc/apps/is_app_one/local/transforms.conf. The name of the directory
is_app_one may be different depending on what app was active when you created

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

your lookup definition. If you can't find this file, check your permissions and the
app column in the admin interface.

2. You should see these two lines, or something similar, depending on what you
named your Lookup table file and Lookup definition instances:

[flatten_summary_lookup]
filename = flatten_summary_lookup.csv

If you do not see these lines in this file, check your permissions.

3. Add two more lines below filename:

match_type = WILDCARD(url)
max_matches = 1

These two lines effectively say the following:

match_type = WILDCARD(url): When evaluating the field URL, honor wildcard
characters. Without this setting, matches are always exact.
max_matches = 1: Stop searching after the first match. By default, up to 10 matches are
allowed. We want to match only the first line that matches, effectively using the
lookup like a case statement.

If everything is wired up properly, we should now be able to run the search:

sourcetype=impl_splunk_web | stats count by section

This should give us the following simple report:

To see in greater detail what is really going on, let's try the following search:

sourcetype=impl_splunk_web
| rex field=url "(?P<url>.*)?"
| stats count by section url

The rex statement is included to remove the query string from the value of url created by
our extracted field. This gives us the following report:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Looking back at our lookup file, our matches appear to be as follows:

url pattern section
/about/ /about/* about
/contact/ /contact/* contact
/bar /* root
/foo /* root
/products/ /*/* unknown_non_root
/products/x/ /*/* unknown_non_root
/products/y/ /*/* unknown_non_root

If you read the lookup file from top to bottom, the first pattern that matches wins.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using event types to group results
Another approach for grouping results to reduce the summary index size would be to use
event types in creative ways. For a refresher on event types, see Chapter 7, Extending
Search.

This approach has the following advantages:

All definitions are defined through the web interface
It is possible to create arbitrarily complex definitions
You can easily search for only those events that have defined section names
You can place events in multiple groups if desired

The disadvantages to this approach are as follows:

This is a non-obvious approach.
It is inconvenient to not place events in multiple groups if more than one event type
matches. For instance, if you want a page to match /product/x/* but not /product/*, it
is not convenient to do so.

The following is the procedure to create these event types:

1. For each section, create an event type, as follows:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

2. Set the permissions to either This app only or Global, depending on the scope.
3. Repeat this for each section that you want to summarize. The clone link in the

manager makes this process much faster.

With our event types in place, we can now build queries. The Tag value that we included

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

means we can search easily for only those events that match a section, like the
following:

tag::eventtype="summary_url" | top eventtype

The previous code returns a table, as shown in the following screenshot:

Our results contain the new event types that we created, along with an unwanted event
type, bogus. Remember that all event type definitions that match an event are attached.
This is very powerful, but sometimes is not what you expect. The bogus event type
definition is *, which means it matches everything. The bogus event type was added
purely to illustrate the point and has no practical use.

Let's create a new field from our summary event type name and then aggregate based on
the new field:

tag::eventtype="summary_url"
| rex field=eventtype "url_(?P<section>.*)"
| stats count by section

The previous code gives us the results that we are looking for, as shown in the
following screenshot:

This search finds only the events that have defined event types, which may be what you
want. To group all other results into an other group, we instead need to search for all
events in the following manner:

sourcetype=impl_splunk_web
| rex field=eventtype "url_(?P<section>.*)"
| fillnull value="other" section
| stats count by section

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The previous code then produces the following report:

Hopefully, these examples will be food for thought when it comes to collapsing your
results into more efficient summary results.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Calculating top for a large time frame
One common problem is to find the top contributors out of a huge set of unique values.
For instance, if you want to know what IP addresses are using the most bandwidth in a
given day or week, you may have to keep a track of the total of request sizes across
millions of unique hosts to definitively answer this question. When using summary
indexes, this means storing millions of events in the summary index, quickly defeating
the purpose of summary indexes.

Just to illustrate, let's look at a simple set of data:

Time 1.1.1.1 2.2.2.2 3.3.3.3 4.4.4.4 5.5.5.5 6.6.6.6
12:00 99 100 100 100
13:00 99 100 100 100
14:00 99 100 101 100
15:00 99 99 100 100
16:00 99 100 100 100
total 495 300 299 401 400 100

If we only stored the top three IPs per hour, our dataset would look like the following:

Time 1.1.1.1 2.2.2.2 3.3.3.3 4.4.4.4 5.5.5.5 6.6.6.6
12:00 100 100 100
13:00 100 100 100
14:00 100 101 100
15:00 99 100 100
16:00 100 100 100
total 300 299 401 400 100

According to this dataset, our top three IP addresses are 4.4.4.4, 5.5.5.5, and 2.2.2.2. The
actual largest value was for 1.1.1.1, but it was missed because it was never in the top
three.

To tackle this problem, we need to keep track of more data points for each slice of time.
But how many?

Using our generator data, let's count a random number and see what kind of results we
see. In my dataset, it is the following query:

source="impl_splunk_gen" | top req_time

When run over a week, this query gives me the following results:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

How many unique values were there? The following query will tell us that:

source="impl_splunk_gen" | stats dc(req_time)

This tells us there are (based on my data) 12,239 unique values of req_time. How many
different values are there per hour? The following query will calculate the average
unique values per hour:

source="impl_splunk_gen"
| bucket span=1h _time
| stats dc(req_time) as dc by _time
| stats avg(dc)

This tells us that each hour there are an average of (again, given my data) 3,367 unique
values of req_time.

So, if we stored every count of every req_time for a week, we will store 3,367 * 24 * 7 =
565,656 values. How many values would we have to store per hour to get the same
answer that we received before?

The following is a query that attempts to answer this question:

source="impl_splunk_gen"
| bucket span=1h _time
| stats count by _time req_time
| sort 0 _time -count
| streamstats count as place by _time
| where place<50
| stats sum(count) as count by req_time
| sort 0 -count
| head 10

Breaking this query down, we have:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

source="impl_splunk_gen": This finds the events.
| bucket span=1h _time: This floors our _time field to the beginning of the hour. We will
use this to simulate hourly summary queries.
| stats count by _time req_time: This generates a count per req_time per hour.
| sort 0 _time -count: This sorts and keeps all events (that's what 0 means), first
ascending by _time and then descending by count.
| streamstats count as place by _time: This loops over the events, incrementing place,
and starting the count over when _time changes. Remember that we flattened _time to
the beginning of each hour.
| where place<50: This keeps the first 50 events per hour. These will be the largest 50
values of count per hour, since we sorted descending by count.
| stats sum(count) as count by req_time: This adds up what we have left across all
hours.
| sort 0 -count: This sorts the events in descending order by count.
| head 10: This shows the first 10 results.

How did we do? Keeping the top 50 results per hour, my results look as shown in the
following screenshot:

That really isn't close. Let's try this again. We'll try where place<1000. This gives us the
following results:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

That is much closer, but we're still not quite there. After experimenting a little more,
place<2000 was enough to get the expected top 10. This is better than storing 3,367 rows
per hour. This may not seem like a big enough difference to bother about, but increase
the number of events by 10 or 100, and it can make a huge difference.

To use these results in a summary index, you would simply eliminate the results going
into your dataset. One way to accomplish this might be as follows:

source="impl_splunk_gen"
| sitop req_time
| streamstats count as place
| where place<2001

The first row produced by sitop contains the total value.

Another approach, using a combination of eventstats and sistats, is as follows:

source="impl_splunk_gen"
| eventstats count by req_time
| sort 0 -req_time
| streamstats count as place
| where place<2001
| sistats count by req_time

Luckily, this is not a terribly common problem, so most of this complexity can be
avoided. For another option, see the Storing a running calculation section.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Summary index searches
You can use established summary indexes for just about any saved search or report.
Using Splunk Web, summary indexing is an alert option for scheduled reports. To
leverage a summary index for a saved report:

1. Navigate to Settings > Searches, Reports, and Alerts
2. Select the name of your report
3. Under Schedule and alert, select Schedule
4. Schedule the report (Splunk.com states that "searches that populate summary

indexes should run on a fairly frequent basis in order to create statistically
accurate final reports")

5. Under Alert, set Condition to Always

6. Set Alert mode to Once per search
7. Under summary indexing, select Enable
8. Select the name of the summary index that the report populates from the Select the

summary index list

That's it! Your search or report will now use your summary index.

||||||||||||||||||||

||||||||||||||||||||

http://www.splunk.com
https://technet24.ir
https://technet24.ir

Using CSV files to store transient data
Sometimes it is useful to store small amounts of data outside a Splunk index. Using the
inputcsv and outputcsv commands, we can store tabular data in CSV files on the
filesystem.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Pre-populating a dropdown
If a dashboard contains a dynamic dropdown, you must use a search to populate the
dropdown. As the amount of data increases, the query to populate the dropdown will
run more and more slowly, even from a summary index. We can use a CSV file to store
just the information needed, simply adding new values when they occur.

First, we build a query to generate the CSV file. This query should be run over as much
data as possible:

source="impl_splunk_gen"
| stats count by user
| outputcsv user_list.csv

Next, we need a query to run periodically and append any new entries to the file.
Schedule this query to run periodically as a saved search:

source="impl_splunk_gen"
| stats count by user
| append [inputcsv user_list.csv]
| stats sum(count) as count by user
| outputcsv user_list.csv

To then use this in our dashboard, our populating query will simply be:

|inputcsv user_list.csv

A simple dashboard XML using this query would look like the following:

<input type="dropdown" token="sourcetype">
<label>User</label>
<populatingSearch fieldForValue="user" fieldForLabel="user">
|inputcsv user_list.csv
</populatingSearch>
</input>

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Creating a running calculation for a day
If the number of events per day is in millions or tens of millions, querying all events for
that day can be extremely expensive. For that reason, it makes sense to do part of the
work in smaller periods of time.

Using a summary index to store these interim values can sometimes be an overkill if
those values are not needed for long. In the Calculating top for a large time frame
section, we ended up storing thousands of values every few minutes. If we simply want
to know the top 10 per day, this might be seen as a waste. To cut down on the noise in
our summary index, we can use a CSV as cheap interim storage.

The steps are essentially to:

1. Periodically query recent data and update the CSV
2. Capture top values in summary at the end of the day
3. Empty the CSV file

Our periodic query looks like the following:

source="impl_splunk_gen"
| stats count by req_time
| append [inputcsv top_req_time.csv]
| stats sum(count) as count by req_time
| sort 10000 -count
| outputcsv top_req_time.csv

Let's break down the query line by line:

source="impl_splunk_gen": This is the query to find the events for this slice of time.
| stats count by req_time: This helps calculate the count by req_time.
| append [inputcsv top_req_time.csv]: This loads the results generated so far from the
CSV file, and adds the events to the end of our current results.
| stats sum(count) as count by req_time: This uses stats to combine the results from our
current time slice and the previous results.
| sort 10000 -count: This sorts the results descending by count. The second term, 10000,
specifies that we want to keep the first 10,000 results.
| outputcsv top_req_time.csv: This overwrites the CSV file.

Schedule the query to run periodically, perhaps every 15 minutes. Follow the same rules

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

about latency as discussed in the How latency affects summary queries section.

When the rollup is expected, perhaps each night at midnight, schedule two more queries
a few minutes apart, as follows:

| inputcsv top_req_time.csv | head 100: Save this as a query adding to a summary index,
as in the Populating summary indexes with saved searches section
| stats count |outputcsv top_req_time.csv: This query will simply overwrite the CSV
file with a single line

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Summary
In this chapter, we explored the use of summary indexes and the commands surrounding
them. While summary indexes are not always the answer, they can be very useful for
particular problems. We also explored alternative approaches by using CSV files for
interim storage.

In our next chapter, we will dive into the configuration files that drive Splunk.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring Splunk
Everything that controls Splunk lives in its configuration files, sitting in the filesystem of
each instance of Splunk. These files are unencrypted, easily readable, and easily
editable. Almost all of the work that we have done so far has been accomplished
through the web interface, but everything actually ends up in these configuration files.

While the web interface does a lot, there are many options that are not represented in the
admin interface. There are also some things that are simply easier to accomplish by
editing the files directly.

In this chapter, we will cover the following topics:

Locating configuration files
Merging configurations
Debugging configurations
Common configurations and their parameters

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Locating Splunk configuration files
Splunk's configuration files live in $SPLUNK_HOME/etc. This is reminiscent of Unix's /etc
directory but is instead contained within Splunk's directory structure.

This has the advantage that the files don't have to be owned by root. In fact, the entire
Splunk installation can run as an unprivileged user (assuming you don't need to open a
port below 1024 or read files only readable by another user).

The directories that contain configurations are as follows:

$SPLUNK_HOME/etc/system/default: These are the default configuration files that ship with
Splunk. Never edit these files as they will be overwritten each time you upgrade.
$SPLUNK_HOME/etc/system/local: This is the location of the global configuration
overrides specific to this host. There are very few configurations that need to live
here—most configurations that do live here are created by Splunk itself. In almost
all cases, you should make your configuration files inside an app.
$SPLUNK_HOME/etc/apps/$app_name/default: This is the proper location for configurations
in an app that will be shared either through Splunkbase or otherwise.
$SPLUNK_HOME/etc/apps/$app_name/local: This is where most configurations should live
and where all non-private configurations created through the web interface will be
placed.
$SPLUNK_HOME/etc/users/$user_name/$app_name/local: When a search configuration is
created through the web interface, it will have a permission setting of Private and
will be created in a user- or app-specific configuration file. Once permissions are
changed, the configuration will move to the corresponding directory named
$app_name/local.

There are a few more directories that contain files that are not .conf files. We'll talk
about those later in this chapter, in the User interface resources section.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The structure of a Splunk configuration
file
The .conf files used by Splunk look very similar to .ini files. A simple configuration
looks like this:

#settings for foo
[foo]
bar=1
la = 2

Let's look at the following couple of definitions:

stanza: A stanza is used to group attributes. Our stanza in this example is [foo]. A
common synonym for this is section. Keep in mind the following key points:

A stanza name must be unique in a single file
The order does not matter

attribute: An attribute is a name-value pair. Our attributes in this example are bar
and la. A common synonym is parameter. Keep in mind the following key points:

The attribute name must not contain whitespace or the equals sign.
Each attribute belongs to the stanza defined previously; if the attribute appears
before all stanzas, the attribute belongs to the stanza [default].
The attribute name must be unique in a single stanza but not in a configuration.
Each attribute must have its own line and can only use one line. Spaces
around the equals sign do not matter.

These are a few rules that may not apply in other implementations:

Stanza and property names are case-sensitive
The comment character is #
Bare attributes at the top of a file are added to the [default] stanza
Any attributes in the [default] stanza are added to all stanzas that do not have an
attribute with that name already

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The configuration merging logic
Configurations in different locations merge behind the scenes into one super-
configuration. Luckily, the merging happens in a predictable way and is fairly easy to
learn; there is also a tool to help us preview this merging.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The merging order
The merging order is slightly different depending on whether the configuration is being
used by the search engine or another part of Splunk. The difference is whether there is
an active user and app.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The merging order outside of search
Configurations being used outside of search are merged in a fairly simple order. These
configurations include the files to read, the indexed fields to create, the indexes that
exist, deployment server and client configurations, and other settings. These
configurations merge in this order:

1. $SPLUNK_HOME/etc/system/default: This directory contains the base configurations that
ship with Splunk.
Never make changes in $SPLUNK_HOME/etc/system/default as your changes will be lost
when you upgrade Splunk.

2. $SPLUNK_HOME/etc/apps/*/default: Configurations are overlaid in the reverse ASCII
order by app directory name, that is, a beats z.

3. $SPLUNK_HOME/etc/apps/*/local.
4. $SPLUNK_HOME/etc/system/local:

The configurations in this directory are applied last.
Outside of search, these configurations cannot be overridden by an app
configuration. Apps are a very convenient way to compartmentalize control
and distribute configurations. This is particularly relevant if you use the
deployment server, which we will cover in Chapter 12, Advanced
Deployments.

Don't edit configurations in $SPLUNK_HOME/etc/system/local even if you have a very specific
reason. An app is almost always the correct place for configuration.

A little pseudocode to describe this process might look like this:

$conf = new Configuration('$SPLUNK_HOME/etc/')
$conf.merge('system/default/$conf_name')
for $this_app in reverse(sort(@all_apps)):
$conf.merge('apps/$this_app/default/$conf_name')
for $this_app in reverse(sort(@all_apps)):
$conf.merge('apps/$this_app/local/$conf_name')
$conf.merge('system/local/$conf_name')

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The merging order when searching
When you are searching, configuration merging is slightly more complicated. When you
are running a search, there is always an active user and app, and they come into play.
The logical order looks like this:

1. $SPLUNK_HOME/etc/system/default.
2. $SPLUNK_HOME/etc/system/local.
3. $SPLUNK_HOME/etc/apps/not app.

Each app, other than the current app, is looped through in the ASCII order of
the directory name (not the visible app name). Unlike merging outside of
search, here z beats a.
All configuration attributes that are shared globally are applied, first from
default and then from local.

4. $SPLUNK_HOME/etc/apps/app:

All configurations from default and then local are merged.

5. $SPLUNK_HOME/etc/users/user/app/local:

Maybe a little pseudocode would make this clearer:

$conf = new Configuration('$SPLUNK_HOME/etc/')
$conf.merge('system/default/$conf_name')
$conf.merge('system/local/$conf_name')
for $this_app in sort(@all_apps):
if $this_app != $current_app:
$conf.merge_shared('apps/$this_app/default/$conf_name')
$conf.merge_shared('apps/$this_app/local/$conf_name')
$conf.merge('apps/$current_app/default/$conf_name')
$conf.merge('apps/$current_app/local/$conf_name')
$conf.merge('users/$current_user/$current_app/local/$conf_name')

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The configuration merging logic
Now that we know what configurations will merge in what order, let's cover the logic
for how they actually merge. The logic is fairly simple:

The configuration name, stanza name, and attribute name must match exactly
The last configuration added wins

The best way to understand configuration merging is through examples.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuration merging – example 1
Say we have the base configuration, default/sample1.conf:

[foo]
bar=10
la=20

And, say we merge a second configuration, local/sample1.conf:

[foo]
bar=15

The resultant configuration would be as follows:

[foo]
bar=15
la=20

The things to note here are as follows:

The second configuration does not simply replace the prior configuration
The value of bar is taken from the second configuration
The lack of a la property in the second configuration does not remove the value
from the final configuration

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Configuration merging – example 2
Suppose we have the default/sample2.conf base configuration:

[foo]
bar = 10
la=20
[pets]
cat = red
Dog=rex

And we merge a second configuration, local/sample2.conf:

[pets]
cat=blue
dog=fido
fish = bubbles
 [foo]
bar= 15
[cars]
ferrari =0

The resultant configuration would be:

[foo]
bar=15
la=20
[pets]
cat=blue
dog=rex
Dog=fido
fish=bubbles
[cars]
ferrari=0

The things to note in this example are as follows:

The order of the stanzas does not matter
The spaces around the equals sign do not matter
Dog does not override dog as all stanza names and property names are case-sensitive
The cars stanza is added fully

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuration merging – example 3
Let's do a little exercise, merging four configurations from different locations. In this
case, we are not in search, so we will use the rules from the Merging order outside of
search section.

Let's walk through a few sample configurations.

For $SPLUNK_HOME/etc/apps/d/default/props.conf, we have the following code:

[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 25
TIME_PREFIX = ^[
[source::*.log]
BREAK_ONLY_BEFORE_DATE = true

For $SPLUNK_HOME/etc/system/local/props.conf, we have this code:

BREAK_ONLY_BEFORE_DATE = false
[web_access]
TZ = CST

For $SPLUNK_HOME/etc/apps/d/local/props.conf, we have the following code:

[web_access]
TZ = UTC
[security_log]
EXTRACT-<name> = [(?P<user>.*?)]

For $SPLUNK_HOME/etc/apps/b/default/props.conf, we have this:

[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 20
TIME_FORMAT = %Y-%m-%d $H:%M:%S
[source::*/access.log]
BREAK_ONLY_BEFORE_DATE = false

I've thrown a bit of a curveball here by placing the files out of merging order.

These configurations actually merge in this order:

$SPLUNK_HOME/etc/apps/d/default/props.conf
$SPLUNK_HOME/etc/apps/b/default/props.conf
$SPLUNK_HOME/etc/apps/d/local/props.conf
$SPLUNK_HOME/etc/system/local/props.conf

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Walking through each merge, the configuration would look like this:

1. We will start with $SPLUNK_HOME/etc/apps/d/default/props.conf:

[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 25
TIME_PREFIX = ^[
[source::*.log]
BREAK_ONLY_BEFORE_DATE = true

2. We will then merge $SPLUNK_HOME/etc/apps/b/default/props.conf:

[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 30
TIME_PREFIX = ^[
TIME_FORMAT = %Y-%m-%d $H:%M:%S
 [source::*.log]
BREAK_ONLY_BEFORE_DATE = true
[source::*/access.log]
BREAK_ONLY_BEFORE_DATE = false

Even though [source::*.log] and [source::*/access.log] both match a file called
access.log, they will not merge in the configuration because the stanza names do
not match exactly. This logic is covered later, in the Stanza types section under
the props.conf heading.

3. Then, we will merge $SPLUNK_HOME/etc/apps/d/local/props.conf:

[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 30
TIME_PREFIX = ^[
TIME_FORMAT = %Y-%m-%d $H:%M:%S
TZ = UTC
[source::*.log]
BREAK_ONLY_BEFORE_DATE = true
[source::*/access.log]
BREAK_ONLY_BEFORE_DATE = false
[security_log]
EXTRACT-<name> = [(?P<user>.*?)]

4. We will finally merge the globally-overriding $SPLUNK_HOME/etc/system/ configuration:

local/props.conf file:
[default]
BREAK_ONLY_BEFORE_DATE = false
[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 25
TIME_PREFIX = ^[
TIME_FORMAT = %Y-%m-%d $H:%M:%S
TZ = CST
BREAK_ONLY_BEFORE_DATE = false
[source::*.log]
BREAK_ONLY_BEFORE_DATE = true

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

[source::*/access.log]
Configuring Splunk
[288]
BREAK_ONLY_BEFORE_DATE = false
[security_log]
EXTRACT-<name> = [(?P<user>.*?)]
BREAK_ONLY_BEFORE_DATE = false

The setting with the biggest impact here is the BREAK_ONLY_BEFORE_DATE = false bare
attribute. It is first added to the [default] stanza and then added to all stanzas that
do not already have any value.

As a general rule, avoid using the [default] stanza and bare word attributes. The final impact may
not be what you expect.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Configuration merging – example 4,
search
In this case, we are in search, so we will use the more complicated merging order.

Assuming that we are currently working in the d app, let's merge the same configurations
again. For simplicity, we are assuming that all attributes are shared globally. We will
merge the same configurations listed previously in Configuration merging – example 3.

With d as our current app, we will now merge in this order:

$SPLUNK_HOME/etc/system/local/props.conf
$SPLUNK_HOME/etc/apps/b/default/props.conf
$SPLUNK_HOME/etc/apps/d/default/props.conf
$SPLUNK_HOME/etc/apps/d/local/props.conf

Walking through each merge, the configuration will look like this:

1. We will start with $SPLUNK_HOME/etc/system/local/props.conf:

BREAK_ONLY_BEFORE_DATE = false
[web_access]
TZ = CST

2. Now, we will merge the default for apps other than our current app (which, in this
case, is only one configuration): $SPLUNK_HOME/etc/apps/b/default/props.conf:

BREAK_ONLY_BEFORE_DATE = false
[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 20
TIME_FORMAT = %Y-%m-%d $H:%M:%S
TZ = CST
 [source::*/access.log]
BREAK_ONLY_BEFORE_DATE = false

3. Next, we will merge the default of our current app:
$SPLUNK_HOME/etc/apps/d/default/props.conf:

BREAK_ONLY_BEFORE_DATE = false
[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 25
TIME_PREFIX = ^[
TIME_FORMAT = %Y-%m-%d $H:%M:%S
TZ = CST
[source::*/access.log]

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

BREAK_ONLY_BEFORE_DATE = false
[source::*.log]
BREAK_ONLY_BEFORE_DATE = true

4. Now, we will merge our current app local $SPLUNK_HOME/etc/apps/d/local/props.conf:

BREAK_ONLY_BEFORE_DATE = false
[web_access]
MAX_TIMESTAMP_LOOKAHEAD = 25
TIME_PREFIX = ^[
TIME_FORMAT = %Y-%m-%d $H:%M:%S
TZ = UTC
[source::*/access.log]
BREAK_ONLY_BEFORE_DATE = false
[source::*.log]
BREAK_ONLY_BEFORE_DATE = true
[security_log]
EXTRACT-<name> = [(?P<user>.*?)]

5. And finally, we will apply our default stanza to stanzas that don't already have the
attribute:

BREAK_ONLY_BEFORE_DATE = false
 [web_access]
MAX_TIMESTAMP_LOOKAHEAD = 25
TIME_PREFIX = ^[
TIME_FORMAT = %Y-%m-%d $H:%M:%S
TZ = UTC
BREAK_ONLY_BEFORE_DATE = false
[source::*/access.log]
BREAK_ONLY_BEFORE_DATE = false
[source::*.log]
BREAK_ONLY_BEFORE_DATE = true
[security_log]
EXTRACT-<name> = [(?P<user>.*?)]
BREAK_ONLY_BEFORE_DATE = false

I know this is fairly confusing, but with practice, it will make sense. Luckily, btool,
which we will cover in the next section, makes it easier to see this.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using btool
To help preview merged configurations, we call on btool, a command-line tool that
prints the merged version of configurations. The Splunk site has one of my favorite
documentation notes of all time, as follows:

"btool is not tested by Splunk and is not officially supported or guaranteed. That said, it's what our Support
team uses when trying to troubleshoot your issues."

With that warning in mind, btool has never steered me wrong. The tool has a number of
functions, but the only one I have ever used is list, as follows:

$SPLUNK_HOME/bin/splunk cmd btool props list

This produces 5,277 lines of output, which I won't list here. Let's list the impl_splunk_gen
stanza by adding it to the end of the command line, as shown here:

/opt/splunk/bin/splunk cmd btool props list impl_splunk_gen

This will produce an output such as this:

[impl_splunk_gen]
ANNOTATE_PUNCT = True
BREAK_ONLY_BEFORE =
BREAK_ONLY_BEFORE_DATE = True
... truncated ...
LINE_BREAKER_LOOKBEHIND = 100
LOOKUP-lookupusers = userslookup user AS user OUTPUTNEW
MAX_DAYS_AGO = 2000
... truncated ...
TRUNCATE = 10000
TZ = UTC
maxDist = 100

Our configuration file at $SPLUNK_HOME/etc/apps/ImplementingSplunkDataGenerator/local/props.conf
contains only the following lines:

[impl_splunk_web]
LOOKUP-web_section = flatten_summary_lookup url AS url OUTPUTNEW
EXTRACT-url = s[A-Z]+s(?P<url_from_app_local>.*?)s
EXTRACT-foo = s[A-Z]+s(?P<url_from_app>.*?)s

So, where did the rest of this configuration come from? With the use of the -debug flag,
we can get more details:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

/opt/splunk/bin/splunk cmd btool props list impl_splunk_gen -debug

This produces the following query:

Implementi [impl_splunk_gen]
system ANNOTATE_PUNCT = True
system BREAK_ONLY_BEFORE =
system BREAK_ONLY_BEFORE_DATE = True
... truncated ...
system LINE_BREAKER_LOOKBEHIND = 100
Implementi LOOKUP-lookupusers = userslookup user AS user OUTPUTNEW
system MAX_DAYS_AGO = 2000
... truncated ...
system TRUNCATE = 10000
Implementi TZ = UTC
system maxDist = 100

The first column, truncated though it is, tells us what we need to know. The vast
majority of these lines are defined in the system, most likely in system/default/props.conf.

The remaining items from our file are labeled Implementi, which is the beginning of our
app directory, ImplementingSplunkDataGenerator. If you ever have a question about where
some setting is coming from, btool will save you a lot of time. Also, check out the
Splunk on Splunk app at Splunkbase for access to btool from the Splunk web interface.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

An overview of Splunk.conf files
If you have spent any length of time in the filesystem investigating Splunk, you must have
seen many different files ending in .conf. In this section, we will give you a quick
overview of the most common .conf files. The official documentation is the best place to
look for a complete reference to files and attributes.

The quickest way to find the official documentation is with your favorite search engine,
by searching for Splunk filename.conf. For example, a search for Splunk props.conf pulled
up (and will pull up) the Splunk documentation for props.conf first in every search engine
I tested.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

props.conf
The stanzas in props.conf define which events to match based on host, source, and
sourcetype. These stanzas are merged into the master configuration based on the
uniqueness of stanza and attribute names, as with any other configuration, but there are
specific rules governing when each stanza is applied to an event and in what order.
Stated as simply as possible, attributes are sorted by type, then by priority, and then by
the ASCII value.

We'll cover those rules in the Stanza types section. First, let's look at common
attributes.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Common attributes
The full set of attributes allowed in props.conf is vast. Let's look at the most common
attributes and try to break them down by the time when they are applied.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Search-time attributes
The most common attributes that users will make in props.conf are field extractions.
When a user defines an extraction through the web interface, it ends up in props.conf, as
shown here:

[my_source_type]
EXTRACT-foo = s(?<bar>d+)ms
EXTRACT-cat = s(?<dog>d+)s

This configuration defines the fields bar and dog for the my_source_type source type.
Extracts are the most common search-time configurations. Any of the stanza types listed
in the Stanza types section can be used, but the source type is definitely the most
common one.

Other common search-time attributes include:

REPORT-foo = bar: This attribute is a way to reference stanzas in transforms.conf, but
apply them at search time instead of index time. This approach predates EXTRACT and
is still useful in a few special cases.

We will cover this case later, in the transforms.conf section.

KV_MODE = auto: This attribute allows you to specify whether Splunk should
automatically extract fields, in the form of key=value, from events. The default value
is auto. The most common change is to disable automatic field extraction for
performance reasons by setting the value to none. Other possibilities are multi,
JSON, and XML.
LOOKUP-foo = mylookup barfield: This attribute lets you wire up a lookup to
automatically run for a set of events. The lookup itself is defined in transforms.conf.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Index-time attributes
As discussed in Chapter 3, Tables, Charts, and Fields under Indexed Fields Versus
Extracted Fields section, it is possible to add fields to the metadata of events. This is
accomplished by specifying a transform in transforms.conf, and an attribute in props.conf, to
tie the transformation to specific events.

The attribute in props.conf looks like this: TRANSFORMS-foo = bar1,bar2.

This attribute references stanzas in transforms.conf by name, in this case, bar1 and bar2.
These transform stanzas are then applied to the events matched by the stanza in
props.conf.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Parse-time attributes
Most of the attributes in props.conf actually have to do with parsing events. To
successfully parse events, a few questions need to be answered, such as these:

When does a new event begin? Are events multiline? Splunk will make fairly
intelligent guesses, but it is best to specify an exact setting. Attributes that help
with this include:

SHOULD_LINEMERGE = false: If you know that your events will never contain the
newline character, setting this to false will eliminate a lot of processing.
BREAK_ONLY_BEFORE = ^dddd-dd-dd: If you know that new events always start with a
particular pattern, you can specify it using this attribute.
TRUNCATE = 1024: If you are certain you only care about the first n characters of
an event, you can instruct Splunk to truncate each line. What is considered a
line can be changed with the next attribute.
LINE_BREAKER = ([rn]+)(?=d{4}-dd-dd): The most efficient approach to multiline
events is to redefine what Splunk considers a line. This example says that a
line is broken on any number of newlines followed by a date of the form 1111-
11-11. The big disadvantage to this approach is that, if your log changes, you
will end up with garbage in your index until you update your configuration.
Try the props helper app available at Splunkbase for help in making this kind
of configuration.

Where is the date? If there is no date, see DATETIME_CONFIG further down this bullet
list. The relevant attributes are as follows:

TIME_PREFIX = ^[: By default, dates are assumed to fall at the beginning of the
line. If this is not true, give Splunk some help and move the cursor past the
characters preceding the date. This pattern is applied to each line, so if you
have redefined LINE_BREAKER correctly, you can be sure only the beginnings of
actual multiline events are being tested.
MAX_TIMESTAMP_LOOKAHEAD = 30: Even if you change no other setting, you should
change this one. This setting says how far after TIME_PREFIX to test for dates.
With no help, Splunk will take the first 150 characters of each line and then
test regular expressions to find anything that looks like a date. The default
regular expressions are pretty lax, so what it finds may look more like a date
than the actual date. If you know that your date is never more than n characters
long, set this value to n or n+2. Remember that the characters retrieved come
after TIME_PREFIX.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

What does the date look like? These attributes will be of assistance here:
TIME_FORMAT = %Y-%m-%d %H:%M:%S.%3N %:z: If this attribute is specified, Splunk will
apply strptime to the characters immediately following TIME_PREFIX. If this
matches, then you're done. This is, by far, the most efficient and least error-
prone approach. Without this attribute, Splunk actually applies a series of
regular expressions until it finds something that looks like a date.
DATETIME_CONFIG = /etc/apps/a/custom_datetime.xml: As mentioned, Splunk uses a set
of regular expressions to determine the date. If TIME_FORMAT is not specified, or
won't work for some strange reason, you can specify a different set of regular
expressions or disable time extraction completely by setting this attribute to
CURRENT (the indexer clock time) or NONE (file modification time, or if there is no
file, clock time). I personally have never had to resort to a custom datetime.xml
file, though I have heard of it being done.

The data preview function available when you are adding data through the manager
interface builds a good, usable configuration. The configuration generated does not
use LINE_BREAKER, which is definitely safer but less efficient.

Here is a sample stanza that uses LINE_BREAKER for efficiency:

[mysourcetype]
TIME_FORMAT = %Y-%m-%d %H:%M:%S.%3N %:z
MAX_TIMESTAMP_LOOKAHEAD = 32
TIME_PREFIX = ^[
SHOULD_LINEMERGE = False
LINE_BREAKER = ([rn]+)(?=[d{4}-d{1,2}-d{1,2}s+
d{1,2}:d{1,2}:d{1,2})
TRUNCATE = 1024000
This configuration would apply to log messages that looked like this:
[2011-10-13 13:55:36.132 -07:00] ERROR Interesting message.
More information.
And another line.
[2011-10-13 13:55:36.138 -07:00] INFO All better.
[2011-10-13 13:55:37.010 -07:00] INFO More data
and another line.

Let's walk through how these settings affect the first line of this sample configuration:

LINE_BREAKER states that a new event starts when one or more newline characters are
followed by a bracket and series of numbers and dashes in the [1111-11-11 11:11:11]
pattern.
SHOULD_LINEMERGE=False tells Splunk not to bother trying to recombine multiple lines.
TIME_PREFIX moves the cursor to the character after the [character.
TIME_FORMAT is tested against the characters at the current cursor location. If it
succeeds, we are done.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

If TIME_FORMAT fails, MAX_TIMESTAMP_LOOKAHEAD characters are read from the cursor position
(after TIME_PREFIX) and the regular expressions from DATE_CONFIG are tested.
If the regular expressions fail against the characters returned, the time last parsed
from an event is used. If there is no last time parsed, the modification date from the
file will be used if known; otherwise, the current time will be used.

This is the most efficient and precise way to parse events in Splunk, but also the most
brittle. If your date format changes, you will almost certainly have junk data in your
index. Use this approach only if you are confident that the format of your logs will not
change without your knowledge.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Input-time attributes
There are only a few attributes in props.conf that matter at the input stage, but they are
generally not needed:

CHARSET = UTF-16LE: When reading data, Splunk has to know the character set used in
the log.
8859-1 or UTF-8 is handled by the default settings just fine. Some Windows
applications write logs in 2-byte little endian, which is indexed as garbage.
Setting CHARSET = UTF-16LE takes care of the problem. Check out the official
documentation for a list of supported encodings.
NO_BINARY_CHECK = true: If Splunk believes that a file is binary, it will not index the file
at all. If you find that you have to change this setting to convince Splunk to read
your files, it is likely that the file is in an unexpected character set. You might try
other CHARSET settings before enabling this setting.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Stanza types
Now that we have looked at common attributes, let's talk about the different types of
stanzas in props.conf. Stanza definitions can take the following three forms:

[foo]

This is the exact name of a source type and is the most common type of stanza
to be used; the source type of an event is usually defined in inputs.conf
Wildcards are not allowed

[source::/logs/.../*.log]

This matches the source attribute, which is usually the path to the log where
the event came from
* matches a file or directory name
... matches any part of a path

[host::*nyc*]

This matches the host attribute, which is usually the value of the hostname on
a machine running Splunk Forwarder
* is allowed

Types follow this order in taking precedence:

1. Source
2. Host
3. Source type

For instance, say an event has the following fields:

sourcetype=foo_type
source=/logs/abc/def/gh.log
host=dns4.nyc.mycompany.com

Given this configuration snippet and our preceding event, we have the following code:

[foo_type]
TZ = UTC
[source::/logs/.../*.log]
TZ = MST
[host::*nyc*]
TZ = EDT

TZ = MST will be used during parsing because the source stanza takes precedence.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

To extend this example, say we have this snippet:

[foo_type]
TZ = UTC
TRANSFORMS-a = from_sourcetype
[source::/logs/.../*.log]
TZ = MST
BREAK_ONLY_BEFORE_DATE = True
TRANSFORMS-b = from_source
[host::*nyc*]
TZ = EDT
BREAK_ONLY_BEFORE_DATE = False
TRANSFORMS-c = from_host

The attributes applied to our event would, therefore, be as shown here:

TZ = MST
BREAK_ONLY_BEFORE_DATE = True
TRANSFORMS-a = from_sourcetype
TRANSFORMS-b = from_source
TRANSFORMS-c = from_host

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Priorities inside a type
If there are multiple source or host stanzas that match a given event, the order in which
settings are applied also comes into play. A stanza with a pattern has a priority of 0,
while an exact stanza has a priority of 100. Higher priorities win. For instance, say we
have the following stanza:

[source::/logs/abc/def/gh.log]
TZ = UTC
[source::/logs/.../*.log]
TZ = CDT

Our TZ value will be UTC since the exact match of source::/logs/abc/def/gh.log has a higher
priority.

When priorities are identical, stanzas are applied by the ASCII order. For instance, say
we have this configuration snippet:

[source::/logs/abc/.../*.log]
TZ = MST
[source::/logs/.../*.log]
TZ = CDT

The attribute TZ=CDT will win because /logs/.../*.log is first in the ASCII order.

This may seem counterintuitive since /logs/abc/.../*.log is arguably a better match. The
logic for determining what makes a better match, however, can quickly become
fantastically complex, so the ASCII order is a reasonable approach.

You can also set your own value of priority, but luckily, it is rarely needed.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Attributes with class
As you dig into configurations, you will see attribute names of the FOO-bar form.

The word after the dash is generally referred to as the class. These attributes are special
in a few ways:

Attributes merge across files like any other attribute.
Only one instance of each class will be applied according to the rules described
previously.
The final set of attributes is applied in the ASCII order by the value of the class.
Once again, say we are presented with an event with the following fields:

sourcetype=foo_type
source=/logs/abc/def/gh.log
host=dns4.nyc.mycompany.com

And, say this is the configuration snippet:

[foo_type]
TRANSFORMS-a = from_sourcetype1, from_sourcetype2
[source::/logs/.../*.log]
TRANSFORMS-c = from_source_b
[source::/logs/abc/.../*.log]
TRANSFORMS-b = from_source_c
[host::*nyc*]
TRANSFORMS-c = from_host
The surviving transforms would then be:
TRANSFORMS-c = from_source_b
TRANSFORMS-b = from_source_c
TRANSFORMS-a = from_sourcetype1, from_sourcetype2

To determine the order in which the transforms are applied to our event, we will sort the
stanzas according to the values of their classes, in this case, c, b, and a. This gives us:

TRANSFORMS-a = from_sourcetype1, from_sourcetype2
TRANSFORMS-b = from_source_c
TRANSFORMS-c = from_source_b

The transforms are then combined into a single list and executed in this order:

from_sourcetype1, from_sourcetype2, from_source_c, from_source_b

The order of transforms usually doesn't matter, but it is important to understand it if you
want to chain transforms and create one field from another. We'll try this later, in the

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

transforms.conf section.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

inputs.conf
This configuration, as you might guess, controls how data makes it into Splunk.

By the time this data leaves the input stage, it still isn't an event but has some basic
metadata associated with it: host, source, sourcetype, and optionally index. This basic
metadata is then used by the parsing stage to break the data into events according to the
rules defined in props.conf.

Input types can be broken down into files, network ports, and scripts. First, we will
look at the attributes that are common to all inputs.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Common input attributes
These common bits of metadata are used in the parsing stage to pick the appropriate
stanzas in props.conf:

host: By default, host will be set to the hostname of the machine producing the event.
This is usually the correct value, but it can be overridden when appropriate.
source: This field is usually set to the path, file, or network port that an event came
from, but this value can be hardcoded.
sourcetype: This field is almost always set in inputs.conf and is the primary field to
determine which set of parsing rules in props.conf to apply to these events.

It is very important to set sourcetype. In the absence of a value, Splunk will create automatic values
based on the source, which can easily result in an explosion of sourcetype values.

index: This field says what index to write events to. If it is omitted, the default index
will be used.

All of these values can be modified using transforms, the only caveat being that these
transforms are applied after the parsing step. The practical consequence of this is that
you cannot apply different parsing rules to different events in the same file, for instance,
different time formats on different lines.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Files as inputs
The vast majority of events in Splunk come from files. Usually, these events are read
from the machine where they are produced and as the logs are written. Very often, the
entire input's stanza will look like this:

[monitor:///logs/interesting.log*]
sourcetype=interesting

This is often all that is needed. This stanza says:

Read all logs that match the /logs/interesting.log* pattern, and going forward, watch
them for new data
Name the source type interesting
Set the source to the name of the file in which the log entry was found
Default the host to the machine where the logs originated
Write the events to the default index

These are usually perfectly acceptable defaults. If sourcetype is omitted, Splunk will pick
a default source type based on the filename, which you don't want—your source type list
will get very messy very fast.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using patterns to select rolled logs
You may notice that the previous stanza ended in *. This is important because it gives
Splunk a chance to find events that were written to a log that has recently rolled. If we
simply watch /logs/interesting.log, it is likely that events will be missed at the end of the
log when it rolls, particularly on a busy server.

There are specific cases where Splunk can get confused, but in the vast majority of
cases, the default mechanisms do exactly what you would hope for. See the When to use
crcSalt section further on for a discussion about special cases.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using blacklist and whitelist
It is also possible to use a blacklist and whitelist pattern for more complicated patterns.
The most common use case is to blacklist files that should not be indexed, for instance,
gz and zip files. This can be done as follows:

[monitor:///opt/B/logs/access.log*]
sourcetype=access
blacklist=.*.gz

This stanza will still match access.log.2012-08-30, but if we had a script that compressed
older logs, Splunk will not try to read access.log.2012-07-30.gz.

Conversely, you can use a whitelist to apply very specific patterns, as shown here:

[monitor:///opt/applicationserver/logs]
sourcetype=application_logs
whitelist=(app|application|legacy|foo).log(.d{4})?
blacklist=.*.gz

This whitelist will match app.log, application.log, legacy.log.2012-08-13, and foo.log, among
others. The blacklist will negate any gz files.

Since a log is a directory, the default behavior will be to recursively scan that directory.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Selecting files recursively
The layout of your logs or your application may dictate a recursive approach.

For instance, say we have these stanzas:

[monitor:///opt/*/logs/access.log*]
sourcetype=access
[monitor:///opt/.../important.log*]
sourcetype=important

The character * will match a single file or directory, while ... will match any depth.
This will match the files you want, with the caveat that all of /opt will continually be
scanned.

Splunk will continually scan all directories from the first wildcard in a monitor path.

If /opt contains many files and directories, which it almost certainly does, Splunk will
use an unfortunate amount of resources scanning all directories for matching files,
constantly using memory and CPU. I have seen a single Splunk process watching a large
directory structure use 2 gigabytes of memory. A little creativity can take care of this,
but it is something to be aware of.

The takeaway is that if you know the possible values for *, you are better off writing
multiple stanzas. For instance, assuming our directories in /opt are A and B, the following
stanzas will be far more efficient:

[monitor:///opt/A/logs/access.log*]
sourcetype=access
[monitor:///opt/B/logs/access.log*]
sourcetype=access

It is also perfectly acceptable to have stanzas matching files and directories that simply
don't exist. This causes no errors, but be careful not to include patterns that are so broad
that they match unintended files.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Following symbolic links
When scanning directories recursively, the default behavior is to follow symbolic links.
Often this is very useful, but it can cause problems if a symbolic link points to a large or
slow filesystem. To control this behavior, simply do this:

followSymlink = false

It's probably a good idea to put this on all of your monitor stanzas until you know you
need to follow a symbolic link.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Setting the value of the host from the
source
The default behavior of using the hostname from the machine forwarding the logs is
almost always what you want. If, however, you are reading logs for a number of hosts,
you can extract the hostname from the source using host_regex or host_segment. For instance,
say we have the path:

/nfs/logs/webserver1/access.log

To set host to webserver1, you could use:

[monitor:///nfs/logs/*/access.log*]
sourcetype=access
host_segment=3

You could also use:

[monitor:///nfs/logs/*/access.log*]
sourcetype=access
host_regex=/(.*?)/access.log

The host_regex variable could also be used to extract the value of the host from the
filename. It is also possible to reset the host using a transform, with the caveat that this
will occur after parsing, which means any settings in props.conf that rely on matching the
host will already have been applied.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Ignoring old data at installation
It is often the case that, when Splunk is installed, months or years of logs are sitting in a
directory where logs are currently being written. Logs that are appended to infrequently
may also have months or years of events that are no longer interesting and would be
wasteful to index.

The best solution is to set up archive scripts to compress any logs older than a few days,
but in a large environment, this may be difficult to do. Splunk has two settings that help
ignore older data, but be forewarned: once these files have been ignored, there is no
simple way to change your mind later. If, instead, you compress older logs and blacklist
the compressed files as explained in the Using blacklist and whitelist section, you can
simply decompress, at a later stage, any files you would like to index. Let's look at a
sample stanza:

[monitor:///opt/B/logs/access.log*]
sourcetype = access
ignoreOlderThan = 14d

In this case, ignoreOlderThan says to ignore, forever, all events in any files, the
modification date of which is older than 14 days. If the file is updated in the future, any
new events will be indexed.

The followTail attribute lets us ignore all events written until now, instead starting at the
end of each file. Let's look at an example:

[monitor:///opt/B/logs/access.log*]
sourcetype = access
followTail = 1

Splunk will note the length of files matching the pattern, but TailfollowTail instructs
Splunk to ignore everything currently in these files. Any new events written to the files
will be indexed. Remember that there is no easy way to alter this if you change your
mind later.

It is not currently possible to say ignore all events older than x, but since most logs roll
on a daily basis, this is not commonly a problem.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

When to use crcSalt
To keep track of what files have been seen before, Splunk stores a checksum of the first
256 bytes of each file it sees. This is usually plenty as most files start with a log
message, which is almost guaranteed to be unique. This breaks down when the first 256
bytes are not unique on the same server.

I have seen two cases where this happens, as follows:

1. The first case is when logs start with a common header containing information
about the product version, for instance:

==
== Great product version 1.2 brought to you by Great company ==
== Server kernel version 3.2.1 ==

2. The second case is when a server writes many thousands of files with low time
resolution, for instance:

12:13:12 Session created
12:13:12 Starting session

To deal with these cases, we can add the path to the log to the checksum, or salt our crc.
This is accomplished as shown here:

[monitor:///opt/B/logs/application.log*]
sourcetype = access
crcSalt = <SOURCE>

It says to include the full path to this log in the checksum.

This method will only work if your logs have a unique name. The easiest way to
accomplish this is to include the current date in the name of the log when it is created.
You may need to change the pattern for your log names so that the date is always
included and the log is not renamed.

Do not use crcSalt if your logs change names!

If you enable crcSalt in an input where it was not already enabled, you will re-index all
the data! You need to ensure that the old logs are moved aside or uncompressed and
blacklisted before enabling this setting in an existing configuration.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Destructively indexing files
If you receive logfiles in batches, you can use the batch input to consume logs and then
delete them. This should only be used against a copy of the logs.

See the following example:

[batch:///var/batch/logs/*/access.log*]
sourcetype=access
host_segment=4
move_policy = sinkhole

This stanza would index the files in the given directory and then delete the files. Make
sure this is what you want to do!

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Network inputs
In addition to reading files, Splunk can listen to network ports. The stanzas take the
following form:

[protocol://<remote host>:<local port>]

The remote host portion is rarely used, but the idea is that you can specify different input
configurations for specific hosts. The usual stanzas look like this:

[tcp://1234]: Specify that we will listen to port 1234 for TCP connections. Anything
can connect to this port and send data in.
[tcp-ssl://importanthost:1234]: Listen on TCP using SSL, and apply this stanza to the
importanthost host. Splunk will generate self-signed certificates the first time it is
launched.
[udp://514]: This is generally used to receive syslog events. While this does work, it
is generally considered a best practice to use a dedicated syslog receiver, such as
rsyslog or syslog-ng. See Chapter 12, Advanced Deployments, for a discussion on this
subject.
[splunktcp://9997] or [splunktcp-ssl://9997]: In a distributed environment, your
indexers will receive events on the specified port. It is a custom protocol used
between Splunk instances. This stanza is created for you when you go to Settings |
Forwarding and receiving | Receive data and configure your Splunk instance to
receive data forwarded from other Splunk instances.

For TCP and UDP inputs, the following attributes apply:

source: If it is not specified, the source will default to protocol:port, for instance,
udp:514.
sourcetype: If it is not specified, sourcetype will also default to protocol:port, but this is
generally not what you want. It is best to specify a source type and create a
corresponding stanza in props.conf.
connection_host: With network inputs, what value to capture for host is somewhat
tricky. Your options essentially are:

connection_host = dns uses reverse DNS to determine the hostname from the
incoming connection. When reverse DNS is configured properly, this is
usually your best bet. This is the default setting.
connection_host = ip sets the host field to the IP address of the remote machine.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

This is your best choice when reverse DNS is unreliable.
connection_host = none uses the hostname of the Splunk instance receiving the
data. This option can make sense when all traffic is going to an interim host.
host = foo sets the hostname statically.
It is also common to reset the value of the host using a transform, for instance,
with syslog events. This happens after parsing, though, so it is too late to
change things such as time zone based on the host.

queueSize: This value specifies how much memory Splunk is allowed to set aside for
an input queue. A common use for a queue is to capture spiky data until the
indexers can catch up.
persistentQueueSize: This value specifies a persistent queue that can be used to
capture data to the disk if the in-memory queue fills up. If you find yourself
building a particularly complicated setup around network ports, I would encourage
you to talk to Splunk support as there may be a better way to accomplish your
goals.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Native Windows inputs
One nice thing about Windows is that system logs and many application logs go to the
same place.

Unfortunately, that place is not a file, so native hooks are required to access these
events. Splunk makes those inputs available using stanzas of the
[WinEventLog:LogName] form. For example, to index the Security log, the stanza simply looks
like this:

[WinEventLog:Security]

There are a number of supported attributes, but the defaults are reasonable. The only
attribute I have personally used is current_only, which is the equivalent of followTail for
monitor stanzas. For instance, this stanza says to monitor the Application log, but also to
start reading from now:

[WinEventLog:Application]
current_only = 1

This is useful when there are many historical events on the server.

The other input available is Windows Management Instrumentation (WMI). With
WMI, you can accomplish the following:

Monitor native performance metrics as you would find in Windows Performance
Monitor
Monitor the Windows Event Log API
Run custom queries against the database behind WMI
Query remote machines

Even though it is theoretically possible to monitor many Windows servers using WMI
and a few Splunk forwarders, this is not advised. The configuration is complicated,
does not scale well, introduces complicated security implications, and is not thoroughly
tested. Also, reading Windows Event Logs via WMI produces different output than the
native input, and most apps that expect Windows events will not function as expected.

The simplest way to generate the inputs.conf and wmi.conf configurations needed for
Windows Event Logs and WMI is to install Splunk for Windows on a Windows host and

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

then configure the desired inputs through the web interface. See the official Splunk
documentation for more examples.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Scripts as inputs
Splunk will periodically execute processes and capture the output. For example, here is
input from the ImplementingSplunkDataGenerator app:

[script://./bin/implSplunkGen.py 2]
interval=60
sourcetype=impl_splunk_gen_sourcetype2
source=impl_splunk_gen_src2
host=host2
index=implSplunk

Things to note in this example are as follows:

The present working directory is the root of the app that contains inputs.conf.
Files that end with .py will be executed using the Python interpreter included with
Splunk. This means the Splunk Python modules are available. To use a different
Python module, specify the path to Python in the stanza.
Any arguments specified in the stanza will be handed to the script as if it was
executed at the command line.
The interval specifies how often, in seconds, this script should be run:

If the script is still running, it will not be launched again.
Long-running scripts are fine. Since only one copy of a script will run at a
time, the interval will instead indicate how often to check whether the script
is still running.
This value can also be specified in the cron format.

Any programming language can be used as long as it can be executed at the command
line. Splunk simply captures the standard output from whatever is executed.

Included with Splunk for Windows are scripts to query WMI. One sample stanza looks
like this:

[script://$SPLUNK_HOMEbinscriptssplunk-wmi.path]

The things to note are as follows:

Windows paths require backslashes instead of slashes
$SPLUNK_HOME will expand properly

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

transforms.conf
The transforms.conf configuration is where we specify transformations and lookups that
can then be applied to any event. These transforms and lookups are referenced by name
in props.conf.

For our examples in the later subsections, we will use this event:

2012-09-24T00:21:35.925+0000 DEBUG [MBX] Password reset called.
[old=1234, new=secret, req_time=5346]

We will use it with these metadata values:

sourcetype=myapp
source=/logs/myapp.session_foo-jA5MDkyMjEwMTIK.log
host=vlbmba.local

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Creating indexed fields
One common task accomplished with transforms.conf is the creation of new indexed
fields. Indexed fields are different from extracted fields in that they must be created at
index time and can be searched for whether the value is in the raw text of the event or
not. It is usually preferable to create extracted fields instead of indexed fields. See Chapt
er 3, Tables, Charts, and Fields under Indexed Fields Versus Extracted Fields section,
for a deeper discussion about when indexed fields are beneficial.

Indexed fields are only applied to events that are indexed after the definition is created.
There is no way to backfill a field without re-indexing.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Creating a loglevel field
The format of a typical stanza in transforms.conf looks like this:

[myapp_loglevel]
REGEX = s([A-Z]+)s
FORMAT = loglevel::$1
WRITE_META = True

This will add to our events the field loglevel=DEBUG. This is a good idea if the values of
loglevel are common words outside of this location, for instance ERROR.

Walking through this stanza, we have the following:

[myapp_loglevel]: The stanza can be any unique value, but it is in your best interest to
make the name meaningful. This is the name referenced in props.conf.
REGEX = s([A-Z]+)s: This is the pattern to test against each event that is handed to us. If
this pattern does not match, this transform will not be applied.
FORMAT = loglevel::$1: Create the loglevel. Under the hood, all indexed fields are
stored using a :: delimiter, so we have to follow that form.
WRITE_META = True: Without this attribute, the transform won't actually create an
indexed field and store it with the event.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Creating a session field from the source
Using our event, let's create another field, session, which appears only to be in the value
of the source:

[myapp_session]
SOURCE_KEY = MetaData:Source
REGEX = session_(.*?).log
FORMAT = session::$1
WRITE_META = True

Note the SOURCE_KEY attribute. The value of this field can be any existing metadata field or
another indexed field that has already been created. See the Attributes with class
subsection within the props.conf section for a discussion about the transform execution
order. We will discuss these fields in the Modifying metadata fields subsection.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Creating a tag field
It is also possible to create fields simply to tag events that would be difficult to search
for otherwise. For example, if we wanted to find all events that were slow, we could
search for:

sourcetype=myapp req_time>999

Without an indexed field, this query would require parsing every event that matches
sourcetype=myapp over the time that we are interested in. The query will then discard all
events whose req_time value was 999 or less.

If we know ahead of time that a value of req_time>999 is bad, and we can come up with a
regular expression to specify what bad is, we can tag these events for quicker retrieval.
Say we have this transforms.conf stanza:

[myapp_slow]
REGEX = req_time=d{4,}
FORMAT = slow_request::1
WRITE_META = True

This REGEX will match any event containing req_time= followed by four or more digits.

After adding slow_request to fields.conf (see the fields.conf section), we can search for
slow_request=1 and find all slow events very efficiently. This will not apply to events that
were indexed before this transform existed. If the events that are slow are uncommon,
this query will be much faster.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Creating host categorization fields
It is common to have parts of a hostname mean something in particular. If this pattern is
well known and predictable, it may be worthwhile to pull the value out into fields.
Working from our fictitious host value vlbmba.local (which happens to be my laptop), we
might want to create fields for the owner and the host type. Our stanza might look like
this:

[host_parts]
SOURCE_KEY = MetaData:Host
REGEX = (...)(...).
FORMAT = host_owner::$1 host_type::$2
WRITE_META = True

With our new fields, we can now easily categorize errors by whatever information is
encoded into the hostname. Another approach would be to use a lookup, which has the
advantage of being retroactive. This approach has the advantage of faster searches for
the specific fields.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Modifying metadata fields
It is sometimes convenient to override the main metadata fields. We will look at one
possible reason for overriding each base metadata value.

Remember that transforms are applied after parsing, so changing metadata fields via
transforms cannot be used to affect which props.conf stanzas are applied for date parsing
or line breaking.

For instance, with syslog events that contain the hostname, you cannot change the time
zone, because the date has already been parsed before the transforms are applied. The
keys provided by Splunk include:

_raw (this is the default value for SOURCE_KEY)
MetaData:Source

MetaData:Sourcetype

MetaData:Host

_MetaData:Index

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Overriding the host
If your hostnames are appearing differently from different sources, for instance, syslog
versus Splunk forwarders, you can use a transform to normalize these values. Given our
hostname, vlbmba.local, we may want to only keep the portion to the left of the first
period. The stanza would look like this:

[normalize_host]
SOURCE_KEY = MetaData:Host
DEST_KEY = MetaData:Host
REGEX = (.*?).
FORMAT = host::$1

This will replace our hostname with vlbmba. Note these two things:

WRITE_META is not included, because we are not adding to the metadata of this event;
we are instead overwriting the value of a core metadata field
host:: must be included at the beginning of the format

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Overriding the source
Some applications will write a log for each session, conversation, or transaction. One
problem this introduces is an explosion of source values. The values of the source will
end up in $SPLUNK_HOME/var/lib/splunk/*/db/Sources.data—one line per unique value of the
source. This file will eventually grow to a huge size, and Splunk will waste a lot of time
updating it, causing unexplained pauses. A new setting in indexes.conf, called
disableGlobalMetadata, can also eliminate this problem.

To flatten this value, we could use a stanza like this:

[myapp_flatten_source]
SOURCE_KEY = MetaData:Source
DEST_KEY = MetaData:Source
REGEX = (.*session_).*.log
FORMAT = source::$1x.log

This would set the value of source to /logs/myapp.session_x.log, which would eliminate our
growing source problem. If the value of session is useful, the transform in the Creating
a session field from source section could be run before this transform to capture the
value. Likewise, a transform could capture the entire value of the source and place it
into a different metadata field.

A huge number of logfiles on a filesystem introduces a few problems, including running
out of inodes and the memory used by the Splunk process tracking all of the files. As a
general rule, a cleanup process should be designed to archive older logs.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Overriding sourcetype
It is not uncommon to change the sourcetype field of an event based on the contents of the
event, particularly from syslog. In our fictitious example, we want a different source
type for events that contain [MBX] after the log level so that we can apply different
extracts to these events. The following examples will do this work:

[mbx_sourcetype]
DEST_KEY = MetaData:Sourcetype
REGEX = d+s[A-Z]+s([MBX])
FORMAT = sourcetype::mbx

Use this functionality carefully as it easy to go conceptually wrong, and this is difficult
to fix later.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Routing events to a different index
At times, you may want to send events to a different index, either because they need to
live longer than other events or because they contain sensitive information that should
not be seen by all users. This can be applied to any type of event from any source, be it
a file, network, or script.

All that we have to do is match the event and reset the index.

[contains_password_1]
DEST_KEY = _MetaData:Index
REGEX = Password reset called
FORMAT = sensitive

The things to note are as follows:

In this scenario, you will probably make multiple transforms, so make sure to make
the name unique
DEST_KEY starts with an underscore
FORMAT does not start with index::
The index sensitive must exist on the machine indexing the data, or else the event
will be lost

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Lookup definitions
A simple lookup simply needs to specify a filename in transforms.conf, as shown here:

[testlookup]
filename = test.csv

Assuming that test.csv contains the user and group columns and our events contain the
user field, we can reference this lookup using the lookup command in search, as follows:

* | lookup testlookup user

Otherwise, we can wire this lookup to run automatically in props.conf, as follows:

[mysourcetype]
LOOKUP-testlookup = testlookup user

That's all you need to get started, and this probably covers most cases. See the Using
lookups to enrich data section in Chapter 7, Extending Search, for instructions on
creating lookups.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Wildcard lookups
In Chapter 10, Summary Indexes and CSV Files, we edited transforms.conf but did not
explain what was happening. Let's take another look. Our transform stanza looks like
this:

[flatten_summary_lookup]
filename = flatten_summary_lookup.csv
match_type = WILDCARD(url)
max_matches = 1

Walking through what we added, we have the following terms and their descriptions:

match_type = WILDCARD(url): This says that the value of the url field in the lookup file
may contain wildcards. In our example, the URL might look like / contact/* in our
CSV file.
max_matches = 1: By default, up to 10 entries that match in the lookup file will be
added to an event, with the values in each field being added to a multivalue field.
In this case, we only want the first match to be applied.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

CIDR wildcard lookups
CIDR wildcards look very similar to text-based wildcards but use Classless Inter-
Domain Routing (CIDR) rules to match lookup rows against an IP address.

Let's try an example. Say we have this lookup file:

ip_range,network,datacenter
10.1.0.0/16,qa,east
10.2.0.0/16,prod,east
10.128.0.0/16,qa,west
10.129.0.0/16,prod,west

It has this corresponding definition in transforms.conf:

[ip_address_lookup]
filename = ip_address_lookup.csv
match_type = CIDR(ip_range)
max_matches = 1

And, there are a few events such as these:

src_ip=10.2.1.3 user=mary
src_ip=10.128.88.33 user=bob
src_ip=10.1.35.248 user=bob

We could use lookup to enrich these events as follows:

src_ip="*"
| lookup ip_address_lookup ip_range as src_ip
| table src_ip user datacenter network

This would match the appropriate IP address and give us a table like this one:

The query also shows that you could use the same lookup for different fields using the as
keyword in the lookup call.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using time in lookups
A temporal lookup is used to enrich events based on when the event happened. To
accomplish this, we specify the beginning of a time range in the lookup source and then
specify a format for this time in our lookup configuration. Using this mechanism, lookup
values can change over time, even retroactively.

Here is a very simple example to attach a version field based on time. Say we have the
following CSV file:

sourcetype,version,time
impl_splunk_gen,1.0,2012-09-19 02:56:30 UTC
impl_splunk_gen,1.1,2012-09-22 12:01:45 UTC
impl_splunk_gen,1.2,2012-09-23 18:12:12 UTC

We then use the lookup configuration in transforms.conf to specify which field in our
lookup will be tested against the time in each event and what the format of the time field
will be:

[versions]
filename = versions.csv
time_field = time
time_format = %Y-%m-%d %H:%M:%S %Z

With this in place, we can now use our lookup in search, as shown here:

sourcetype=impl_splunk_gen error
| lookup versions sourcetype
| timechart count by version

This would give us a chart of errors (by version) over time, as shown here:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Other use cases include tracking deployments across environments and tracking activity
from disabled accounts.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using REPORT
Attributes of the format REPORT-foo in props.conf call stanzas in transforms.conf at search
time, which means that they cannot affect metadata fields. EXTRACT definitions are more
convenient to write, as they live entirely in a single attribute in props.conf, but there are a
couple of things that can only be done using a REPORT attribute paired with a transform
defined in transforms.conf.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Creating multivalue fields
Assuming some value might occur multiple times in a given event, an EXTRACT definition
can only match the first occurrence. For example, say we have the event:

2012-08-25T20:18:09 action=send a@b.com c@d.com e@f.com

We could pull the first email address using the following extraction:

EXTRACT-email = (?i)(?P<email>[a-zA-Z0-9._]+@[a-zA-Z0-9._]+)

This would set the field email to a@b.com. Using a REPORT attribute and the transform stanza,
we can capture all of the email addresses using the MV_ADD attribute. The props stanza
would look like this:

REPORT-mvemail = mvemail

The transforms.conf stanza would then look like this:

[mvemail]
REGEX = (?i)([a-zA-Z0-9._]+@[a-zA-Z0-9._]+)
FORMAT = email::$1
MV_ADD = true

The MV_ADD attribute also has the effect that, if some other configuration has already
created the email field, all values that match will be added to the event.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Creating dynamic fields
Sometimes, it can be useful to dynamically create fields from an event. For instance, say
we have an event, such as:

2012-08-25T20:18:09 action=send from_335353("a@b.com") to_223523("c@d.com") cc_39393("e@f.com") cc_39394("g@h.com")

It would be nice to pull from, to, and cc as fields, but we may not know all of the possible
field names. This stanza in transforms.conf would create the fields we want, dynamically:

[dynamic_address_fields]
REGEX=s(S+)_S+("(.*?)")
FORMAT = $1::$2
MV_ADD=true

While we're at it, let's put the numeric value after the field name into a value:

[dynamic_address_ids]
REGEX=s(S+)_(S+)("
FORMAT = $1::$2
MV_ADD=true

This gives us multivalue fields such as the ones in the following screenshot:

One thing that we cannot do is add extra text to the FORMAT attribute. For instance, in the
second case, it would be nice to use a FORMAT attribute such as this one:

FORMAT = $1_id::$2

Unfortunately, this will not function as we hope and will instead create the field id.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Chaining transforms
As covered before in the Attributes with class section, transforms are executed in a
particular order. In most cases, this order does not matter, but there are occasions when
you might want to chain transforms together, with one transform relying on a field
created by a previous transform.

A good example is the source flattening that we used previously, in the Overriding
source section. If this transform happened before our transform in the Creating a
session field from source section, our session field will always have the value x.

Let's reuse two transforms from previous sections and then create one more transform.
We will chain them to pull the first part of session into yet another field. Say we have
these transforms:

[myapp_session]
SOURCE_KEY = MetaData:Source
REGEX = session_(.*?).log
FORMAT = session::$1
WRITE_META = True
[myapp_flatten_source]
SOURCE_KEY = MetaData:Source
DEST_KEY = MetaData:Source
REGEX = (.*session_).*.log
FORMAT = source::$1x.log
[session_type]
SOURCE_KEY = session
REGEX = (.*?)-
FORMAT = session_type::$1
WRITE_META = True

To ensure that these transforms run in order, the simplest thing would be to place them in
a single TRANSFORMS attribute in props.conf, as shown here:

[source:*session_*.log]
TRANSFORMS-s = myapp_session,myapp_flatten_source,session_type

We can use the source from our sample event specified inside tranforms.conf as follows:

source=/logs/myapp.session_foo-jA5MDkyMjEwMTIK.log

Walking though the transforms, we have the following terms and their descriptions:

myapp_session: Reading from the metadata field, source, creates the indexed field

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

session with the foo-jA5MDkyMjEwMTIK value
myapp_flatten_source: This resets the metadata field, source, to /logs/myapp.session_x.log
session_type: Reading from our newly-indexed field, session, creates the session_type
field with the value foo

This same ordering logic can be applied at search time using the EXTRACT and REPORT
stanzas. This particular case needs to be calculated as indexed fields if we want to
search for these values, since the values are part of a metadata field.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Dropping events
Some events are simply not worth indexing. The hard part is figuring out which ones
these are and making very sure you're not wrong. Dropping too many events can make
you blind to real problems at critical times, and can introduce more problems than
tuning Splunk to deal with the greater volume of data in the first place.

With that warning stated, if you know what events you do not need, the procedure for
dropping events is pretty simple. Say we have an event such as this one:

2012-02-02 12:24:23 UTC TRACE Database call 1 of 1,000. [...]

I know absolutely that, in this case and for this particular source type, I do not want to
index TRACE-level events.

In props.conf, I will create a stanza for my source type, as shown here:

[mysourcetype]
TRANSFORMS-droptrace=droptrace

Then, I will create the following transform in transforms.conf:

[droptrace]
REGEX=^d{4}-d{2}-d{2}s+d{1,2}:d{2}:d{1,2}s+[A-Z]+sTRACE
DEST_KEY=queue
FORMAT=nullQueue

Splunk compares nullQueue to nulldevice, which (according to the product documentation)
tells Splunk not to forward or index the filtered data.

This REGEX attribute is purposely as strict as I can make it. It is vital that I do not
accidentally drop other events, and it is better for this brittle pattern to start failing and
to let through TRACE events rather than for it to do the opposite.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

fields.conf
We need to add to fields.conf any indexed fields we create, or else they will not be
searched efficiently, or may even not function at all. For our examples in the
transforms.conf section, fields.conf would look like this:

[session_type]
INDEXED = true
[session]
INDEXED = true
[host_owner]
INDEXED = true
[host_type]
INDEXED = true
[slow_request]
INDEXED = true
[loglevel]
INDEXED = true

These stanzas instruct Splunk not to look in the body of the events for the value being
queried. Take, for instance, the following search:

host_owner=vlb

Without this entry, the actual query would essentially be:

vlb | search host_owner=vlb

With the expectation that the value vlb is in the body of the event, this query simply won't
work. Adding the entry to fields.conf fixes this. In the case of loglevel, since the value is
in the body, the query will work, but it will not take advantage of the indexed field,
instead only using it to filter events after finding all events that contain the bare word.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

outputs.conf
This configuration controls how Splunk will forward events. In the vast majority of
cases, this configuration exists on Splunk forwarders, which send their events to Splunk
indexers. An example would look like this:

[tcpout]
defaultGroup = nyc
[tcpout:nyc]
autoLB = true
server = 1.2.3.4:9997,1.2.3.6:9997

It is possible to use transforms to route events to different server groups, but it is not
commonly used as it introduces a lot of complexity that is generally not needed.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

indexes.conf
Put simply, indexes.conf determines where data is stored on the disk, how much is kept,
and for how long. An index is simply a named directory with a specific structure. Inside
this directory structure, there are a few metadata files and subdirectories; the
subdirectories are called buckets and actually contain the indexed data.

A simple stanza looks like this:

[implSplunk]
homePath = $SPLUNK_DB/implSplunk/db
coldPath = $SPLUNK_DB/implSplunk/colddb
thawedPath = $SPLUNK_DB/implSplunk/thaweddb

Let's walk through these attributes:

homePath: This is the location for recent data.
coldPath: This is the location for older data.
thawedPath: This is a directory where buckets can be restored. It is an unmanaged
location. This attribute must be defined, but I, for one, have never actually used it.

An aside about the terminology of buckets is probably in order. It is as follows:

hot: This is a bucket that is currently open for writing. It lives in homePath.
warm: This is a bucket that was created recently but is no longer open for writing. It
also lives in homePath.
cold: This is an older bucket that has been moved to coldPath. It is moved when
maxWarmDBCount has been exceeded.
frozen: For most installations, this simply means deleted. For customers who want
to archive buckets, coldToFrozenScript or coldToFrozenDir can be specified to save
buckets.
thawed: A thawed bucket is a frozen bucket that has been brought back. It is special
in that it is not managed, and it is not included in all time queries. When using
coldToFrozenDir, only the raw data is typically kept, so Splunk rebuild will need to be
used to make the bucket searchable again.

How long data stays in an index is controlled by these attributes:

frozenTimePeriodInSecs: This setting dictates the oldest data to keep in an index. A
bucket will be removed when its newest event is older than this value. The default

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

value is approximately 6 years.
maxTotalDataSizeMB: This setting dictates how large an index can be. The total space
used across all hot, warm, and cold buckets will not exceed this value. The oldest
bucket is always frozen first. The default value is 500 gigabytes. It is generally a
good idea to set both of these attributes. frozenTimePeriodInSecs should match what
users expect. maxTotalDataSizeMB should protect your system from running out of disk
space.

Less commonly used attributes include:

coldToFrozenDir: If specified, buckets will be moved to this directory instead of being
deleted. This directory is not managed by Splunk, so it is up to the administrator to
make sure that the disk does not fill up.
maxHotBuckets: A bucket represents a slice of time and will ideally span as small a
slice of time as is practical. I would never set this value to less than 3, but ideally,
it should be set to 10.
maxDataSize: This is the maximum size for an individual bucket. The default value is
set by the processor type and is generally acceptable. The larger a bucket, the
fewer the buckets to be opened to complete a search, but the more the disk space
needed before a bucket can be frozen. The default is auto, which will never top
750 MB. The setting auto_high_volume, which equals 1 GB on 32-bit systems and 10
GB on 64-bit systems, should be used for indexes that receive more than 10 GB a
day.

We will discuss sizing multiple indexes in Chapter 12, Advanced Deployments.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

authorize.conf
This configuration stores definitions of capabilities and roles. These settings affect
search and the web interface. They are generally managed through the interface at
Settings | Access controls, but a quick look at the configuration itself may be useful.

A role stanza looks like this:

[role_power]
importRoles = user
schedule_search = enabled
rtsearch = enabled
srchIndexesAllowed = *
srchIndexesDefault = main
srchDiskQuota = 500
srchJobsQuota = 10
rtSrchJobsQuota = 20

Let's walk through these settings:

importRoles: This is a list of roles to import capabilities from. The set of capabilities
will be the merging of capabilities from imported roles and added capabilities.
schedule_search and rtsearch: These are two capabilities enabled for the role power
that were not necessarily enabled for the imported roles.
srchIndexesAllowed: This determines what indexes this role is allowed to search. In
this case, all are allowed.
srchIndexesDefault: This determines the indexes to search by default. This setting also
affects the data shown in Search | Summary. If you have installed the
ImplementingSplunkDataGenerator app, you will see the impl_splunk_* source types on this
page even though this data is actually stored in the implsplunk index.
srchDiskQuota: Whenever a search is run, the results are stored on the disk until they
expire. The expiration can be set explicitly when creating a saved search, but the
expiration is automatically set for interactive searches. Users can delete old results
from the Jobs view.
srchJobsQuota: Each user is limited to a certain number of concurrently running
searches. The default is three. Users with the power role are allowed 10, while
those with the admin role are allowed 50.
rtSrchJobsQuota: Similarly, this is the maximum number of concurrently running real-
time searches. The default is six.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

savedsearches.conf
This configuration contains saved searches and is rarely modified by hand.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

times.conf
This holds definitions for time ranges that appear in the time picker.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

commands.conf
This configuration specifies commands provided by an app. We will use this in Chapter 1
3, Extending Splunk.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

web.conf
The main settings changed in this file are the port for the web server, the SSL
certificates, and whether to start the web server at all.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

User interface resources
Most Splunk apps consist mainly of resources for the web application. The app layout
for these resources is completely different from all other configurations.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Views and navigation
Like .conf files, view and navigation documents take precedence in the following order:

$SPLUNK_HOME/etc/users/$username/$appname/local: When a new dashboard is created, it
lands here. It will remain here until the permissions are changed to App or Global.
$SPLUNK_HOME/etc/apps/$appname/local: Once a document is shared, it will be moved to
this directory.
$SPLUNK_HOME/etc/apps/$appname/default: Documents can only be placed here manually.
You should do this if you are going to share an app. Unlike .conf files, these
documents do not merge.

Within each of these directories, views and navigation end up under the directories
data/ui/views and data/ui/nav, respectively. So, given a view foo, for the user bob, in the app
app1, the initial location for the document will be as follows:

$SPLUNK_HOME/etc/users/bob/app1/local/data/ui/views/foo.xml

Once the document is shared, it will be moved to the following location:

$SPLUNK_HOME/etc/apps/app1/local/data/ui/views/foo.xml

Navigation follows the same structure, but the only navigation document that is ever
used is called default.xml, for instance:

$SPLUNK_HOME/etc/apps/app1/local/data/ui/nav/default.xml

You can edit these files directly on the disk instead of through the web interface, but
Splunk will probably not realize the changes without a restart—unless you use a little
trick. To reload changes to views or navigation made directly on the disk, load the URL
http://mysplunkserver:8000/debug/refresh, replacing mysplunkserver appropriately. If all else
fails, restart Splunk.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Appserver resources
Outside of views and navigation, there are a number of resources that the web
application will use. For instance, applications and dashboards can reference CSS and
images, as we did in Chapter 8, Working with Apps. These resources are stored under
$SPLUNK_HOME/etc/apps/$appname/appserver/. There are a few directories that appear under this
directory, as follows:

static: Any static files that you would like to use in your application are stored
here. There are a few magic documents that Splunk itself will use, for instance,
appIcon.png, screenshot.png, application.css, and application.js. Other files can be
referenced using includes or templates. See the Using ServerSideInclude in a
complex dashboard section in Chapter 8, Working with Apps, for an example of
referencing includes and static images.
event_renderers: Event renderers allow you to run special display code for specific
event types. We will write an event renderer in Chapter 13, Extending Splunk.
templates: It is possible to create special templates using the mako template
language. It is not commonly done.
modules: This is where new modules that are provided by apps are stored. Examples
of this include the Google Maps and Sideview Utils modules. See https://dev.splunk
.com for more information about building your own modules, or use existing
modules as an example.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://dev.splunk.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

Metadata
Object permissions are stored in files located at $SPLUNK_HOME/etc/apps/$appname/metadata/.
The two possible files are default.meta and local.meta.

These files have certain properties:

They are only relevant to the resources in the app where they are contained
They do merge, with entries in local.meta taking precedence
They are generally controlled by the admin interface
They can contain rules that affect all configurations of a particular type, but this
entry must be made manually

In the absence of these files (not all apps will have this folder), resources are limited to
the current app.

Let's look at default.meta for is_app_one, as created by Splunk:

Application-level permissions
[]
access = read : [*], write : [admin, power]
EVENT TYPES
[eventtypes]
export = system
PROPS
[props]
export = system
TRANSFORMS
[transforms]
export = system
LOOKUPS
[lookups]
Chapter 10
[329]
export = system
VIEWSTATES: even normal users should be able to create shared
viewstates
[viewstates]
access = read : [*], write : [*]
export = system

Walking through this snippet, we have the following terms and their descriptions:

The [] stanza states that all users should be able to read everything in this app but
that only users with the admin or power roles should be able to write to this app.
The [eventtypes], [props], [transforms], and [lookups] states say that all configurations of

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

each type in this app should be shared by all users in all apps, by default.
export=system is equivalent to Global in the user interface.
The [viewstates] stanza gives all users the right to share viewstates globally. A
viewstate contains information about dashboard settings made through the web
application, for instance, chart settings. Without this, chart settings applied to a
dashboard or saved search would not be available.

Looking at local.meta, we see settings produced by the web application for the
configurations we created through the web application:

[indexes/summary_impl_splunk]
access = read : [*], write : [admin, power]
[views/errors]
access = read : [*], write : [admin, power]
export = system
owner = admin
version = 4.3
modtime = 1339296668.151105000
[savedsearches/top%20user%20errors%20pie%20chart]
export = none
owner = admin
version = 4.3
modtime = 1338420710.720786000
[viewstates/flashtimeline%3Ah2v14xkb]
owner = nobody
version = 4.3
modtime = 1338420715.753642000
[props/impl_splunk_web/LOOKUP-web_section]
access = read : [*]
export = none
owner = admin
version = 4.3
modtime = 1346013505.279379000

Hopefully, you get the idea. The web application will make very specific entries for
each object created. When distributing an application, it is generally easier to make
blanket permissions in metadata/default.meta as appropriate for the resources in your
application.

For an application that simply provides dashboards, no metadata at all will be needed
as the default for all resources (apps) will be acceptable. If your application provides
resources to be used by other applications, for instance, lookups or extracts, your
default.meta file might look like this:

PROPS
[props]
export = system
TRANSFORMS
[transforms]
export = system
LOOKUPS

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

[lookups]
export = system

This states that everything in your props.conf and transforms.conf files, and all lookup
definitions, are merged into the logical configuration of every search.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Summary
This chapter provided an overview of how configurations work and a commentary on
the most common aspects of Splunk configuration. This is by no means a complete
reference for these configurations, which I will leave to the official documentation. I
find that the easiest way to get to the official documentation for a particular file is to
query your favorite search engine for splunk configname.conf.

In Chapter 12, Advanced Deployments, we will dig into distributed deployments and look
at how they are efficiently configured. What you have learned in this chapter will be
vital to understanding what is considered to be a best practice.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Advanced Deployments
When you first started Splunk, you probably installed it on one machine, imported some
logs, and got to work searching. It is wonderful that you can try out the product so
easily, but once you move into testing and production, things can get much more
complicated, and a bit of planning will save you from trouble later.

In this chapter, we will discuss the following topics:

Getting data
The different parts of a distributed deployment
Distributed configuration management
Sizing your installation
Security concerns
Backup strategies

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Planning your installation
The following are a few questions that you need to answer to determine how many
Splunk instances will be involved in your deployment:

How much data will be indexed per day? How much data will be kept? The rule of
thumb is 100 gigabytes per day per Splunk indexer, assuming that you have fast
disks. See the Sizing indexers section for more information.
How many searches will be running simultaneously? This number is probably
smaller than you think. This is not the number of users who may be using Splunk,
but the number of queries that are running simultaneously. This varies by the type of
queries that your group runs.
What are the sources of data? Where your data comes from can definitely affect
your deployment. Planning for all the possible data that you might want to consume
can save you from trouble later. See the Common data sources section for
examples.
How many data centers do you need to monitor? Dealing with servers in multiple
locations introduces another level of complexity, to which there is no single
answer. See Deploying the Splunk binary section for a few example deployments.
How will you deploy the Splunk binary?
How will you distribute configurations?

We will touch on these topics and more.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Splunk instance types
In a distributed deployment, different Splunk processes will serve different purposes.
There are four stages of processing that are generally spread across two to four layers.
The stages of processing include:

Input: This stage consumes raw data from log files, ports, or scripts.
Parsing: This stage splits the raw data into events, parses time, sets base metadata,
runs transforms, and so on.
Indexing: This stage stores the data and optimizes the indexes.
Searching: This stage runs queries and presents the results to the user. All these
different stages can be accomplished in one process, but splitting them across
servers can improve performance as the log volumes and search load increase.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Splunk forwarders
Each machine that contains the log files generally runs a Splunk forwarder process. The
job of this process is to read the logs on that machine or to run scripted inputs.

This installation is either of the following:

A full installation of Splunk, configured to forward data instead of indexing it
Splunk universal forwarder, which is essentially Splunk with everything needed
for indexing or searching removed
With a full installation of Splunk, the process can be configured as one of two
kinds of forwarder:

A light forwarder is configured not to parse events but, instead, to forward the
raw stream of data to the indexers. This installation has the advantages that it
uses very few resources on the machine running the forwarder (unless the
number of files being scanned is very large) and that the configuration is
simple. It has the disadvantage that the indexers will do more work. If this is
what you need, it is recommended that you use the Splunk universal
forwarder.
A heavy forwarder is configured to parse events, forwarding these parsed or
cooked events to the indexers. This has the advantage that the indexer does
less work, but the disadvantage that more configurations need to be pushed to
the forwarders. This configuration also uses approximately double the CPU
and memory as that required for a light forwarder configuration. For most
customers, the Splunk universal forwarder is the right answer.

The most important configurations to a forwarder installation are:

inputs.conf: This defines what files to read, network ports to listen to, or scripts to
run.
outputs.conf: This defines which indexer(s) should receive the data.
props.conf: As discussed in Chapter 11, Configuring Splunk, very little of this
configuration is relevant to the input stage, but much of it is relevant to the parse
stage. The simplest way to deal with this complexity is to send props.conf

everywhere so that whatever part of the configuration is needed is available. We
will discuss this further in the Using apps to organize configuration section in this
chapter.
default-mode.conf: This configuration is used to disable the processing modules. Most

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

modules are disabled in the case of a light forwarder.
limits.conf: The main setting here is maxKBps, which controls how much bandwidth
each forwarder will use.

The default setting for a light forwarder is very low to prevent flooding the network or
overtaxing the forwarding machine. This value can usually be increased safely. It is
often increased to the limits of the networking hardware.

We will discuss deploying the forwarder in the Deploying the Splunk binary section in
this chapter.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Splunk indexer
In most deployments, indexers handle both parsing and indexing of events. If there is
only one Splunk indexer, the search is typically handled on this server as well. An
indexer, as the name implies, indexes the data. It needs direct access to fast disks,
whether they are local disks, SANs, or network volumes.

In my experience, Network File System (NFS) does not work reliably for storing
Splunk indexes or files. Splunk expects its disks to act like a local disk, which, at times,
NFS does not. It is fine to read logs from NFS. Internet Small Computer System
Interface (iSCSI) works very well for indexers, as does SAN.

The configurations that typically matter to a Splunk indexer are:

inputs.conf: This configuration typically has exactly one input, [splunktcp://9997]. This
stanza instructs the indexer to listen for connections from the Splunk forwarders on
port 9997.
indexes.conf: This configuration specifies where to place indexes and how long to
keep the data. By default:

All data will be written to $SPLUNK_HOME/var/lib/splunk
The index will grow to a maximum size of 500 gigabytes before dropping the
oldest events
The index will retain events for a maximum of six years before dropping the
oldest events
Events will be dropped when either limit is reached. We will discuss
changing these values in the Sizing indexers section.
props.conf and transforms.conf: If the indexer handles parsing, these
configurations control how the data stream is broken into events, how the date
is parsed, and what indexed fields are created, if any.
server.conf: This contains the license server address. See the Sizing indexers
section for a discussion on how many indexers you might need.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Splunk search
When there is only one Splunk server, search happens along with indexing. Until the log
volumes increase beyond what one server can handle easily, this is fine. In fact, splitting
off the search instance might actually hurt performance as there is more overhead
involved in running a distributed search.

Most configurations pertaining to search are managed through the web interface. The
configuration specifically concerning distributed search is maintained at Settings |
Distributed Environment | Distributed search.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Common data sources
Your data may come from a number of sources; these can be files, network ports, or
scripts. Let's walk through a few common scenarios.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Monitoring logs on servers
In this scenario, servers write their logs to a local drive, and a forwarder process
monitors these logs. This is the typical Splunk installation.

The advantages of this approach include the following:

This process is highly optimized. If the indexers are not overworked, events are
usually searchable within a few seconds.
Slowdowns caused by network problems or indexer overload are handled
gracefully. The forwarder process will pick up where it left off when the
slowdown is resolved.
The agent is light, typically using less than 100 megabytes of RAM and a few
percent of one CPU. These values go up with the amount of new data written and
the number of files being tracked. See inputs.conf in Chapter 11, Configuring Splunk,
for details.
Logs without a time zone specified will inherit the time zone of the machine
running the forwarder. This is almost always what you want.
The hostname will be picked up automatically from the host. This is almost always
what you want.

The disadvantages of this approach include the following:

The forwarder must be installed on each server. If you have a system for
distributing software already, this is not a problem. We will discuss strategies in
the Deploying the Splunk binary section.
The forwarder process must have read rights to all the logs to be indexed.

This is usually not a problem but does require some planning. This typical deployment
looks like the following diagram:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

If your log volume exceeds 100 gigabytes of logs produced each day, you need to think
about multiple indexers. We will talk about this further in the Sizing indexers section.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Monitoring logs on a shared drive
Some customers configure all the servers to write their logs to a network share, NFS or
otherwise. This setup can be made to work, but it is not ideal.

The advantages of this approach include:

A forwarder does not need to be installed on each server that is writing its logs to
the share
Only the Splunk instance reading these logs needs rights to the logs

The disadvantages of this approach include:

The network share can become overloaded and can become a bottleneck.
If a single file has more than a few megabytes of unindexed data, the Splunk
process will only read this one log until all the data is indexed. If there are
multiple indexers in play, only one indexer will be receiving data from this
forwarder. In a busy environment, the forwarder may fall behind.
Multiple Splunk forwarder processes do not share information about what files
have been read. This makes it very difficult to manage a failover for each
forwarder process without a SAN.
Splunk relies on the modification time to determine whether the new events have
been written to a file. File metadata may not be updated as quickly on a share.
A large directory structure will cause the Splunk process reading logs to use a lot
of RAM and a large percentage of the CPU. A process to move away the old logs
would be advisable so as to minimize the number of files that Splunk must track.

This setup often looks like the following diagram:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

This configuration may look simple, but unfortunately, it does not scale easily.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Consuming logs in batch
Another less common approach is to gather logs periodically from the servers, after the
logs have rolled. This is very similar to monitoring logs on a shared drive, except that
the problems of scale are possibly even worse.

The advantages of this approach include:

A forwarder does not need to be installed on each server that is writing its logs to
the share

The disadvantages of this approach include:

When new logs are dropped, if the files are large, the Splunk process will only
read events from one file at a time.
When this directory is on an indexer, this is fine, but when a forwarder is trying to
distribute events across multiple indexers, only one indexer will receive events at
a time.
The oldest events in the rolled log will not be loaded until the log is rolled and
copied.
An active log cannot be copied, as events may be truncated during the copy, or
Splunk may be confused and believe that the update file is a new log, indexing the
entire file again.

Sometimes this is the only approach possible, and in those cases, you should follow a
few rules:

Only copy complete logs to the watched directory.
If possible, use batch stanzas instead of monitor stanzas in inputs.conf, so that
Splunk can delete files after indexing them.
If possible, copy sets of logs to different Splunk servers, either to multiple
forwarders that then spread the logs across multiple indexers, or possibly directly
to watched directories on the indexers. Be sure not to copy the same log to multiple
machines as Splunk has no mechanism for sharing the file position information
across instances.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Receiving syslog events
Another common source of data is syslog, usually from devices that have no filesystem or
no support for installing software. These sources are usually devices or appliances, and
usually send those events using UDP packets. Syslog management deserves a book of its
own, so we will only discuss how to integrate syslog with Splunk at a high level.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Receiving events directly on the Splunk
indexer
For very small installations, it may be acceptable to have your Splunk server listen
directly for syslog events. This installation looks essentially like the following diagram:

On the Splunk indexer, you would create an input for syslog, listening on udp or tcp. The
inputs.conf configuration would look like:

[udp://514]
sourcetype = syslog

The advantage of this approach is its simplicity. The major caveat is that, if the Splunk
process is down or busy for some reason, you will lose messages. Reasons for dropped
events could include a heavy system load, large queries, a slow disk, network
problems, or a system upgrade.

If your syslog events are important to you, it is worth the trouble to at least use a native
syslog receiver on the same hardware, but you should ideally use separate hardware.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using a native syslog receiver
The best practice is to use a standalone syslog receiver to write events to the disk.
Examples of syslog receivers include syslog-ng or rsyslog. Splunk is then configured to
monitor the directories written by the syslog receiver.

Ideally, the syslog receiver should be configured to write one file or directory per host.
inputs.conf can then be configured to use host_segment or host_regex to set the value of the
host. This configuration has the advantage that props.conf stanzas can be applied by host,
for instance, setting TZ by hostname pattern. This is not possible if the host is parsed out
of the log messages, as is commonly the case with syslog.

The advantages of a standalone process include the following:

A standalone process has no other tasks to accomplish, and is more likely to have
the processor time to retrieve events from the kernel buffers before the data is
pushed out of the buffers
The interim files act as a buffer so that, in the case of a Splunk slowdown or
outage, events are not lost
The syslog data is on disk, so it can be archived independently or queried with
other scripts, as appropriate
If a file is written for each host, the hostname can be extracted from the path to the
file, and different parsing rules (for instance, time zone) can be applied at that time

A small installation would look like the following diagram:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Since the configuration of the native syslog process is simple and unlikely to change,
simply using another process on your single Splunk instance will add some level of
protection from losing messages. A slow disk, high CPU load, or memory pressure can
still cause problems, but you at least won't have to worry about restarting the Splunk
process.

The next level of protection would be to use separate hardware to receive the syslog
events and to use a Splunk forwarder to send the events to one or more Splunk indexers.
That setup looks like the following diagram:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

This single machine is still a single point of failure, but it has the advantage that the
Splunk server holding the indexes can be restarted at will, and will not affect the
instance receiving the syslog events.

The next level of protection is to use a load balancer or a dynamic DNS scheme to
spread the syslog data across multiple machines receiving the syslog events, which then
forward the events to one or more Splunk indexers. That setup looks somewhat like the
following diagram:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This setup is complicated but very resilient, as only a large network failure will cause
loss of events.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Receiving syslog with a Splunk
forwarder
It is also possible to use Splunk instances to receive the syslog events directly, which
then forward the forwarders to the Splunk indexers. This setup might look somewhat
like the following diagram:

These interim Splunk forwarder processes can be configured with a large input buffer
using the queueSize and persistentQueueSize settings in inputs.conf. Note that these interim
forwarders cannot be light forwarders. There are a few advantages to this approach that
I can think of:

If these Splunk forwarder processes are in the data center with the device
producing the events, the forwarder process will set the time zone of the events. If
you have devices in data centers in multiple time zones, this can be very helpful.
The work of parsing the events will be handled at this stage, offloading some work
from the indexers.

One disadvantage is that any parsing rules that are relevant to the events parsed by these
interim forwarders must be installed at this layer, which may require a restart when

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

there are changes.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Consuming logs from a database
Some applications are built to store their logs in a database. This has the advantage that
the logs are centralized, but the disadvantage that it is difficult to scale beyond the limits
of the database server. If the logs are pulled into Splunk, it is possible to take advantage
of the Splunk interface and correlate these events with other logs.

The process to consume database logs is essentially as follows:

1. Build the query to retrieve the appropriate events; something as follows:

select date, id, log from log_table

2. Identify the field that you will use as your pointer. This is usually either an id field
or a date field.

3. Modify the query to use this pointer field; use something such as the following
code:

select date,id,log from log_table where id>4567

4. Use scripted input to run this query, capture the pointer field, and print the results.
There are a number of applications in a number of languages available at https://spl
unkbase.splunk.com to get you started, but you can use any language and any tool that
you like. The app I know best is the JDBC scripted input, which uses Java and a
user-provided JDBC driver. Just to quickly illustrate how it is used, perform the
following steps:

1. Ensure Java 1.5 (or greater) is installed.
2. Download the app.
3. Copy your JDBC driver JAR to bin/lib.
4. Duplicate bin/example to bin/myapp.
5. Modify bin/myapp/query.properties to look something like the following code:

driverClass=com.mysql.jdbc.Driver
connectionString=jdbc:mysql://mydb:3306/myapp?user=u&password=p
iteratorField=id
query=select date,id,log from entries where id>${id} order by id

6. Add a matching stanza to inputs.conf.

[script://./bin/run.sh myapp]
interval = 60
sourcetype = myapp

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://splunkbase.splunk.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

source = jdbc

That should be it. iteratorField is not needed if your query handles not retrieving
duplicate data through some other way.

Another popular add-on option is Splunk DB Connect 3.0. Splunk DB Connect enables powerful
linkages between Splunk and the structured data world of SQL and JDBC. You can read the
details here: https://www.splunk.com/blog/2017/02/20/splunk-db-connect-3-released.html

||||||||||||||||||||

||||||||||||||||||||

https://www.splunk.com/blog/2017/02/20/splunk-db-connect-3-released.html
https://technet24.ir
https://technet24.ir

Using scripts to gather data
A scripted input in Splunk is simply a process that outputs text. Splunk will run the
script periodically, as configured in inputs.conf. Let's make a simple example.

The configuration inputs.conf inside your app would contain an entry as follows:

[script://./bin/user_count.sh]
interval = 60
sourcetype = user_count

The script in bin/user_count.sh could contain something as follows:

#!/bin/sh
DATE=$(date "+%Y-%m-%d %H:%M:%S")
COUNT=$(wc -l /etc/passwd | awk '{print "users="$1}')
echo $DATE $COUNT

This would produce an output such as this:

2012-10-15 19:57:02 users=84

Good examples of this type of script are available in the Unix app available at https://sp
lunkbase.splunk.com.

Please note that:

An interval can be a cron schedule.
If the name of the script ends in .py, Splunk will use its own copy of Python.
Remember that there is no Python included with universal forwarder.
Use props.conf to control event breaking as if this output was being read from a file.
Set DATETIME_CONFIG to CURRENT if there is no date in the output.
Set an appropriate BREAK_ONLY_BEFORE pattern if the events are multiline.
Set SHOULD_LINEMERGE to False if the events are not multiline.
Only one copy of each input stanza will run at a time. If a script should run
continually, set interval to -1.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://splunkbase.splunk.com
https://technet24.ir
https://technet24.ir
https://technet24.ir

Sizing indexers
There are a number of factors that affect how many Splunk indexers you will need, but
starting with a model system with typical usage levels, the short answer is 100
gigabytes of raw logs per day per indexer. In the vast majority of cases, the disk is the
performance bottleneck, except in the case of very slow processors.

The measurements mentioned next assume that you will spread the events across your
indexers evenly, using the autoLB feature of the Splunk forwarder. We will talk more
about this in indexer load balancing.

The model system looks like this:

8 gigabytes of RAM.
If more memory is available, the operating system will use whatever Splunk does
not use for the disk cache.
Eight fast physical processors. On a busy indexer, two cores will probably be busy
most of the time, handling indexing tasks. It is worth noting the following:

More processors won't hurt but will probably not make much of a difference
to an indexer as the disks holding the indexes will probably not keep up with
the increased search load. More indexers, each with its own disks, will have
more impact.
Virtualized slices of cores or oversubscribed virtual hosts do not work well,
as the processor is actually used heavily during search, mostly decompressing
the raw data.
Slow cores designed for highly threaded applications do not work well. For
instance, you should avoid older Sun SPARC processors or slices of cores on
AIX boxes.

Disks performing 800 random IOPS (input/output operations per second). This
is the value considered fast by Splunk engineering. Query your favorite search
engine for Splunk bonnie++ for discussions on how to measure this value. The
most important thing to remember when testing your disks is that you must test
enough data to defeat disk cache. Remember, if you are using shared disks, that the
indexers will share the available IOPS.

No more than four concurrent searches. Please note the following:
Most queries are finished very quickly

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

This count includes interactive queries and saved searches
Summary indexes and saved searches can be used to reduce the workload of
common queries
Summary queries are simply saved searches

To test your concurrency on an existing installation, try this query:

index=_audit search_id action=search
| transaction maxpause=1h search_id
| concurrency duration=duration
| timechart span="1h" avg(concurrency)
max(concurrency)

A formula for a rough estimate (assuming eight fast processors and 8 gigabytes of RAM
per indexer) might look like this:

indexers needed =
[your IOPs] / 800 *
[gigs of raw logs produced per day] / 100 *
[average concurrent queries] / 4

The behavior of your systems, network, and users make it impossible to reliably predict
performance without testing. These numbers are a rough estimate at best.

Let's say you work for a mid-sized company producing about 80 gigabytes of logs per
day. You have some very active users, so you might expect four concurrent queries on an
average. You have good disks, which bonnie++ has shown to pull a sustained 950 IOPS.
You are also running some fairly heavy summary indexing queries against your web
logs, and you expect at least one to be running pretty much all the time. This gives us the
following output:

950/800 IOPS *
80/100 gigs *
(1 concurrent summary query + 4 concurrent user queries) / 4
 = 1.1875 indexers

You cannot really deploy 1.1875 indexers, so your choices are either to start with one
indexer and see how it performs or to go ahead and start with two indexers.

My advice would be to start with two indexers, if possible. This gives you some fault
tolerance, and installations tend to grow quickly as more data sources are discovered
throughout the company. Ideally, when crossing the 100-gigabyte mark, it may make
sense to start with three indexers and spread the disks across them. The extra capacity
gives you the ability to take one indexer down and still have enough capacity to cover
the normal load. See the discussion in the Planning redundancy section.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

If we increase the number of average concurrent queries, increase the amount of data
indexed per day, or decrease our IOPS, the number of indexers needed should scale
more or less linearly.

If we scale up a bit more, say 120 gigabytes a day, 5 concurrent queries, and two
summary queries running on an average, we grow as follows:

950/800 IOPS *
120/100 gigs *
(2 concurrent summary query + 5 concurrent user queries) / 4
 = 2.5 indexers

Three indexers would cover this load, but if one indexer is down, we will struggle to
keep up with the data from the forwarders. Ideally, in this case, we should have four or
more indexers.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Planning redundancy
The term redundancy can mean different things, depending on your concern. Splunk has
features to help with some of these concerns, but not others. Starting with Splunk
version 5, Splunk added data replication features that can eliminate most of these
concerns. Let's take a quick look at the topic now.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The replication factor
When setting up a Splunk indexer cluster, you stipulate the number of copies of data that
you want the cluster to maintain. Peer nodes store incoming data in buckets, and the
cluster maintains multiple copies of each bucket. The cluster stores each bucket copy on
a separate peer node. The number of copies of each bucket (that the cluster maintains) is
known as the Splunk replication factor.

Let's try to explain this concept (of the replication factor) with a highly simplified
example.

Keep in mind that a cluster (of indexes) can tolerate a failure of 1 less than your total
replication factor. So, if you have configured 3 peer indexes, you have a replication
factor of 3 so your failure tolerance is 2.

By configuring additional peer nodes, you are telling Splunk to store identical copies of
each bucket (of indexed data) on separate nodes, and therefore, increase your failure
tolerance (that is, concurrent failures). For the most part, this seems logical and
straightforward; more the peer nodes—higher is the failure tolerance.

The trade-off is that you need to store and process all those copies of data. From the
Splunk website, we have:

"Although the replicating activity doesn't consume much processing power, still, as the replication factor
increases, you need to run more indexers and provision more storage for the indexed data."

Of course, in reality, a Splunk environment is nearly never so simplistic. In most
production Splunk environments, the following should be considered:

In most clusters, each of the peer nodes would be functioning as both source and target
peers, receiving external data from a forwarder as well as replicated data from other
peers.

To accommodate horizontal scaling, a cluster with a replication factor of 3 could consist
of many more peers than three. At any given time, each source peer would be streaming
copies of its data to two target peers, but each time it started a new hot bucket, its set of
target peers could potentially change.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring your replication factors
Of course, as mentioned in the preceding section, it is not often that you deal with a
single Splunk replication factor. Typically, you'll have a multisite index clustering
model, so you'll need to calculate a full-site replication factor. This replaces the
previously explained replication factor, which is specific to a single-site environment.

The features are specified on the master node, as part of the basic configuration of the
cluster. They provide site-level (global) control over the location of bucket copies, in
addition to providing control over the total number of copies across the entire cluster.
To configure a site-level replication factor, you must set multisite=true

In the following sections are the features of full-site replication factors.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Syntax
You configure the site replication factor with the site_replication_factor attribute, which
resides in the master server.conf file. This attribute resides in the [clustering] stanza, in
place of the single-site replication_factor attribute. For example:

[clustering]
mode = master
multisite=true
available_sites=site1,site2
site_replication_factor = origin:2,total:3
site_search_factor = origin:1,total:2

Here is the actual syntax required:

site_replication_factor = origin:<n>, [site1:<n>,] [site2:<n>,]
 ..., total:<n>

Where:

<n> (positive integer indicating the number of copies of a bucket)
origin:<n> (sets the minimum number of copies of a bucket that will be held on the
site originating the data in that bucket)
site1:<n>, site2:<n>, ..., (specifies the minimum number of copies that will be held at
each specified site)
total:<n> (states the total number of copies of each bucket across all sites in the
cluster)

There is a different logic for calculating a site_replication_factor (than for single-site
replication factors). Obviously, the official documentation, which can be found at

http://docs.splunk.com/Documentation/Splunk/7.0.2/Indexer/Sitereplicationfactoris. It is the
recommended place to start.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://docs.splunk.com/Documentation/Splunk/7.0.2/Indexer/Sitereplicationfactoris
https://technet24.ir
https://technet24.ir
https://technet24.ir

Indexer load balancing
Splunk forwarders are responsible for load balancing across indexers. This is
accomplished most simply by providing a list of indexers in outputs.conf, as shown in the
following code:

[tcpout:nyc]
server=nyc-splunk-index01:9997,nyc-splunk-index02:9997

If an indexer is unreachable, the forwarder will simply choose another indexer in the
list. This scheme works very well and powers most Splunk deployments. If the DNS
entry returns multiple addresses, Splunk will balance between the addresses on the port
specified.

By default, the forwarder will use auto load balancing, specified by autoLB=true.
Essentially, the forwarder will switch between indexers on a timer. This is the only
option available for the universal forwarder and light forwarder.

On a heavy forwarder, the setting autoLB=false will load balance by event. This is less
efficient and can cause results to be returned in a non-deterministic manner, since the
original event order is not maintained across multiple indexers.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Understanding typical outages
With a single Splunk instance, an outage-perhaps for an operating system upgrade-will
cause events to queue on the Splunk forwarder instances. If there are multiple indexers,
the forwarders will continue to send events to the remaining indexers.

Let's walk through a simplified scenario. Given these four machines, with the
forwarders configured to load balance their output across two indexers, as shown in the
following diagram:

While everything is running, half of the events from each forwarder data will be sent to
each indexer. If one indexer is down, we are left with only one indexer as shown in the
diagram:

A few things happen in this case:

All events will be sent to the remaining indexer.
All events stored on our unavailable indexer will not be included in the search
results. Splunk can help with this problem, at the cost of extra disks.
Queries for recent events will work because these events will be stored on the
remaining indexer, assuming that one indexer can handle the entire workload.

If our data throughput is more than what a single indexer can handle, it will fall behind;
this makes us essentially blind to new events until the other indexer comes back and we

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

catch up.

As the size of our deployment increases, we can see that the impact of one indexer
outage affects our results less, as shown in the following diagram:

In this case, we have lost only 25 percent of our indexing capacity, and have lost access
to only 25 percent of our historical data. As long as three indexers can handle our
indexing workload, our indexers will not fall behind and we will continue to have
timely access to new events. As the number of indexers increases, the impact of one
failed indexer affects us less.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Working with multiple indexes
An index in Splunk is a storage pool for events, capped by size, time, or both. By
default, all events will go to the index specified by defaultDatabase, which is called main
but lives in a directory called defaultdb.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Directory structure of an index
Each index occupies a set of directories on the disk. By default, these directories live in
$SPLUNK_DB, which, by default, is located in $SPLUNK_HOME/var/lib/splunk.

Look at the following stanza for the main index:

[main]
homePath = $SPLUNK_DB/defaultdb/db
coldPath = $SPLUNK_DB/defaultdb/colddb
thawedPath = $SPLUNK_DB/defaultdb/thaweddb
maxHotIdleSecs = 86400
maxHotBuckets = 10
maxDataSize = auto_high_volume

If our Splunk installation lives at /opt/splunk, the index main is rooted at the path
/opt/splunk/var/lib/splunk/defaultdb.

To change your storage location, either modify the value of SPLUNK_DB in
$SPLUNK_HOME/etc/splunk-launch.conf or set absolute paths in indexes.conf.

splunk-launch.conf cannot be controlled from an app, which means it is easy to forget when
adding indexers. For this reason, and for legibility, I would recommend using absolute
paths in indexes.conf.

The homePath directories contain index-level metadata, hot buckets, and warm buckets.
coldPath contains cold buckets, which are simply warm buckets that have aged out. See
the upcoming sections The lifecycle of a bucket and Sizing an index for details.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

When to create more indexes
There are several reasons for creating additional indexes. If your needs do not meet one
of these requirements, there is no need to create more indexes. In fact, multiple indexes
may actually hurt performance if a single query needs to open multiple indexes.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Testing data
If you do not have a test environment, you can use test indexes for staging new data. This
then allows you to easily recover from mistakes by dropping the test index. Since
Splunk will run on a desktop, it is probably best to test new configurations locally, if
possible.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Differing longevity
It may be the case that you need more history for some source types than others. The
classic example here is security logs, as compared to web access logs. You may need to
keep security logs for a year or more, but need the web access logs for only a couple of
weeks.

If these two source types are left in the same index, security events will be stored in the
same buckets as web access logs and will age out together. To split these events up, you
need to perform the following steps:

1. Create a new index called security, for instance
2. Define different settings for the security index
3. Update inputs.conf to use the new index for security source types

For one year, you might make an indexes.conf setting such as this:

[security]
homePath = $SPLUNK_DB/security/db
coldPath = $SPLUNK_DB/security/colddb
thawedPath = $SPLUNK_DB/security/thaweddb
#one year in seconds
frozenTimePeriodInSecs = 31536000

For extra protection, you should also set maxTotalDataSizeMB, and possibly coldToFrozenDir.

If you have multiple indexes that should age together, or if you will split homePath and
coldPath across devices, you should use volumes. See the upcoming section, Using
volumes to manage multiple indexes, for more information.

Then, in inputs.conf, you simply need to add an index to the appropriate stanza as
follows:

[monitor:///path/to/security/logs/logins.log]
sourcetype=logins
index=security

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Differing permissions
If some data should only be seen by a specific set of users, the most effective way to
limit access is to place this data in a different index, and then limit access to that index
by using a role. The steps to accomplish this are essentially as follows:

1. Define the new index.
2. Configure inputs.conf or transforms.conf to send these events to the new index.
3. Ensure that the user role does not have access to the new index.

4. Create a new role that has access to the new index.
5. Add specific users to this new role. If you are using LDAP authentication, you will

need to map the role to an LDAP group and add users to that LDAP group.

To route very specific events to this new index, assuming you created an index called
sensitive, you can create a transform as follows:

[contains_password]
REGEX = (?i)password[=:]
DEST_KEY = _MetaData:Index
FORMAT = sensitive

You would then wire this transform to a particular sourcetype or source index in
props.conf. See Chapter 11, Configuring Splunk, for examples.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using more indexes to increase
performance
Placing different source types in different indexes can help increase performance, if
those source types are not queried together. The disks will spend less time seeking,
when accessing the source type in question.

If you have access to multiple storage devices, placing indexes on different devices can
help increase the performance even more by taking advantage of different hardware for
different queries. Likewise, placing homePath and coldPath on different devices can help
performance.

However, if you regularly run queries that use multiple source types, splitting those
source types across indexes may actually hurt performance. For example, let's imagine
you have two source types called web_access and web_error.

We have the following line in web_access:

2012-10-19 12:53:20 code=500 session=abcdefg url=/path/to/app

And we have the following line in web_error:

2012-10-19 12:53:20 session=abcdefg class=LoginClass

If we want to combine these results, we could run a query like the following:

(sourcetype=web_access code=500) OR sourcetype=web_error
| transaction maxspan=2s session
| top url class

If web_access and web_error are stored in different indexes, this query will need to access
twice as many buckets and will essentially take twice as long.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The life cycle of a bucket
An index is made up of buckets, which go through a specific life cycle. Each bucket
contains events from a particular period of time.

As touched on in Chapter 11, Configuring Splunk, the stages of this lifecycle are hot,
warm, cold, frozen, and thawed. The only practical difference between hot and other
buckets is that a hot bucket is being written to, and has not necessarily been optimized.
These stages live in different places on the disk and are controlled by different settings
in indexes.conf:

homePath contains as many hot buckets as the integer value of maxHotBuckets, and as
many warm buckets as the integer value of maxWarmDBCount. When a hot bucket rolls, it
becomes a warm bucket. When there are too many warm buckets, the oldest warm
bucket becomes a cold bucket.
Do not set maxHotBuckets too low. If your data is not parsing perfectly, dates that
parse incorrectly will produce buckets with very large time spans. As more
buckets are created, these buckets will overlap, which means all buckets will have
to be queried every time, and performance will suffer dramatically. A value of five
or more is safe.
coldPath contains cold buckets, which are warm buckets that have rolled out of
homePath once there are more warm buckets than the value of maxWarmDBCount. If coldPath
is on the same device, only a move is required; otherwise, a copy is required.
Once the values of frozenTimePeriodInSecs, maxTotalDataSizeMB, or maxVolumeDataSizeMB are
reached, the oldest bucket will be frozen. By default, frozen means deleted. You
can change this behavior by specifying either of the following:

coldToFrozenDir: This lets you specify a location to move the buckets once they
have aged out. The index files will be deleted, and only the compressed raw
data will be kept. This essentially cuts the disk usage by half. This location is
unmanaged, so it is up to you to watch your disk usage.
coldToFrozenScript: This lets you specify a script to perform some action when
the bucket is frozen. The script is handed the path to the bucket that is about to
be frozen.

thawedPath can contain buckets that have been restored. These buckets are not
managed by Splunk and are not included in all time searches. To search these
buckets, their time range must be included explicitly in your search.

I have never actually used this directory. Search https://splunk.com for restore archived to

||||||||||||||||||||

||||||||||||||||||||

https://splunk.com
https://technet24.ir
https://technet24.ir

learn the procedures.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Sizing an index
To estimate how much disk space is needed for an index, use the following formula:

(gigabytes per day) * .5 * (days of retention desired)

Likewise, to determine how many days you can store an index, the formula is
essentially:

(device size in gigabytes) / ((gigabytes per day) * .5)

The .5 represents a conservative compression ratio. The log data itself is usually
compressed to 10 percent of its original size. The index files necessary to speed up
search brings the size of a bucket closer to 50 percent of the original size, though it is
usually smaller than this.

If you plan to split your buckets across devices, the math gets more complicated unless
you use volumes. Without using volumes, the math is essentially as follows:

homePath = (maxWarmDBCount + maxHotBuckets) * maxDataSize
coldPath = maxTotalDataSizeMB - homePath

For example, say we are given these settings:

[myindex]
homePath = /splunkdata_home/myindex/db
coldPath = /splunkdata_cold/myindex/colddb
thawedPath = /splunkdata_cold/myindex/thaweddb
maxWarmDBCount = 50
maxHotBuckets = 6
maxDataSize = auto_high_volume #10GB on 64-bit systems
maxTotalDataSizeMB = 2000000
Filling in the preceding formula, we get these values:
homePath = (50 warm + 6 hot) * 10240 MB = 573440 MB
coldPath = 2000000 MB - homePath = 1426560 MB

If we use volumes, this gets simpler and we can simply set the volume sizes to our
available space and let Splunk do the math.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using volumes to manage multiple
indexes
Volumes combine pools of storage across different indexes so that they age out together.
Let's make up a scenario where we have five indexes and three storage devices.

The indexes are as follows:

Name Data per day Retention required Storage needed
web 50 GB no requirement ?
security 1 GB 2 years 730 GB * 50 percent
app 10 GB no requirement ?
chat 2 GB 2 years 1,460 GB * 50
percent
web_summary 1 GB 1 years 365 GB * 50 percent

Now let's say we have three storage devices to work with, mentioned in the following
table:

Name Size
small_fast 500 GB
big_fast 1,000 GB
big_slow 5,000 GB

We can create volumes based on the retention time needed. Security and chat share the
same retention requirements, so we can place them in the same volumes. We want our
hot buckets on our fast devices, so let's start there with the following configuration:

[volume:two_year_home]
#security and chat home storage
path = /small_fast/two_year_home
maxVolumeDataSizeMB = 300000
[volume:one_year_home]
#web_summary home storage
path = /small_fast/one_year_home
maxVolumeDataSizeMB = 150000

For the rest of the space needed by these indexes, we will create companion volume
definitions on big_slow, as follows:

[volume:two_year_cold]
#security and chat cold storage
path = /big_slow/two_year_cold
maxVolumeDataSizeMB = 850000 #([security]+[chat])*1024 - 300000
[volume:one_year_cold]
#web_summary cold storage

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

path = /big_slow/one_year_cold
maxVolumeDataSizeMB = 230000 #[web_summary]*1024 - 150000

Now for our remaining indexes, whose timeframe is not important, we will use big_fast
and the remainder of big_slow, like so:

[volume:large_home]
#web and app home storage
path = /big_fast/large_home
maxVolumeDataSizeMB = 900000 #leaving 10% for pad
[volume:large_cold]
#web and app cold storage
path = /big_slow/large_cold
maxVolumeDataSizeMB = 3700000
#(big_slow - two_year_cold - one_year_cold)*.9

Given that the sum of large_home and large_cold is 4,600,000 MB, and a combined daily
volume of web and app is 60,000 MB approximately, we should retain approximately
153 days of web and app logs with 50 percent compression.

In reality, the number of days retained will probably be larger. With our volumes
defined, we now have to reference them in our index definitions:

[web]
homePath = volume:large_home/web
coldPath = volume:large_cold/web
thawedPath = /big_slow/thawed/web
[security]
homePath = volume:two_year_home/security
coldPath = volume:two_year_cold/security
thawedPath = /big_slow/thawed/security
coldToFrozenDir = /big_slow/frozen/security
[app]
homePath = volume:large_home/app
coldPath = volume:large_cold/app
thawedPath = /big_slow/thawed/app
[chat]
homePath = volume:two_year_home/chat
coldPath = volume:two_year_cold/chat
thawedPath = /big_slow/thawed/chat
coldToFrozenDir = /big_slow/frozen/chat
[web_summary]
homePath = volume:one_year_home/web_summary
coldPath = volume:one_year_cold/web_summary
thawedPath = /big_slow/thawed/web_summary
thawedPath cannot be defined using a volume and must be specified for Splunk to start.

For extra protection, we specified coldToFrozenDir for the indexes' security and chat. The
buckets for these indexes will be copied to this directory before deletion, but it is up to
us to make sure that the disk does not fill up. If we allow the disk to fill up, Splunk will
stop indexing until space is made available.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

This is just one approach to using volumes. You could overlap in any way that makes
sense to you, as long as you understand that the oldest bucket in a volume will be frozen
first, no matter what index put the bucket in that volume.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Deploying the Splunk binary
Splunk provides binary distributions for Windows and a variety of Unix operating
systems. For all Unix operating systems, a compressed .tar file is provided. For some
platforms, packages are also provided.

If your organization uses packages, such as deb or rpm, you should be able to use the
provided packages in your normal deployment process. Otherwise, installation starts by
unpacking the provided tar to the location of your choice.

The process is the same, whether you are installing the full version of Splunk or the
Splunk universal forwarder.

The typical installation process involves the following steps:

1. Installing the binary
2. Adding a base configuration
3. Configuring Splunk to launch at boot
4. Restarting Splunk

Having worked with many different companies over the years, I can honestly say that
none of them used the same product or even methodology for deploying software.
Splunk takes a hands-off approach to fit in as easily as possible into customer
workflows.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Deploying from a tar file
To deploy from a tar file, the command depends on your version of tar. With a modern
version of tar, you can run the following command:

tar xvzf splunk-7.0.x-xxx-Linux-xxx.tgz

Older versions may not handle gzip files directly, so you may have to run the following
command:

gunzip -c splunk-7.0.x-xxx-Linux-xxx.tgz | tar xvf -

This will expand into the current directory. To expand into a specific directory, you can
usually add -C, depending on the version of TAR, as follows:

tar -C /opt/ -xvzf splunk-7.0.x-xxx-Linux-xxx.tgz

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Deploying using msiexec
In Windows, it is possible to deploy Splunk using msiexec. This makes it much easier to
automate deployment on a large number of machines. To install silently, you can use the
combination of AGREETOLICENSE and /quiet, as follows:

msiexec.exe /i splunk-xxx.msi AGREETOLICENSE=Yes /quiet

If you plan to use a deployment server, you can specify the following value:

msiexec.exe /i splunk-xxx.msi AGREETOLICENSE=Yes
DEPLOYMENT_SERVER="deployment_server_name:8089" /quiet

Or, if you plan to overlay an app that contains deploymentclient.conf, you can forego
starting Splunk until that app has been copied into place, as follows:

msiexec.exe /i splunk-xxx.msi AGREETOLICENSE=Yes LAUNCHSPLUNK=0 /quiet

There are options available to start reading data immediately, but I would advise
deploying input configurations to your servers, instead of enabling inputs via installation
arguments.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Adding a base configuration
If you are using the Splunk deployment server, this is the time to set up
deploymentclient.conf. This can be accomplished in several ways, as follows:

On the command line, by running the following code:

$SPLUNK_HOME/bin/splunk set deploy-poll
deployment_server_name:8089

By placing a deploymentclient.conf in:

$SPLUNK_HOME/etc/system/local/

By placing an app containing deploymentclient.conf in:

$SPLUNK_HOME/etc/apps/

The third option is what I would recommend because it allows overriding this
configuration, via a deployment server, at a later time. We will work through an
example later in the Using Splunk deployment server section.

If you are deploying configurations in some other way, for instance with puppet, be sure
to restart the Splunk forwarder processes after deploying the new configuration.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuring Splunk to launch at boot
On Windows machines, Splunk is installed as a service that will start after installation
and on reboot.

On Unix hosts, the Splunk command line provides a way to create startup scripts
appropriate for the operating system that you are using. The command looks like this:

$SPLUNK_HOME/bin/splunk enable boot-start

To run Splunk as another user, provide the flag -user, as follows:

$SPLUNK_HOME/bin/splunk enable boot-start -user splunkuser

The startup command must still be run as root, but the startup script will be modified to
run as the user provided.

If you do not run Splunk as root, and you shouldn't if you can avoid it, be sure that the
Splunk installation and data directories are owned by the user specified in the enable
boot-start command. You can ensure this by using chmod, such as in chmod -R splunkuser
$SPLUNK_HOME

On Linux, you could then start the command using service splunk start.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using apps to organize configuration
When working with a distributed configuration, there are a number of ways to organize
these configurations. The most obvious approach might be to organize configurations by
machine type. For instance, put all configurations needed by web servers into one app
and all configurations needed by database servers in another app. The problem with this
approach is that any changes that affect both types of machines must be made in both
apps, and mistakes will most likely be made.

The less fragile but more complicated approach is to normalize your configurations,
ensuring that there is only one copy of each configuration spread into multiple apps.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Separate configurations by purpose
Stepping through a typical installation, you would have configuration apps named like
the following:

inputs-sometype: For some logical set of inputs, you would create an app. You
could use machine purpose, source type, location, operating system, or whatever
makes sense in your situation. Normally, I would expect machine purpose or
source type.
props-sometype: This grouping should correspond to the grouping of the inputs,
more or less. You may end up with props apps for more than one type, for instance
machine type and location.
outputs-datacenter: When deploying across data centers, it is common to place
Splunk indexers in each data center. In this case, you would need an app per data
center.
indexerbase: Assuming that your indexers are configured similarly, it is handy to
put all indexer configurations into an app and deploy it like any other app.

All these configurations are completely separate from search concerns, which should be
stored in separate apps, built and maintained through the Splunk web interface.

Let's imagine we have a distributed deployment across two data centers, east and west.
Each data center has web servers, app servers, and database servers.

In each data center, we have two Splunk indexers. The apps for this setup could be as
follows:

inputs-web, inputs-app, and inputs-db:
inputs.conf specifies the appropriate logs to monitor.

Each app should be distributed to each machine that is serving that purpose. If
there are some machines that serve more than one purpose, they should receive all
appropriate apps.

props-web, props-app, and props-db:
props.conf specifies how to parse the logs.
transforms.conf is included if there are relevant transforms.
Different portions of props.conf are needed at different stages of processing.
Since it is difficult to know what stage is happening where, it is generally

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

easiest to distribute these source type props apps everywhere.
props-west, and props-east:

Sometimes it is necessary to make configuration changes by location, for
instance, configuring time zone on machines that are not set up properly. This
can be accomplished by using the TZ setting in props.conf and sending this app
to the appropriate data centers.

outputs-west, and outputs-east:
These would contain nothing but the outputs.conf configuration for the
appropriate data center.

indexerbase:
Assuming that all indexers are configured the same way, this app would
contain a standard indexes.conf configuration, an inputs.conf configuration
specifying the splunktcp port to listen to connections from Splunk forwarders,
and server.conf specifying the address of the Splunk license server.

Let's look through an abbreviated listing of all these files:

For forwarders, we will need these apps:

inputs-web
local/inputs.conf
[monitor:///path/to/web/logs/access*.log]
sourcetype = web_access
index = web
[monitor:///path/to/web/logs/error*.log]
sourcetype = web_error
index = web
inputs-app
local/inputs.conf
[monitor:///path/to/app1/logs/app*.log]
sourcetype = app1
index = app
[monitor:///path/to/app2/logs/app*.log]
sourcetype = app2
index = app
inputs-db
local/inputs.conf
[monitor:///path/to/db/logs/error*.log]
sourcetype = db_error
outputs-west
local/outputs.conf
[tcpout:west]
server=spl-idx-west01.foo.com:9997,spl-idx-west02.foo.com:9997
#autoLB=true is the default setting
outputs-east
local/outputs.conf
[tcpout:east]
server=spl-idx-east01.foo.com:9997,spl-idx-east02.foo.com:9997

All instances should receive these apps:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

props-web
local/props.conf
[web_access]
TIME_FORMAT = %Y-%m-%d %H:%M:%S.%3N %:z
MAX_TIMESTAMP_LOOKAHEAD = 32
SHOULD_LINEMERGE = False
TRANSFORMS-squashpassword = squashpassword
[web_error]
TIME_FORMAT = %Y-%m-%d %H:%M:%S.%3N %:z
MAX_TIMESTAMP_LOOKAHEAD = 32
TRANSFORMS-squashpassword = squashpassword
local/transforms.conf
[squashpassword]
REGEX = (?mi)^(.*)password[=:][^,&]+$
FORMAT = $1password=########$2
DEST_KEY = _raw
props-app
local/props.conf
[app1]
TIME_FORMAT = %Y-%m-%d %H:%M:%S.%3N
MAX_TIMESTAMP_LOOKAHEAD = 25
BREAK_ONLY_BEFORE = ^d{4}-d{1,2}-d{1,2}s+d{1,2}:d{1,2}
[app2]
TIME_FORMAT = %Y-%m-%d %H:%M:%S.%3N
MAX_TIMESTAMP_LOOKAHEAD = 25
BREAK_ONLY_BEFORE = ^d{4}-d{1,2}-d{1,2}s+d{1,2}:d{1,2}
props-db
local/props.conf
[db_error]
MAX_TIMESTAMP_LOOKAHEAD = 25
props-west
local/props.conf
[db_error]
TZ = PST
[web_error]
Chapter 11
[365]
TZ = PST
props-east
local/props.conf
[db_error]
TZ = EST
[web_error]
TZ = EST

Finally, an app specifically for our indexers:

indexerbase
local/indexes.conf
[volume:two_year_home]
path = /small_fast/two_year_home
maxVolumeDataSizeMB = 300000
[volume:one_year_home]
path = /small_fast/one_year_home
maxVolumeDataSizeMB = 150000
[volume:two_year_cold]
path = /big_slow/two_year_cold
maxVolumeDataSizeMB = 1200000
[volume:one_year_cold]
path = /big_slow/one_year_cold

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

maxVolumeDataSizeMB = 600000
[volume:large_home]
path = /big_fast/large_home
maxVolumeDataSizeMB = 900000
[volume:large_cold]
path = /big_slow/large_cold
maxVolumeDataSizeMB = 3000000
[web]
homePath = volume:large_home/web
coldPath = volume:large_cold/web
thawedPath = /big_slow/thawed/web
[app]
homePath = volume:large_home/app
coldPath = volume:large_cold/app
thawedPath = /big_slow/thawed/app
[main]
homePath = volume:large_home/main
coldPath = volume:large_cold/main
thawedPath = /big_slow/thawed/main
local/inputs.conf
[splunktcp://9997]
local/server.conf
[license]
master_uri = https://spl-license.foo.com:8089

This is a minimal set of apps, but it should provide a decent overview of what is
involved in configuring a distributed configuration. Next, we will illustrate where these
apps should go.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Configuration distribution
As we have covered, in some depth, configurations in Splunk are simply directories of
plain text files. Distribution essentially consists of copying these configurations to the
appropriate machines and restarting the instances. You can either use your own system
for distribution, such as puppet or simply a set of scripts, or use the deployment server
included with Splunk.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using your own deployment system
The advantage of using your own system is that you already know how to use it.

Assuming that you have normalized your apps, as described in the section Using apps to
organize configuration, deploying apps to a forwarder or indexer consists of the
following steps:

1. Set aside the existing apps at $SPLUNK_HOME/etc/apps/.
2. Copy the apps into $SPLUNK_HOME/etc/apps/.

3. Restart Splunk forwarder. Note that this needs to be done as the user that is running
Splunk, either by calling the service script or calling su. In Windows, restart the
splunkd service.

Assuming that you already have a system for managing configurations, that's it.

If you are deploying configurations to indexers, be sure to only deploy the
configurations when downtime is acceptable, as you will need to restart the indexers to
load the new configurations, ideally in a rolling manner.

Do not deploy configurations until you are ready to restart, as some (but not all)
configurations will take effect immediately.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using the Splunk deployment server
If you do not have a system for managing configurations, you can use the deployment
server included with Splunk.

Some advantages of the included deployment server are as follows:

Everything you need is included in your Splunk installation
It will restart forwarder instances properly when new app versions are deployed
It is intelligent enough not to restart when unnecessary
It will remove apps that should no longer be installed on a machine
It will ignore apps that are not managed
The logs for the deployment client and server are accessible in Splunk itself

Some disadvantages of the included deployment server are:

As of Splunk 4.3, there are issues with scale beyond a few hundred deployment
clients, at which point tuning is required (although a solution option is to use
multiple instances of deployment servers).
The configuration is complicated and prone to typos

With these caveats out of the way, let's set up a deployment server for the apps that we
laid out before.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Step 1 – deciding where your deployment
server will run
For a small installation with less than a few dozen forwarders, your main Splunk
instance can run the deployment server without any issue. For more than a few dozen
forwarders, a separate instance of Splunk makes sense.

Ideally, this instance would run on its own machine. The requirements for this machine
are not large, perhaps 4 gigabytes of RAM and two processors, or possibly less. A
virtual machine would be fine.

Define a DNS entry for your deployment server, if at all possible. This will make
moving your deployment server later, much simpler.

If you do not have access to another machine, you could run another copy of Splunk on
the same machine that is running some other part of your Splunk deployment. To
accomplish this, follow these steps:

1. Install Splunk in another directory, perhaps /opt/splunk-deploy/splunk/.
2. Start this instance of Splunk by using /opt/splunk-deploy/splunk/bin/splunk start. When

prompted, choose different port numbers apart from the default and note what they
are. I would suggest one number higher: 8090 and 8001.

3. Unfortunately, if you run splunk enable boot-start in this new instance, the existing
startup script will be overwritten. To accommodate both instances, you will need
to either edit the existing startup script, or rename the existing script so that it is not
overwritten.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Step 2 - defining your
deploymentclient.conf configuration
Using the address of our new deployment server, ideally a DNS entry, we will build an
app named deploymentclient-yourcompanyname. This app will have to be installed manually on
forwarders but can then be managed by the deployment server.

This app should look somewhat like this:

deploymentclient-yourcompanyname
local/deploymentclient.conf
[deployment-client]
[target-broker:deploymentServer]
targetUri=deploymentserver.foo.com:8089

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Step 3 - defining our machine types and
locations
Starting with what we defined in the Separate configurations by purpose section, we
have, in the locations west and east, the following machine types:

Splunk indexers
db servers
Web servers
App servers

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Step 4 - normalizing our configurations
into apps appropriately
Let's use the apps that we defined in the section Separate configurations by purpose
plus the deployment client app that we created in the Step 2 - defining your
deploymentclient.conf configuration section. These apps will live in
$SPLUNK_HOME/etc/deployment-apps/ on your deployment server.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Step 5 - mapping these apps to
deployment clients in serverclass.conf
To get started, I always start with example 2 from
SPLUNK_HOME/etc/system/README/serverclass.conf example:

[global]
[serverClass:AppsForOps]
whitelist.0=*.ops.yourcompany.com
[serverClass:AppsForOps:app:unix]
[serverClass:AppsForOps:app:SplunkLightForwarder]

Let's assume that we have the machines mentioned next. It is very rare for an
organization of any size to have consistently named hosts, so I threw in a couple of
rogue hosts at the bottom, as follows:

spl-idx-west01
spl-idx-west02
spl-idx-east01
spl-idx-east02
app-east01
app-east02
app-west01
app-west02
web-east01
web-east02
web-west01
web-west02
db-east01
db-east02
db-west01
db-west02
qa01
homer-simpson

The structure of serverclass.conf is essentially as follows:

[serverClass:<className>]
#options that should be applied to all apps in this class
[serverClass:<className>:app:<appName>]
#options that should be applied only to this app in this serverclass

Please note that:

<className> is an arbitrary name of your choosing.
<appName> is the name of a directory in $SPLUNK_HOME/etc/deploymentapps/.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The order of stanzas does not matter. Be sure to update <className> if you copy an
:app: stanza. This is, by far, the easiest mistake to make.

It is important that configuration changes do not trigger a restart of indexers.

Let's apply this to our hosts, as follows:

[global]
restartSplunkd = True
#by default trigger a splunk restart on configuration change
####INDEXERS
##handle indexers specially, making sure they do not restart
[serverClass:indexers]
whitelist.0=spl-idx-*
restartSplunkd = False
[serverClass:indexers:app:indexerbase]
[serverClass:indexers:app:deploymentclient-yourcompanyname]
[serverClass:indexers:app:props-web]
[serverClass:indexers:app:props-app]
[serverClass:indexers:app:props-db]
#send props-west only to west indexers
[serverClass:indexers-west]
whitelist.0=spl-idx-west*
restartSplunkd = False
[serverClass:indexers-west:app:props-west]
#send props-east only to east indexers
 [serverClass:indexers-east]
whitelist.0=spl-idx-east*
restartSplunkd = False
[serverClass:indexers-east:app:props-east]
####FORWARDERS
#send event parsing props apps everywhere
#blacklist indexers to prevent unintended restart
[serverClass:props]
whitelist.0=*
blacklist.0=spl-idx-*
[serverClass:props:app:props-web]
[serverClass:props:app:props-app]
[serverClass:props:app:props-db]
#send props-west only to west datacenter servers
#blacklist indexers to prevent unintended restart
[serverClass:west]
whitelist.0=*-west*
whitelist.1=qa01
blacklist.0=spl-idx-*
[serverClass:west:app:props-west]
[serverClass:west:app:deploymentclient-yourcompanyname]
#send props-east only to east datacenter servers
#blacklist indexers to prevent unintended restart
[serverClass:east]
whitelist.0=*-east*
whitelist.1=homer-simpson
blacklist.0=spl-idx-*
[serverClass:east:app:props-east]
[serverClass:east:app:deploymentclient-yourcompanyname]
#define our appserver inputs
[serverClass:appservers]
whitelist.0=app-*

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

whitelist.1=qa01
whitelist.2=homer-simpson
[serverClass:appservers:app:inputs-app]
#define our webserver inputs
[serverClass:webservers]
whitelist.0=web-*
whitelist.1=qa01
whitelist.2=homer-simpson
[serverClass:webservers:app:inputs-web]
#define our dbserver inputs
[serverClass:dbservers]
whitelist.0=db-*
whitelist.1=qa01
[serverClass:dbservers:app:inputs-db]
#define our west coast forwarders
[serverClass:fwd-west]
whitelist.0=app-west*
whitelist.1=web-west*
whitelist.2=db-west*
whitelist.3=qa01
[serverClass:fwd-west:app:outputs-west]
#define our east coast forwarders
[serverClass:fwd-east]
whitelist.0=app-east*
whitelist.1=web-east*
whitelist.2=db-east*
whitelist.3=homer-simpson
[serverClass:fwd-east:app:outputs-east]

You should organize the patterns and classes in a way that makes sense to your
organization and data centers, but I would encourage you to keep it as simple as
possible. I would strongly suggest opting for more lines than more complicated logic.

A few more things to note about the format of serverclass.conf:

The number following whitelist and blacklist must be sequential, starting with zero.
For instance, in the following example, whitelist.3 will not be processed, since
whitelist.2 is commented:

[serverClass:foo]
whitelist.0=a*
whitelist.1=b*
whitelist.2=c*
whitelist.3=d*

whitelist.x and blacklist.x are tested against these values in the following order:
clientName as defined in deploymentclient.conf: This is not commonly used but is
useful when running multiple Splunk instances on the same machine, or when
the DNS is completely unreliable.
IP address: There is no CIDR matching, but you can use string patterns.
Reverse DNS: This is the value returned by the DNS for an IP address.
If your reverse DNS is not up to date, this can cause you problems, as this

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

value is tested before the value of hostname, as provided by the host itself. If
you suspect this, try ping <ip of machine> or something similar to see what the
DNS is reporting.

Hostname as provided by forwarder: This is always tested after reverse DNS, so
be sure your reverse DNS is up to date.
When copying :app: lines, be very careful to update the <className> appropriately!
This really is the most common mistake made in serverclass.conf.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Step 6 - restarting the deployment server
If serverclass.conf did not exist, a restart of the Splunk instance which is running
deployment server is required to activate the deployment server. After the deployment
server is loaded, you can use the following command:

$SPLUNK_HOME/bin/splunk reload deploy-server

This command should be enough to pick up any changes in serverclass.conf a in
etc/deployment-apps.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Step 7 - installing deploymentclient.conf
Now that we have a running deployment server, we need to set up the clients to call
home. On each machine that will be running the deployment client, the procedure is
essentially as follows:

1. Copy the deploymentclient-yourcompanyname app to $SPLUNK_HOME/etc/apps/
2. Restart Splunk

If everything is configured correctly, you should see the appropriate apps appear in
$SPLUNK_HOME/etc/apps/, within a few minutes. To see what is happening, look at the log
$SPLUNK_HOME/var/log/splunk/splunkd.log.

If you have problems, enable debugging on either the client or the server by editing
$SPLUNK_HOME/etc/log.cfg, followed by a restart. Look for the following lines:

category.DeploymentServer=WARN
category.DeploymentClient=WARN

Once found, change them to the following lines and restart Splunk:

category.DeploymentServer=DEBUG
category.DeploymentClient=DEBUG

After restarting Splunk, you will see the complete conversation in
$SPLUNK_HOME/var/log/splunk/splunkd.log. Be sure to change the setting back once you no
longer need the verbose logging!

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using LDAP for authentication
By default, Splunk authenticates using its own authentication system, which simply
stores users and roles in flat files. The other two options available are LDAP and
scripted authentication.

Note: that Free versions of Splunk do not support these options for authentication.

To enable LDAP authentication, perform the following steps:

1. Navigate to Settings | Access controls | Authentication method
2. Check the LDAP checkbox
3. Click on Configure Splunk to use LDAP and map groups
4. Click on New

You will then need the appropriate values to set up access to your LDAP server.

Every organization sets up LDAP slightly differently, so I have never managed to
configure this properly the first time. Your best bet is to copy the values from another
application that is already configured in your organization.

Once LDAP is configured properly, you can map Splunk roles to the LDAP groups
through the admin interface. Whether to use an existing group or create Splunk-specific
groups is of course up to your organization, but most companies I have worked with
opted to create a specific group for each Splunk role. The common groups are often
along the lines of: splunkuser, splunkpoweruser, splunksecurity, and splunkadmin. Rights are
additive, so a user can be a member of as many groups as is appropriate.

New in Splunk 4.3 are the ability to use multiple LDAP servers at once, support for
dynamic groups, support for nested groups, and more. The official documentation can be
found at the following URL:

https://docs.splunk.com/Documentation/Splunk/latest/Security/SetUpUserAuthenticationWithLDAP

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://docs.splunk.com/Documentation/Splunk/latest/Security/SetUpUserAuthenticationWithLDAP
https://technet24.ir
https://technet24.ir
https://technet24.ir

Using single sign-on
Single sign-on (SSO) lets you use some other web server to handle authentication for
Splunk. For this to work, several assumptions are made, as follows:

Your SSO system can act as an HTTP forwarding proxy, sending HTTP requests
through to Splunk.
Your SSO system can place the authenticated user's ID into an HTTP header.
The IP of your server(s) forwarding requests is static.
When given a particular username, Splunk will be able to determine what roles
this user is a part of. This is usually accomplished using LDAP, but could also be
accomplished by defining users directly through the Splunk UI or via a custom-
scripted authentication plugin.

Assuming that all of these are true, the usual approach is to follow these steps:

1. Configure LDAP authentication in Splunk.
2. Configure your web server to send proxy requests through to Splunk: When this is

configured properly, you should be able to use Splunk as if you were accessing the
Splunk web application directly.

3. Configure your web server to authenticate: With this configured, your web server
should ask for authentication, and you should still be asked for authentication by
Splunk.

4. Look for the HTTP header containing the remote user: Proxying through your web
server, change the URL to http://yourproxyserver/debug/sso.
You should see your username under Remote user HTTP header or Other HTTP
headers.

5. Configure SSO in $SPLUNK_HOME/etc/system/local/web.conf: You need to add three
attributes to the [settings] stanza, as shown in the following code:

[settings]
SSOMode = strict
remoteUser = REMOTE-USER
trustedIP = 192.168.1.1,192.168.1.2

That should be it. Usually, the hardest part is convincing the web server to both
authenticate and proxy. Use the /debug/sso page to help diagnose what is happening.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

There can also be issues with punctuation in the header fieldname. If possible, removing
any punctuation in the header name may eliminate unexpected problems.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Load balancers and Splunk
Some organizations that have invested heavily in load balancers like to use them
whenever possible to centralize network management. There are three services Splunk
typically exposes, mentioned in the following sections:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

web
Usually on port 8000, the Splunk web server can be load balanced when configured with
search head pooling. The load balancer should be configured to be sticky, as the web
server will still rely on user sessions tied to the web server that the user started on.

See the Multiple search heads section for more information.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

splunktcp
Usually on port 9997, splunktcp is itself stateless. Splunk auto load balancing is very well
tested and very efficient but does not support complicated logic. For instance, you could
use a load balancer to prefer connections to the indexers in the same data center, only
using indexers in another data center as a last resort.

The problem is that when only one address is provided to a Splunk forwarder, the
forwarder will open one connection, and keep it open indefinitely. This means that when
an indexer is restarted, it will never receive a connection until the forwarders are
restarted.

The easy solution is to expose two addresses on your load balancer and list both of
these addresses in outputs.conf. The two addresses must either be two different ports or
two different IP addresses. Two different CNAMEs on the same port will not work, as
Splunk resolves the addresses and collapses the list of IP addresses.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

deployment server
Usually on port 8089, the deployment server listens using SSL, by default, with a self-
signed certificate. There are a couple of problems with using a load balancer with the
deployment server; they are as follows:

The protocol is essentially REST over HTTP, but not quite. Use a TCP load
balancer, not a load balancer that understands HTTP.
While it is theoretically possible to load balance deployment servers, the issue is
that, if the different deployment servers are out of sync, deployment clients may
flap, loading one set of apps and then the other.

A better approach is probably running multiple deployment servers and using DNS or
load balancers to ensure that certain sets of hosts always talk to a particular server.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Multiple search heads
Using the search head pooling feature, it is possible to run multiple search head
instances. The feature requires a share of some sort behind the servers acting as search
heads, which effectively means they must be in the same data center. The setup looks
essentially like the following diagram:

In short, the steps to configure the search are as follows:

1. Mount the NFS volume on each search head
2. Enable the pooling feature on each instance
3. Copy the existing configurations to the NFS volume
4. Test the search heads
5. Enable the load balancer

The official documentation is available at:

http://docs.splunk.com/Documentation/Splunk/7.0.2/DistSearch/Configuresearchheadpooling

||||||||||||||||||||

||||||||||||||||||||

http://docs.splunk.com/Documentation/Splunk/7.0.2/DistSearch/Configuresearchheadpooling
https://technet24.ir
https://technet24.ir

Summary
We have touched upon a wide variety of subjects in this chapter, each of which possibly
deserves a chapter of its own. Maybe that will be the next book (or a future edition!).

We talked about the different purposes of Splunk instances, how to collect data from a
variety of sources, how to install the Splunk binary, how to size your indexers, how to
manage the configuration of many instances, and finally, we touched upon a few
advanced deployment topics.

In our final chapter, we will write some code to extend Splunk in a variety of ways.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Extending Splunk
While the core of Splunk is closed, there are a number of places where you can use
scripts or external code to extend default behaviors. In this chapter, we will write a
number of examples, covering most of the places where external code can be added.
Most code samples are written in Python, so if you are not familiar with Python, a
reference may be useful.

We will cover the following topics:

Writing scripts to create events
Using Splunk from the command line
Calling Splunk via REST
Writing custom search commands
Writing event type renderers
Writing custom search action scripts

The examples used in this chapter are included in the ImplementingSplunkExtendingExamples
app, which can be downloaded from the support page of the Packt website at https://www.
packtpub.com/support.

In addition, Hunk will be defined and an overview will be given.

||||||||||||||||||||

||||||||||||||||||||

https://www.packtpub.com/support
https://technet24.ir
https://technet24.ir

Writing a scripted input to gather data
Scripted inputs allow you to run a piece of code on a scheduled basis and capture the
output as if it were simply being written to a file. It does not matter what language the
script is written in, or where it lives, as long as it is executable.

We touched on this topic in the Using scripts to gather data section in Chapter 12,
Advanced Deployments. Let's write a few more examples.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Capturing script output with no date
One common problem with script output is the lack of a predictable date or date format.
In this situation, the easiest thing to do is to tell Splunk not to try to parse a date at all
and instead use the current date. Let's make a script that lists open network connections:

from subprocess import Popen
from subprocess import PIPE
from collections import defaultdict
import re
def add_to_key(fieldname, fields):
 return " " + fieldname + "+" + fields[fieldname]
output = Popen("netstat -n -p tcp", stdout=PIPE,
 shell=True).stdout.read()
counts = defaultdict(int)
for l in output.splitlines():
 if "ESTABLISHED" in l:
 pattern = r"(?P<protocol>S+)s+d+s+d+s+"
 pattern += r"(?P<local_addr>.*?)[^d](?P<local_port>d+)s+"
 pattern += r"(?P<remote_addr>.*)[^d](?P<remote_port>d+)"
 m = re.match(pattern, l)
 fields = m.groupdict()
 if "local_port" in fields and "remote_port" in fields:
 if fields["local_addr"] == fields["remote_addr"]:
 continue
 try:
 if int(fields["local_port"]) < 1024:
 key = "type=incoming"
 key += add_to_key("local_addr", fields)
 key += add_to_key("local_port", fields)
 key += add_to_key("remote_addr", fields)
 else:
 key = "type=outgoing"
 key += add_to_key("remote_addr", fields)
 key += add_to_key("remote_port", fields)
 key += add_to_key("local_addr", fields)
 except:
 print "Unexpected error:", sys.exc_info()[0]
 counts[key] += 1
for k, v in sorted(counts.items()):
 print k + " count=" + str(v)

Before we wire this up, we can test the command using the Python interpreter included
with Splunk, as follows:

$SPLUNK_HOME/bin/splunk cmd python connections.py

If you are using any Splunk Python modules, you must use Python included with Splunk
as other Python installations will not find these modules.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

On the test machine, this produces the following output:

type=outgoing remote_addr=17.149.36.120 remote_port=5223
local_addr=192.168.0.20 count=1
type=outgoing remote_addr=17.158.10.104 remote_port=443
local_addr=192.168.0.20 count=2
type=outgoing remote_addr=17.158.10.42 remote_port=443
local_addr=192.168.0.20 count=5
type=outgoing remote_addr=17.158.8.23 remote_port=993
local_addr=192.168.0.20 count=4
type=outgoing remote_addr=173.194.64.109 remote_port=993
local_addr=192.168.0.20 count=8
type=outgoing remote_addr=199.47.216.173 remote_port=443
local_addr=192.168.0.20 count=1
type=outgoing remote_addr=199.47.217.178 remote_port=443
local_addr=192.168.0.20 count=1
type=outgoing remote_addr=50.18.31.239 remote_port=443
local_addr=192.168.0.20 count=1

Now that we have a working script, we need two pieces of configuration, namely
inputs.conf and props.conf. As we covered in Chapter 12, Advanced Deployments, you will
want to place these configurations in different apps if you are going to distribute this
input across a distributed environment.

The Splunk configuration file called inputs.conf should contain something similar to the
following code:

[script://./bin/connections.py]
interval=60
sourcetype=connections

If the script ends in .py, Splunk will automatically use the included Python interpreter.
Otherwise, the script needs to be executable via the command line. If you want to use a
different Python executable, you will need to specify the full path to Python as the script,
with the script itself as an argument:

props.conf should then contain something as follows:
[connections]
SHOULD_LINEMERGE = false
DATETIME_CONFIG = CURRENT

This configuration requires that each line be treated as an event and that, in this event,
we don't even try to find something that looks like a date.

Let's build a query using the output of this scripted input. A useful query might be ports
opened by domain name. This query uses dnslookup and then flattens remote_host to either a
domain name or a subnet:

index=implsplunk sourcetype=connections

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

| fillnull value="-" remote_addr remote_port local_addr local_port
| dedup remote_addr remote_port local_addr local_port
| lookup dnslookup clientip as remote_addr
| rex field=clienthost ".*.(?<domain>[^.]+.[^.]+)"
| eval remote_host=coalesce(domain,remote_addr)
| eval remote_host=replace(remote_host,"(.*).d+$","1.0")
| stats sum(count) as count values(remote_port) as remote_ports
by remote_host local_addr local_port
| eval remote_ports=mvjoin(remote_ports, ", ")

On the machine I'm using, I get the following results:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Capturing script output as a single event
When you want to capture the entire output of a script as a single event, the trick is to
specify an impossible value for LINE_BREAKER. Let's write a shell script to output the
different parts of uname with nice field names.

You can find the following script at ImplementingSplunkExtendingExamples/bin/uname.sh:

#!/bin/sh
date "+%Y-%m-%d %H:%M:%S"
echo hardware="$(uname -m)"
echo node="$(uname -n)"
echo proc="$(uname -p)"
echo os_release="$(uname -r)"
echo os_name="$(uname -s)"
echo os_version="$(uname -v)"
This script produces output like the following code:
2012-10-30 19:28:05
hardware="x86_64"
node="mymachine.local"
proc="i386"
os_release="12.2.0"
os_name="Darwin"
os_version="Darwin Kernel Version 12.2.0: Sat Aug 25 00:48:52 PDT
2012; root:xnu-2050.18.24~1/RELEASE_X86_64"

You would notice that the last line definitely contains a date. Unless we specifically tell
Splunk that the entire output is an event in one way or another, it will turn that last line
into an event.

The inputs.conf file should contain something similar to the following code:

[script://./bin/uname.sh]
interval = 0 0 * * *
sourcetype=uname

Note the cron syntax for interval. This will run the script each day at midnight. An
alternative would be to set the value to 86,400, which would run the script each time
Splunk starts and then every 24 hours thereafter.

The props.conf file should then contain something similar to the following code:

[uname]
TIME_FORMAT = %Y-%m-%d %H:%M:%S
#treat each "line" as an event:
SHOULD_LINEMERGE = false
#redefine the beginning of a line to an impossible match,

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

#thus treating all data as one "line":
LINE_BREAKER = ((?!))
#chop the "line" at one megabyte, just in case:
TRUNCATE=1048576

Once installed, you can search for these events using sourcetype=uname, which produces
output similar to the following screenshot:

Because we used the fieldname="fieldvalue" syntax and we quoted values with spaces and
strange characters, these field values will be automatically extracted.

We can then use these fields immediately for reporting. A useful query might be as
follows:

earliest=-24h sourcetype=uname
| eventstats count by os_release os_name
| search count<10

This query would find the rare os_release os_name combinations.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Making a long-running scripted input
Sometimes, a process needs to be long-running, for instance, if it is polling an external
source, such as a database. A simple example might be as follows:

import time
import random
import sys
for i in range(1, 1000):
print "%s Hello." % time.strftime('%Y-%m-%dT%H:%M:%S')
#make sure python actually sends the output
sys.stdout.flush()
time.sleep(random.randint(1, 5))

This script will run for somewhere between 1,000 and 5,000 seconds and then exit.

Since this is a long-running script, our choices are either to treat each line as an event as
we did in the Capturing script output with no date section, or, if we know that there is
a date to use, configure the input like a regular log file. In this case, we can see that
there is always a date, so we will rely on that. The output is, unsurprisingly, as follows:

2012-10-30T20:13:29 Hello.
2012-10-30T20:13:33 Hello.
2012-10-30T20:13:36 Hello.

The inputs.conf file should contain something similar to the following code:

[script://./bin/long_running.py]
interval = 1
sourcetype=long_running

With interval = 1, Splunk will try to launch the script every second but will only run one
copy of the script at a time.

The props.conf file should then contain something similar to the following code:

[long_running]
TIME_FORMAT = %Y-%m-%dT%H:%M:%S
MAX_TIMESTAMP_LOOKAHEAD = 21
BREAK_ONLY_BEFORE = ^d{4}-d{1,2}-d{1,2}Td{1,2}:

This will create a long-running process that can do whatever is appropriate.

Even though it is convenient to have Splunk execute scripts for you and capture the
output, if the information you are capturing is vital, it may be safer to simply schedule

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

the script with cron, direct its output to a file, and point Splunk at that file. This allows
you to use the file in other ways; you can capture both standard output and errors, and
the data will still be captured if Splunk is down. It, however, has the disadvantage that
you have to clean up those logs yourself.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Using Splunk from the command line
Almost everything that can be done via the web interface can also be accomplished via
the command line. For an overview, see the output of /opt/splunk/bin/splunk help. For help
on a specific command, use /opt/splunk/bin/splunk help [commandname].

The most common action performed on the command line is search. For example, have a
look at the following code:

$ /opt/splunk/bin/splunk search 'foo'
2012-08-25T20:17:54 user=user2 GET /foo?q=7148356 uid=MzA4MTc5OA
2012-08-25T20:17:54 user=user2 GET /foo?q=7148356 uid=MzA4MTc5OA
2012-08-25T20:17:54 user=user2 GET /foo?q=7148356 uid=MzA4MTc5OA

The things to note here are as follows:

By default, searches are performed over All time. Protect yourself by including
earliest=-1d or an appropriate time range in your query.
By default, Splunk will only output 100 lines of results. If you need more, use the -
maxout flag.
Searches require authentication, so the user will be asked to authenticate unless -
auth is included as an argument.

Most use cases for the command line involve counting events to output to other systems.
Let's try a simple stats call to count instances of the word error over the last hour by the
host:

$ /opt/splunk/bin/splunk search 'earliest=-1h error | stats count by host'

This produces the following output:

------------ -----
host2 3114
vlb.local 3063

The things to note in this case are as follows:

earliest=-1h is included to limit the query to the last hour.
By default, the output is in a tabular format. This is nicer to read but much harder to
parse in another scripting language. Use -output to control the output format.
By default, Splunk will render a preview of the results as the results are retrieved.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

This slows down the overall execution. Disable preview with -preview as false.
Previews are not calculated when the script is not being called from an interactive
Terminal, for instance, when run from cron.

To retrieve the output as CSV, try the following code:

$ /opt/splunk/bin/splunk search 'earliest=-1h error | stats count by host' -output csv -preview false

This gives us the following output:

count,host
3120,host2
3078,"vlb.local"

Note that if there are no results, the output will be empty.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Querying Splunk via REST
Splunk provides an extensive HTTP REST interface, which allows searching, adding
data, adding inputs, managing users, and more. Documentation and SDKs are provided
by Splunk at http://dev.splunk.com/.

To get an idea of how this REST interaction happens, let's walk through a sample
conversation to run a query and retrieve the results. The steps are essentially as
follows:

1. Start the query (POST)
2. Poll for status (GET)
3. Retrieve results (GET)

We will use the command-line program curl to illustrate these steps. The SDKs make
this interaction much simpler.

The command to start a query is as follows:

curl -u user:pass -k https://yourserver:8089/services/search/jobs -
 d"search=search query"

This essentially says to use POST on the search=search query. If you are familiar with HTTP,
you might notice that this is a standard POST from an HTML form.

To run the query earliest=-1h index="_internal" warn | stats count by host, we need to URL-
encode the query. The command, then, is as follows:

$ curl -u admin:changeme -k
https://localhost:8089/services/search/jobs -
d"search=search%20earliest%3D-1h%20index%3D%22_internal%22%20
warn%20%7C%20stats%20count%20by%20host"

If the query is accepted, we will receive XML code that contains our search ID:

<?xml version='1.0' encoding='UTF-8'?>
<response><sid>1352061658.136</sid></response>

The contents of <sid> are then used to reference this job. To check the status of our job,
we will run the following code:

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://dev.splunk.com/
https://technet24.ir
https://technet24.ir
https://technet24.ir

curl -u admin:changeme -k
https://localhost:8089/services/search/jobs/1352061658.136

This returns a large document with copious amounts of information about our job, as
follows:

<entry ...>
<title>search earliest=-1h index="_internal" warn | stats count by
host</title>
<id>https://localhost:8089/services/search/jobs/1352061658.136</id>
...
<link href="/services/search/jobs/1352061658.136/events"
rel="events"/>
<link href="/services/search/jobs/1352061658.136/results"
rel="results"/>
...
<content type="text/xml">
<s:dict>
...
<s:key name="doneProgress">1.00000</s:key>
...
<s:key name="eventCount">67</s:key>
...
<s:key name="isDone">1</s:key>
...
<s:key name="resultCount">1</s:key>

Interesting fields include doneProgress, eventCount, resultCount, and the field we are most
interested in at this point, isDone. If isDone is not 1, we should wait and poll again later.
Once isDone=1, we can retrieve our results from the URL specified in <link rel="results">.

To retrieve our results, we make the following call:

curl -u admin:changeme -k
https://localhost:8089/services/search/jobs/1352061658.136/results

This returns the following XML output:

<?xml version='1.0' encoding='UTF-8'?>
<results preview='0'>
<meta>
<fieldOrder>
<field>host</field>
<field>count</field>
</fieldOrder>
</meta>
<result offset='0'>
<field k='host'>
<value><text>vlb.local</text></value>
</field>
<field k='count'>
<value><text>67</text></value>
</field>
</result>
</results>

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The list of fields is contained in meta/fieldOrder. Each result will then follow this field
order.

Though not necessary (since jobs expire on their own), we can save disk space on our
Splunk servers by cleaning up after ourselves. Simply calling the DELETE method on the
job URL will delete the results and reclaim the used disk space:

curl -u admin:changeme -k -X DELETE
https://localhost:8089/services/search/jobs/1352061658.136

Just to show the Python API action, here's a simple script:

import splunk.search as search
import splunk.auth as auth
import sys
import time
username = sys.argv[1]
password = sys.argv[2]
q = sys.argv[3]
sk = auth.getSessionKey(username, password)
job = search.dispatch("search " + q, sessionKey=sk)
while not job.isDone:
print "Job is still running."
time.sleep(.5)
for r in job.results:
for f in r.keys():
print "%s=%s" % (f, r[f])
print "----------"
job.cancel()

This script uses the Python modules included with Splunk, so we must run it using
Splunk's included Python, as follows:

$ /opt/splunk/bin/splunk cmd python simplesearch.py admin changeme 'earliest=-7d index="_internal" warn | timechart count by source'

This produces the following output:

_time=2012-10-31T00:00:00-0500
/opt/splunk/var/log/splunk/btool.log=0
/opt/splunk/var/log/splunk/searches.log=0
/opt/splunk/var/log/splunk/splunkd.log=31
/opt/splunk/var/log/splunk/web_service.log=0
_span=86400
_spandays=1

_time=2012-11-01T00:00:00-0500
/opt/splunk/var/log/splunk/btool.log=56
/opt/splunk/var/log/splunk/searches.log=0
/opt/splunk/var/log/splunk/splunkd.log=87
/opt/splunk/var/log/splunk/web_service.log=2
_span=86400
_spandays=1

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

...

For more examples and extensive documentation, check out http://dev.splunk.com.

||||||||||||||||||||

||||||||||||||||||||

http://dev.splunk.com
https://technet24.ir
https://technet24.ir

Writing commands
To augment the built-in commands, Splunk provides the ability to write commands in
Python and Perl. You can write commands to modify events, replace events, and even
dynamically produce events.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

When not to write a command
While external commands can be very useful, if the number of events to be processed is
large, or if performance is a concern, it should be considered a last resort. You should
make every effort to accomplish the task at hand using the search language built into
Splunk or other built-in features. For instance, if you want to accomplish any of the
following tasks, make sure you know what to do, which is what is discussed here:

To use regular expressions, learn to use rex, regex, and extracted fields
To calculate a new field or modify an existing field, look into eval (search for
Splunk eval functions with your favorite search engine)
To augment your results with external data, learn to use lookups, which can also be
a script if need be
To read external data that changes periodically, consider using inputcsv

The performance issues introduced by external commands come from the following two
places:

One source of issues is the work involved with launching a Python process,
exporting events as CSV to the Python process, and then importing the results back
into the Splunk process.
The source of issues is the actual code of the command. A command that queries an
external data source, for instance, a database, will be affected by the speed of that
external source.

In my testing, I could not make a command run faster than the speed that is 50 percent
slower than native commands. To test this, let's try a couple of searches, as shown here:

* | head 100000 | eval t=_time+1 | stats dc(t)

On my laptop, this query takes roughly 4 seconds to execute when run on the command
line with the preview feature disabled, as shown in the following code:

time /opt/splunk/bin/splunk search '* | head 100000 | eval
 t=_time+1 | stats dc(t)' -preview false

Now, let's throw in a command included in our sample app:

* | head 100000 | echo | eval t=_time+1 | stats dc(t)

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

This increases the search time to slightly over 6 seconds, an increase of 50 percent.
Included in the sample app are three variations of the echo app of varying complexity:

echo: This command simply echoes the standard input to the standard output.
echo_csv: This command uses csvreader and csvwriter.
echo_splunk: This command uses the Python modules provided with Splunk to gather
incoming events and then output the results. We will use these Python modules for
our example commands. Using each of these commands, the times are nearly
identical, which tells me that most of the time is spent shuttling the events in and
out of Splunk.

Adding required_fields=_time in commands.conf lowered times from 2.5x to 1.5x in this case.
If you know the fields your command needs, this setting can dramatically improve
performance.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

When to write a command
Given the warning about performance, there are still times when it makes sense to write
a command. I can think of a few reasons:

You need to perform a specific action that cannot be accomplished using internal
commands
You need to talk to an external system (a lookup may be more efficient though)
You need to produce events out of thin air, perhaps from an external service or for
testing

I'm sure you can think of your own reasons. Let's explore the nuts and bolts of different
types of commands.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Configuring commands
Before we start writing commands, there is some setup that must be done for all
commands. First, every command will need an entry in the commands.conf file of your app.
Let's take a look at the following sample stanza:

[commandname]
filename = scriptname.py
streaming = false
enableheader = true
run_in_preview = true
local = false
retainsevents = false

Go over the following attributes and their descriptions:

[commandname]: The command available to search will be the title of the stanza, in this
case, commandname.
filename = scriptname.py: This is the script to run. It must live in the bin

directory inside your app.
streaming = false: By default, only one instance of each command will be run on the
complete set of results. The assumption is that all events are needed for the script
to do its work. If your script works on each event individually, set this value to
true. This will eliminate the event limit, which, by default, is 50,000 as specified
by maxresultrows in limits.conf.
enableheader = true: By default, your script will receive a header that the Splunk
Python modules know how to use. If this is set to false, your command will receive
plain comma-separated values.
run_in_preview = true: By default, your command will be executed repeatedly while
events are being retrieved so as to update the preview in the GUI. This will have
no effect on saved searches, but setting this to false can make a big difference in the
performance of interactive searches. This is particularly important if your
command uses an external resource, as it will be called repeatedly.
local = false: If you have a distributed environment, by default, your command will
be copied to all indexers and executed there. If your command needs to be run on
one machine, setting local=true ensures that the command only runs on the search
head.
retainsevents = false: By default, Splunk assumes that your command returns the
transformed events, much like stats or timechart. Setting this to true changes the
behavior to treat the results as regular events.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

To make our commands available to other apps, for instance, Search, we need to change
the metadata in our app. Place the following two lines in the metadata/default.meta file:

[commands]
export = system

Finally, to use a newly-configured command, we either need to restart Splunk or load
the http://yourserver/debug/refresh URL in a browser. This may also be necessary after
changing settings in commands.conf, but it is not necessary after making changes to the script
itself.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Adding fields
Let's start out with a simple command that does nothing more than add a field to each
event. This example is stored in ImplementingSplunkExtendingExamples/bin/addfield.py:

#import the python module provided with Splunk import splunk.Intersplunk as si
#read the results into a variable
results, dummyresults, settings = si.getOrganizedResults()
#loop over each result. results is a list of dict. for r in results:
#r is a dict. Access fields using the fieldname.
r['foo'] = 'bar'
#return the results back to Splunk
si.outputResults(results)

Our corresponding stanza in commands.conf is as follows:

[addfield]
filename = addfield.py
streaming = true
retainsevents = true

We can use this command as follows:

* | head 10 | addfield | top foo

This gives us the result shown in the following screenshot:

This could be accomplished much more efficiently by simply using eval foo="bar", but this
illustrates the basic structure of a command.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Manipulating data
It is useful, at times, to modify the value of a field, particularly _raw. Just for fun, let's
reverse the text of each event. We will also support a parameter that specifies whether
to reverse the words or the entire value. You can find this example in
ImplementingSplunkExtendingExamples/bin/reverseraw.py:

import splunk.Intersplunk as si
import re
#since we're not writing a proper class, functions need to be
#defined first
def reverse(s):
return s[::-1]
#start the actual script
results, dummyresults, settings = si.getOrganizedResults()
#retrieve any options included with the command
keywords, options = si.getKeywordsAndOptions()
#get the value of words, defaulting to false
words = options.get('words', False)
#validate the value of words
if words and words.lower().strip() in ['t', 'true', '1', 'yes']:
words = True
else:
words = False
#loop over the results
for r in results:
#if the words option is true, then reverse each word
if words:
newRaw = []
parts = re.split('([^a-zA-Z']+)', r['_raw'])
for n in range(0, len(parts) - 2, 2):
newRaw.append(reverse(parts[n]))
newRaw.append(parts[n + 1])
newRaw.append(reverse(parts[-1]))
r['_raw'] = ''.join(newRaw)
#otherwise simply reverse the entire value of _raw
else:
r['_raw'] = reverse(r['_raw'])
si.outputResults(results)
The commands.conf stanza would look as follows:
[reverseraw]
filename = reverseraw.py
retainsevents = true
streaming = true
Let us assume the following event:
2012-10-27T22:10:21.616+0000 DEBUG Don't worry, be happy.
 [user=linda, ip=1.2.3., req_time=843, user=extrauser]

Using our new command, we get the following line of code:

* | head 10 | reverseraw

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Upon running the previous command on the preceding event, we see the entire event
reversed, as shown in the following code:

]resuartxe=resu ,348=emit_qer ,.3.2.1=pi ,adnil=resu[.yppah eb ,yrrow
t'noD GUBED 0000+616.12:01:22T72-01-2102

We can then add the words argument:

* | head 10 | reverseraw words=true

We will maintain the order of words, as shown in the following code:

2012-10-27T22:10:21.616+0000 GUBED t'noD yrrow, eb yppah. [resu=adnil, pi=1.2.3., qer_emit=843, resu=resuartxe]

For fun, let's reverse the event again:

* | head 10 | reverseraw words=true | reverseraw

This gives us the following output:

]extrauser=user ,348=time_req ,.3.2.1=ip ,linda=user[.happy be, worry Don't DEBUG 0000+616.12:01:22T72-01-2102

happy be, worry Don't—Yoda could not have said it better.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Transforming data
Until now, our commands have returned the original events with modifications to their
fields. Commands can also transform data, much like the built-in functions top and stats.
Let's write a function to count the words in our events. You can find this example in
ImplementingSplunkExtendingExamples/bin/countwords.py:

import splunk.Intersplunk as si
import re
import operator
from collections import defaultdict
#create a class that does the actual work
class WordCounter:
word_counts = defaultdict(int)
unique_word_counts = defaultdict(int)
rowcount = 0
casesensitive = False
mincount = 50
minwordlength = 3
def process_event(self, input):
self.rowcount += 1
words_in_event = re.findall('W*([a-zA-Z]+)W*', input)
unique_words_in_event = set()
for word in words_in_event:
if len(word) < self.minwordlength:
continue # skip this word, it's too short
if not self.casesensitive:
word = word.lower()
self.word_counts[word] += 1
unique_words_in_event.add(word)
for word in unique_words_in_event:
self.unique_word_counts[word] += 1
def build_sorted_counts(self):
#create an array of tuples,
#ordered by the count for each word
sorted_counts = sorted(self.word_counts.iteritems(),
key=operator.itemgetter(1))
#reverse it
sorted_counts.reverse()
return sorted_counts
def build_rows(self):
#build our results, which must be a list of dict
count_rows = []
for word, count in self.build_sorted_counts():
if self.mincount < 1 or count >= self.mincount:
unique = self.unique_word_counts.get(word, 0)
percent = round(100.0 * unique / self.rowcount, 2)
newrow = {'word': word,
'count': str(count),
'Events with word': str(unique),
'Event count': str(self.rowcount),
'Percent of events with word':
str(percent)}
count_rows.append(newrow)

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

return count_rows
#a helper method that doesn't really belong in the class
#return an integer from an option, or raise useful Exception
def getInt(options, field, default):
try:
return int(options.get(field, default))
except Exception, e:
#raise a user friendly exception
raise Exception("%s must be an integer" % field)
#our main method, which reads the options, creates a WordCounter
#instance, and loops over the results
if __name__ == '__main__':
try:
#get our results
results, dummyresults, settings = si.getOrganizedResults()
keywords, options = si.getKeywordsAndOptions()
word_counter = WordCounter()
word_counter.mincount = getInt(options, 'mincount', 50)
word_counter.minwordlength = getInt(options,
'minwordlength', 3)
#determine whether we should be case sensitive
casesensitive = options.get('casesensitive', False)
if casesensitive:
casesensitive = (casesensitive.lower().strip() in
['t', 'true', '1', 'y', 'yes'])
word_counter.casesensitive = casesensitive
#loop through the original results
for r in results:
word_counter.process_event(r['_raw'])
output = word_counter.build_rows()
si.outputResults(output)
#catch the exception and show the error to the user
except Exception, e:
import traceback
stack = traceback.format_exc()
si.generateErrorResults("Error '%s'. %s" % (e, stack))

This is a larger script, but hopefully, what is happening is clear to you. Note a few new
things in this example:

Most of the logic is in the class definition. This provides a better separation of
Splunk-specific logic and business logic.
Testing for __main__ is done as is the Python way.
Exception handling is also done.
This is a nicer exception for failed parsing of integer arguments.
Here, there are field names with spaces in them.

Our entry in commands.conf does not allow streaming and does not retain events:

[countwords]
filename = countwords.py
retainsevents = false
streaming = false

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

We can then use our command as follows:

* | countwords

This will give us a table, as shown in the following screenshot:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

With my test data, this produced 132 rows, representing 132 unique words at least three
characters long in my not-so-random dataset. count represents how many times each

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

word occurred overall, while Events with word represents how many events contained
the word at all.

Note the value 50000 in the Event count column. Even though my query found more than
300,000 events, only 50,000 events made their way to the command. You can increase
this limit by increasing maxresultrows in limits.conf, but be careful! This limit is for your
protection.

Try out our options as follows:

* | head 1000 | countwords casesensitive=true mincount=250 minwordlength=0

This query produces the following output:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Note that we now see one- and two-letter words, with entries for both T and t, and our
results stop when count drops below our value for mincount.

Just for completeness, to accomplish this command using built-in commands, you could
write something similar to the following code:

* | rex max_match=1000 "W*(?<word>[a-zA-Z]+)W*"
| eval id=1 | accum id | fields word id
| eventstats count
| mvexpand word
| eval word=lower(word)

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

| stats max(count) as event_count dc(id) as events_with_word count as word_count by word
| sort -events_with_word
| eval percent_events_containing = round(events_with_word/event_count*100.0,2)
| rename word_count as count
events_with_word as "Events with word"
event_count as "Event count"
percent_events_containing as "Percent of events with word"
| table count "Events with word" word
"Event count" "Percent of events with word"

There is probably a more efficient way to do this work using built-in commands, but this
is what comes to mind initially.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Generating data
There are times when you want to create events out of thin air. These events could come
from a database query, a web service, or simply some code that generates data useful in
a query. Just to illustrate the plumbing, we will make a random number generator.

You can find this example in ImplementingSplunkExtendingExamples/bin/random_generator.py:

import splunk.Intersplunk as si
from random import randint
keywords, options = si.getKeywordsAndOptions()
def getInt(options, field, default):
try:
return int(options.get(field, default))
except Exception, e:
#raise a user friendly exception
raise Exception("%s must be an integer" % field)
try:
min = getInt(options, 'min', 0)
max = getInt(options, 'max', 1000000)
eventcount = getInt(options, 'eventcount', 100)
results = []
for r in range(0, eventcount):
results.append({'r': randint(min, max)})
si.outputResults(results)
except Exception, e:
import traceback
stack = traceback.format_exc()
si.generateErrorResults("Error '%s'. %s" % (e, stack))
The entry in commands.conf then is as follows:
[randomgenerator]
filename = random_generator.py
generating = true

We can then use the command as follows:

|randomgenerator

Note the leading pipe | symbol. This is the indication to run a command instead of
running a search. Let's test the randomness of our Python code:

|randomgenerator eventcount=100000 min=100 max=899
| bucket r
| chart count by r

This produces a graph, as shown in the following screenshot:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

I guess that is not a bad distribution for 100,000 samples. Using Splunk's built-in
commands, you could accomplish essentially the same thing using the following code:

index=_internal
| head 100000
| eval r=random()/2147483647*100000
| bucket r
| chart count by r

That was a very quick overview of commands, using fun demonstration commands to
illustrate the plumbing required to execute your code. A number of samples ship with
Splunk in $SPLUNK_HOME/etc/apps/search/bin.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Writing a scripted lookup to enrich data
We covered CSV lookups fairly extensively in Chapter 7, Extending Search, then touched
on them again in Chapter 10, Summary Indexes and CSV Files, and Chapter 11,
Configuring Splunk. The capabilities built into Splunk are usually sufficient, but
sometimes, it is necessary to use an external data source or dynamic logic to calculate
values. Scripted lookups have the following advantages over commands and CSV
lookups:

Scripted lookups are only run once per unique lookup value, as opposed to a
command, which would run the command for every event.
The memory requirement of a CSV lookup increases with the size of the CSV file.
Rapidly-changing values can be left in an external system and queried using the
scripted lookup instead of being exported frequently. In the Using a lookup with
wildcards section in Chapter 10, Summary Indexes and CSV Files, we essentially
created a case statement through configuration. Let's implement that use case as a
script, just to show how it would be done in Python. First, in transforms.conf, we
need the following configuration:

[urllookup]
external_cmd = url_lookup.py
fields_list = url section call_count

The following are notes about this configuration:

fields_list is the list of fields that will be sent to the script and the list of fields
expected in the result
fields_list must contain at least two fields, or the script will fail silently

The script then looks as follows:

import sys
import re
from csv import DictReader
from csv import DictWriter
patterns = []
def add_pattern(pattern, section):
patterns.append((re.compile(pattern), section))
add_pattern('^/about/.*', 'about')
add_pattern('^/contact/.*', 'contact')
add_pattern('^/.*/.*', 'unknown_non_root')
add_pattern('^/.*', 'root')
add_pattern('.*', 'nomatch')
return a section for this url

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

def lookup(url):
try:
for (pattern, section) in patterns:
if pattern.match(url):
return section
return ''
except:
return ''
#set up our reader
reader = DictReader(sys.stdin)
fields = reader.fieldnames
#set up our writer
writer = DictWriter(sys.stdout, fields)
writer.writeheader()
#start our output
call_count = 0
for row in reader:
call_count = call_count + 1
if len(row['url']):
row['section'] = lookup(row['url'])
row['call_count'] = call_count
writer.writerow(row)

In a nutshell, this script takes the value of url, tries each regular expression in sequence,
and then sets the value of the section accordingly. A few points about the preceding
script follow:

The script receives the raw CSV with the fields listed in transforms.conf, but only the
fields that are needed for lookup will have a value. In our case, that field is url.
The url field must be present in the data or mapped in the lookup command using the
as option.
The call_count parameter is included to show that this scripted lookup is more
efficient than an external command, as the lookup will only receive one line of
input per unique value of url.

Let's try out the following code:

index=implsplunk sourcetype="impl_splunk_web"
| rex "s[A-Z]+s(?<url>.*?)?"
| lookup urllookup url
| stats count values(call_count) by url section

This gives us the following results:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The values(call_count) column tells us that our lookup script only received eight rows of
input, one for each unique value of url. This is far better than the 12,743 rows that an
equivalent command would have received.

For more examples of scripted lookups, see this command:

$SPLUNK_HOME/etc/system/bin/external_lookup.py

You can also check out the MAXMIND apps available in Splunkbase.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Writing an event renderer
Event renderers give you the ability to make a specific template for a specific event
type. To read more about creating event types, see Chapter 7, Extending Search.

Event renderers use mako templates (http://www.makotemplates.org/).

An event renderer comprises the following:

A template stored at
$SPLUNK_HOME/etc/apps/[yourapp]/appserver/event_renderers/[template].html

A configuration entry in event_renderers.conf
An optional event type definition in eventtypes.conf
Optional CSS classes in application.css

Let's create a few small examples. All the files referenced are included in
$SPLUNK_HOME/etc/apps/ImplementingSplunkExtendingExamples. These examples are not shared
outside this app, so, to see them in action, you will need to search from inside this app.
Do this by pointing your browser at
http://[yourserver]/app/ImplementingSplunkExtendingExamples/flashtimeline.

||||||||||||||||||||

||||||||||||||||||||

http://www.makotemplates.org/
https://technet24.ir
https://technet24.ir

Using specific fields
If you know the names of the fields you want to display in your output, your template can
be fairly simple. Let's look at the template_example event type. The template is stored in
appserver/event_renderers/template_example.html:

<%page args="job, event, request, options">
<ul class="template_example">

time:
${i18n.format_datetime_microseconds(event.get('_time', event.
time))}

ip:
${event.get('ip', '')}

logger:
${event.get('logger', '')}

message:
${event.get('message', '')}

req_time:
${event.get('req_time', '')}

session_id:
${event.get('session_id', '')}

user:
${event.get('user', '')}

_raw:
${event.get('_raw', '')}

</%page>

This template outputs a block for each event, with the specific fields we want
displayed. To connect this template to a specific event type, we need the following entry
in default/event_renderers.conf:

[template_example]
eventtype = template_example
template = template_example.html

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Finally, if we want to format our output, we can use the following CSS:

appserver/static/application.css:
ul.template_example {
list-style-type: none;
}
ul.template_example > li {
background-color: #dddddd;
padding: 4px;
margin: 1px;
}

To test our event type renderer, we need the configuration to be loaded. You can
accomplish this by restarting Splunk or by pointing your browser to
http://[yourserver]/debug/refresh.

At this point, we can run a query and apply the event type manually:

index="implsplunk" sourcetype="template_example"
| eval eventtype="template_example"

This renders each event in a manner similar to the following screenshot:

To make this automatic, we can create an event type definition in eventtypes.conf, as
follows:

[template_example]
search = sourcetype=template_example

Now any query that finds events of sourcetype=template_example will be rendered using our
template.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

A table of fields based on field value
Since the template has access to everything in the event, you can use the fields in any
way you like. The following example creates a horizontal table of fields but lets the user
specify a specific set of fields to display in a special field.

Our template, stored in appserver/event_renderers/tabular.html, looks as follows:

<%inherit file="//results/EventsViewer_default_renderer.html" />
<%def name="event_raw(job, event, request, options, xslt)">
<%
import sys
_fields = str(event.fields.get('tabular', 'host,source,sourcetype,line
count')).split(',')
head = ''
row = ''
for f in _fields:
head += "<th>" + f + "</th>"
row += "<td>" + str(event.fields.get(f, '-')) + "</td>"
%>
<table class="tabular_eventtype">
<tr>
${head}
</tr>
<tr>
${row}
</tr>
</table>
</%def>

Note that we have extended the default event type renderer template, which means we
will only change the rendering of field _raw.

The entry in event_renderers.conf is as follows:

[tabular]
eventtype = tabular
template = tabular.html

Finally, our entries in application.css are as follows:

th.tabular_eventtype {
background-color: #dddddd;
border: 1px solid white;
padding: 4px;
}
td.tabular_eventtype {
background-color: #eeeeee;
border: 1px solid white;
padding: 4px;

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

}

We are not going to bother giving this event type a definition, but we can use it by setting
the value of eventtype in the query. Let's try it out by running the following query:

index="implsplunk" | eval eventtype="tabular"

We see the following output based on the default fields specified in the template:

Note that we still see the event number, the workflow actions menu, the local time as
rendered by Splunk, and the selected fields underneath our template output.

We have really only overridden the rendering of _raw. If we specify the fields we want in
our table in the tabular field, the template will honor what we specify in our table:

index="implsplunk" sourcetype="template_example"
| eval tabular="level,logger,message,foo,network"
| eval eventtype="tabular"

This gives us the output shown in the following screenshot:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

As per the following template code, any field that does not have a value is rendered as -
:

str(event.fields.get(f, '-'))

It would be much simpler to use the table command instead of writing an event renderer.
This approach is only appropriate when you need a very specific rendering or still need
access to workflow actions. For another approach, check out the Table and Multiplexer
modules available in the Sideview Utils app.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Pretty printing XML
In this example, we will use Python's minidom module to parse and pretty print XML if
possible. The template will look for a field called xml or fall back on _raw.

Let's look through the files included in ImplementingSplunkExtendingExamples. The template file
located in appserver/event_renderers/xml.html contains the following lines of code:

<%inherit file="//results/EventsViewer_default_renderer.html" />
<%def name="event_raw(job, event, request, options, xslt)">
<%
from xml.dom import minidom
import sys
def escape(i):
return i.replace("<", "<").replace(">", ">")
_xml = str(event.fields.get('xml', event.fields['_raw']))
try:
pretty = minidom.parseString(_xml).toprettyxml(indent=' '*4)
pretty = escape(pretty)
except Exception as inst:
pretty = escape(_xml)
pretty += "n(couldn't format: " + str(inst) + ")"
%>
<pre class="xml_eventtype">${pretty}</pre>
</%def>
Our entry in event_renderers.conf is as follows:
[xml]
eventtype = xml
template = xml.html

Our entry in eventtypes.conf is as follows:

[xml]
search = sourcetype="xml_example"

We can then simply search for our example source type as follows:

index="implsplunk" sourcetype="xml_example"

This renders the following output:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The XML in the first event is invalid, so an error message is appended to the original
value.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Writing a scripted alert action to process
results
Another option to interface with an external system is to run a custom alert action using
the results of a saved search. Splunk provides a simple example in
$SPLUNK_HOME/bin/scripts/echo.sh. Let's try it out and see what we get using the following
steps:

1. Create a saved search. For this test, do something cheap, such as writing the
following code:

index=_internal | head 100 | stats count by sourcetype

2. Schedule the search to run at a point in the future. I set it to run every five minutes
just for this test.

3. Enable Run a script and type in echo.sh:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The script places the output into $SPLUNK_HOME/bin/scripts/echo_output.txt.

In my case, the output is as follows:

'/opt/splunk/bin/scripts/echo.sh' '4' 'index=_internal | head 100
| stats count by sourcetype' 'index=_internal | head 100 | stats
count by sourcetype' 'testingAction' 'Saved Search [testingAction]
always(4)' 'http://vlbmba.local:8000/app/search/@go?sid=scheduler__
admin__search__testingAction_at_1352667600_2efa1666cc496da4' '' '/
opt/splunk/var/run/splunk/dispatch/scheduler__admin__search__
testingAction_at_1352667600_2efa1666cc496da4/results.csv.gz' 'sessionK
ey=7701c0e6449bf5a5f271c0abdbae6f7c'

In the bullets that follow, let's look through each argument in the preceding output:

$0: This is the script path—'/opt/splunk/bin/scripts/echo.sh'

$1: This is the number of events returned—'4'

$2: These are the search terms—index=_internal | head 100 | stats count by sourcetype'

$3: This is the full search string—index=_internal | head 100 | stats count by sourcetype'

$4: This is the saved search's name—testingAction'

$5: This is the reason for the action—'Saved Search [testingAction] always(4)'

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

$6: This is a link to the search results; the host is controlled in web.conf:

'http://vlbmba.local:8000/app/search/@go?sid=scheduler__admin__search__testingAction_at_1352667600_2efa1666cc496da4'

$7: This is deprecated—''

$8: This is the path to the raw results, which are always gzipped:

'/opt/splunk/var/run/splunk/dispatch/scheduler__admin__search__testingAction_at_1352667600_2efa1666cc496da4/results.csv.gz'

STDIN—this is the session key when the search ran:

'sessionKey=7701c0e6449bf5a5f271c0abdbae6f7c'

The typical use of scripted alerts is to send an event to a monitoring system. You could
also imagine archiving these results for compliance reasons or to import them into
another system.

Let's make a fun example that copies the results to a file and then issues a curl statement.
That script might look like the following one:

#!/bin/sh
DIRPATH='dirname "$8"'
DIRNAME='basename "$DIRPATH"'
DESTFILE="$DIRNAME.csv.gz"
cp "$8" /mnt/archive/alert_action_example_output/$DESTFILE
URL="http://mymonitoringsystem.mygreatcompany/open_ticket.cgi"
URL="$URL?name=$4&count=$1&filename=$DESTFILE"
echo Calling $URL
curl $URL

You would then place your script in $SPLUNK_HOME/bin/scripts on the server that will execute
the script and refer to the script by name in alert actions. If you have a distributed
Splunk environment, the server that executes the scripts will be your search head.

If you need to perform an action for each row of results, then your script will need to
open the results. The following is a Python script that loops over the contents of the
GZIP file and posts the results to a ticketing system, including a JSON representation of
the event:

#!/usr/bin/env python
import sys
from csv import DictReader
import gzip
import urllib
import urllib2
import json
#our ticket system url
open_ticket_url = "http://ticketsystem.mygreatcompany/ticket"
#open the gzip as a file

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

f = gzip.open(sys.argv[8], 'rb')
#create our csv reader
reader = DictReader(f)
for event in reader:
fields = {'json': json.dumps(event),
'name': sys.argv[4],
'count': sys.argv[1]}
#build the POST data
data = urllib.urlencode(fields)
#the request will be a post
resp = urllib2.urlopen(open_ticket_url, data)
print resp.read()
f.close()

Hopefully, these examples give you a starting point for your use case.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Hunk
To further extend the power of Splunk, Hunk was developed to give a larger number of
users the ability to access data stored within the Hadoop and NoSQL stores (and other
similar ones) without needing custom development, costly data modeling, or lengthy
batch iterations. For example, Hadoop can consume high volumes of data from many
sources, refining the data into readable logs, which can then be exposed to Splunk users
quickly and efficiently using Hunk.

Some interesting Hunk features include the following:

The ability to create a Splunk virtual index: This enables the seamless use of the
Splunk Search Processing Language (SPL) for interactive exploration, analysis,
and visualization of data as if it was stored in a Splunk index.
You can point and go: Like accessing data indexed in Splunk, there is no need to
understand the Hadoop data upfront; you can just point Hunk at the Hadoop source
and start exploring.
Interactivity: You can use Hunk for analysis across terabytes, and even petabytes,
of data and even enrich Hadoop data with connected data from external relational
databases using Splunk DB Connect.
Report on and visualize data: Users can build graphs and charts on the fly and
also use views and reports to create role-specific dashboards that can be viewed
and edited on computers, tablets, or mobile devices.

Hunk currently runs on 64-bit Linux, with documentation in the Hunk tutorial found at htt
p://docs.splunk.com/Documentation/Hunk/latest/Hunktutorial/Tutorialoverview. Note that Hunk is
currently documented as supported up to Splunk version 6.4.9 and is undergoing
validation on new versions.

||||||||||||||||||||

||||||||||||||||||||

http://docs.splunk.com/Documentation/Hunk/latest/Hunktutorial/Tutorialoverview
https://technet24.ir
https://technet24.ir

Summary
As we saw in this chapter, there are a number of ways in which Splunk can be extended
to input, manipulate, and output events. The search engine at the heart of Splunk is truly
just the beginning. With a little creativity, Splunk can be used to extend existing systems,
both as a data source and as a way to trigger actions. In the next chapter, we will cover
the Splunk Machine Learning Toolkit.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Machine Learning Toolkit
The Splunk Machine Learning Toolkit (app), upgraded in version 7.0, delivers special
new SPL commands, custom visualizations, assistants, and plenty of examples (referred
to as showcases) to explore a variety of machine learning concepts. This chapter
focuses on machine learning using one of Splunk's newest features—the Splunk Machine
Learning Toolkit.

We will cover the following topics:

What is machine learning?
Defining the toolkit.
The toolkit workbench.
Assistants.
Extended SPL.
Building a model.

In this chapter, you will come to understand what is meant by the term machine learning
and how Splunk's Machine Learning Toolkit can be used to create a machine learning
model, even if you are not a senior data scientist with extended statistics or machine
learning experience!

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

What is machine learning?
The media today indicate that machine learning is likely to fundamentally transform
our lives as we know it. Some high-profile examples of areas that will most likely
benefit from machine learning include sales and marketing, maintenance event planning,
and predetermining health risks (as well as many others as well). Machine learning
provides insights based on patterns discovered or observed in machine data.

So, what is an understandable definition (there are many definitions) of machine
learning? With a little online searching, one will discover that machine learning is often
described as follows:

A subfield of the computer science field
Evolving out of the study of pattern recognition
A field of study or focus giving computers the ability to learn without being
explicitly programmed
A specific method for implementing AI, focused on statistical/probabilistic
techniques and evolutionary techniques
Allows software to become more accurate in predicting without being explicitly
programmed
And so on...

The objective of, and excitement around, machine learning is the formation of a routine
(or an algorithm) that has the ability to receive inputs and use accepted statistical logic
and reasoning to predict what an output will most likely be. These machine learning
routines are typically considered to be either supervised or unsupervised. Those that are
supervised require someone to provide both input data as well as indicate what is
desired as acceptable output (human interaction). In addition, feedback on the accuracy
or success of results of processing is evaluated and recorded. This process of inputting,
examining, and scoring the results is repeated a number of times during a period known
as training the routines (also referred to as the model). Once this period of training is
completed, the routine(s) will have the ability to apply what was learned to new data.

Unsupervised machine learning routines do not need to be trained as just described.
Instead, they use an iterative method (called deep learning) to review data and arrive at
acceptable or insightful results. Unsupervised machine learning routines are commonly
used for more complex processing tasks (often big data scenarios fall into this

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

category).

The processes involved in machine learning are similar to those of data mining (both
require searching through data, looking for patterns, and then adjusting the process
based upon the results or what has been learned).

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Content recommendation engines
One common example of an everyday use of machine learning is content
recommendation engines. These engines are actually algorithms that identify and then
provide content for individuals based on the way those individuals behave online. In
other words, as one perhaps shops online, content recommendation engines will serve
up advertisements and other information (in real time) that is associated with the
shopper's views and/or purchases or personalized in some way.

Note: This is the way Facebook's News Feeds are set or personalized for each member's
individual feed.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Natural language processing
Another example of using machine learning that is coming into its own is with natural
language processing (NLP). NLP can be put to work on collections of free text, such as
unstructured clinical notes found in EHR, academic journal articles, patient satisfaction
surveys, or other narrative data.

As reported by Jennifer Bresnick (Top 4 Machine Learning Use Cases for Healthcare
Providers, March 2017):

"In one project from the United Kingdom, researchers applied natural language processing tools to physicians'
evaluations of their peers, and discovered that the NLP tools agreed with human assessments of the content up
to 98 percent of the time.
The complexity of open-text information means that, unlike the scores from validated patient-reported
experiences and outcome measures, the words cannot simply be 'added up' to create insight and meaning," the
researchers explained. "As such, the task of making sense of such data has historically been completed
manually by skilled qualitative analysts..."

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Operational intelligence
Finally, opportunities to apply machine learning techniques to event data can help
organizations find various cause of issues earlier and lower the time-to-resolution as
well as base-lining normal operational patterns.

The reader may want to take some time to review this article: Christine Hall, September 27,
2017, Splunk Brings Machine Learning to Data Analytics, http://www.datacenterknowledge.com/machine-learn
ing/splunk-brings-machine-learning-data-analytics.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://www.datacenterknowledge.com/machine-learning/splunk-brings-machine-learning-data-analytics
https://technet24.ir
https://technet24.ir
https://technet24.ir

Defining the toolkit
Consider that Splunk offers a three-tier architecture for machine learning defined as:

Tier 1: Core platform searching features
Tier 2: Packaged solutions and apps offered on Splunkbase
Tier 3: Using the Splunk Machine Learning Toolkit

Since tier 1 and tier 2 should be self-explanatory to you at this point, let's have a closer
look at tier 3.

To define the Machine Learning Toolkit, we will start with a typical machine learning
project so as to understand what type of work will be carried out by most data
scientists. These work efforts are:

Collect (data)
Clean and transform (data)
Explore and visualize (data)
Model (data)
Evaluate (the results of the model)
Deployment (once the predictions are made, how can they be put to use?)

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Time well spent
Of the preceding listed tasks, popular opinion from the field (of data scientists) states
that up to 60% of the time is spent performing the cleaning and transforming of data,
while almost 20% (of the time) is spent on data collection.

The Splunk MLT was designed to extend the Splunk platform functions and provide a
guided modeling environment for developers and data scientists.

To this end, Splunk literature indicates the following advantages for using Splunk and
the Splunk MLT for machine learning projects:

Collect data: Inherently, Splunk is an excellent data collector and indexer and can
make collecting data—even big or unformatted data—much easier. Once setup,
Splunk will automatically collect the latest data in real time. This frees up time for
modeling and evaluating.
Clean and transform: Splunk offers various options for cleaning and transforming
data, such as props.conf (to apply logic as the data is being collected), tansforms.conf
(to define logic and rules for processing the data), data model definition (to encode
the domain knowledge into the data), and apps, which can be found on Splunkbase.
Again, once defined, more of the project time can be spent doing modeling and
evaluating.
Explore and visualize: Another fundamental strength of Splunk is using pivots,
tables, the Splunk UI, and SPL.
Model: The use of MLT.
Evaluate: By building alerts, dashboards and reports.
Deploy: Putting the results to appropriate use.

Based upon this list, some studied statistics suggest that perhaps the overall time spent
on a machine learning project may remain nearly the same, but the distribution of where
the time is spent will be positively affected and re-categorized or redistributed by the
use of Splunk and the Splunk MLT. In other words, less time will be spent performing
the less valuable and more mundane work (to acquire and assemble data), and more
time will be spent doing value addition and interesting work (of evaluating model
results, refining the algorithms used, and hopefully producing a more accurate result):

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The Splunk Machine Learning Toolkit introduces what is referred to as a guided
workbench (to help an up-and-coming data scientist create machine learning models),
plenty of interactive examples (showcases), as well as several new SPL extensions, all
intended to support your creation and operationalization of custom machine learning
models and algorithms. This then impacts how a machine learning project is conducted.

Note: You can base your models on over 300 open source Python algorithms from the scikit-learn,
pandas, statsmodel, NumPy and SciPy libraries available via the Splunk Python for Scientific
Computing add-on. Refer to https://www.splunk.com/.

||||||||||||||||||||

||||||||||||||||||||

https://www.splunk.com/
https://technet24.ir
https://technet24.ir

Obtaining the Kit
The Splunk Machine Learning Toolkit (MLT) can be obtained from Splunkbase,
provided you have an appropriate user ID and account.

Splunkbase is a community hosted by Splunk where users can go to find apps and add-
ons for Splunk. These can improve the functionality and usefulness of Splunk, as well as
provide a quick and easy interface for specific use cases and/or vendor products.

As of this writing, you can download the latest Machine Learning Toolkit app from https
://splunkbase.splunk.com/app/2890/. This is the Splunkbase page from where you can
download the MLT app:

This Splunkbase online page offers a fine introductory video.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://splunkbase.splunk.com/app/2890/
https://technet24.ir
https://technet24.ir
https://technet24.ir

Prerequisites and requirements
To use the Splunk Machine Learning Toolkit, you need to be on Splunk Enterprise 6.4 or
later, or Splunk Cloud.

Before you can get started with the Splunk Machine Learning Toolkit, you'll need to
download and install (the appropriate version of) the Python for scientific computing
add-on. Do this before installing the Splunk Machine Learning Toolkit:

Mac: https://splunkbase.splunk.com/app/2881/
Linux 64-bit: https://splunkbase.splunk.com/app/2882/
Linux 32-bit: https://splunkbase.splunk.com/app/2884/
Windows 64-bit: https://splunkbase.splunk.com/app/2883/

||||||||||||||||||||

||||||||||||||||||||

https://splunkbase.splunk.com/app/2881/
https://splunkbase.splunk.com/app/2882/
https://splunkbase.splunk.com/app/2884/
https://splunkbase.splunk.com/app/2883/
https://technet24.ir
https://technet24.ir

Installation
Once downloaded, to install the Splunk Machine Learning Toolkit app (or any app)
within Splunk Enterprise, do this:

1. Log in to Splunk Enterprise.
2. On the Apps menu, click on the Apps icon.
3. Click on Install app from file.
4. In the Upload app dialog box, click on Choose File.
5. Locate the .tar.gz or .tar file you just downloaded (typically splunk-machine-learning-

toolkit_310). Then click on Open or Choose.
6. Click on Upload.
7. Once installed, you will be asked to restart Splunk.

Remember that you do not need to unzip or decompress the downloaded file before installing it.

Once you have completed this procedure, you should see the App Splunk Machine
Learning Toolkit was installed successfully message, which indicates that the ML
Toolkit was successfully installed into your Splunk instance and is ready for use:

You now have the Splunk Machine Learning Toolkit installed and are ready to begin
using the app!

For discussions on the topics relating to the Splunk Machine Learning Toolkit, you can go to
Splunk Answers at http://answers.splunk.com/answers/app/2890.

Technet24
||||||||||||||||||||

||||||||||||||||||||

http://answers.splunk.com/answers/app/2890
https://technet24.ir
https://technet24.ir
https://technet24.ir

The toolkit workbench
So once again, the Splunk Machine Learning Toolkit attempts to simplify or streamline
the process of applying machine learning techniques to your Splunk-collected data.

This version 3.1.0 (of the app) provides showcase examples organized by the type of
analytic using:

Classification (predicting a yay or nay)
Regression
Anomaly detection
Outlier detection
Other ways

The showcases demonstrate how to apply the aforementioned machine learning methods
to a sample of datasets (also downloaded as part of the app) for you to use as a starting
point for building your own analysis.

Once you have launched the Splunk Machine Learning Toolkit app, you will see the
Showcase page:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

From the Splunk Showcase page, you can click on any of showcase examples, each of
which will open the appropriate assistant, guiding you through the process of applying it
to data.

If you click on one of the examples listed (such as Predict Numeric Fields), you will see
the assistant applied to sample data:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The toolkit's title or menu bar is shown here:

The menu bar consists of the following options:

Search: Goes to the standard search page (within the ML data)
Showcase: Goes to the ML Showcase page (shown in the previous section)
Models: Goes to the Models page, where previously saved models can be
accessed
Assistants: Displays a drop-down list of available assistants (described in the next
section of this chapter)
Scheduled Jobs: Allows access to schedule ML training jobs and reports
previously defined
Docs: You access the current documentation covering the Splunk Machine Learning
Toolkit
Video Tutorials: Displays links to videos currently available on Splunk Machine
Learning

We will spend more time on the showcase examples later in the Build a model section
of this chapter.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Assistants
The Splunk Machine Learning Toolkit provides (as of writing) six assistants as shown
in the following screenshot:

 These assistants are provided to you as, sort of, wizards that provide step-by-step
guidance to create a machine learning model with a particular purpose or objective.

The Splunk product describes these assistants as follows:

"Each assistant includes end-to-end examples with datasets, plus the ability to apply the visualizations and SPL
commands to your own data..."

These six assisted models are based on six of (perhaps) the most common models a data
scientist may build.

They include:

Predict Numeric Fields (linear regression): For example, predict median house
values
Predict Categorical Fields (linear regression): For example, predict customer
churn
Detect Numeric Outliers (distribution statistics): For example, detect outliers in IT
ops data
Detect Categorical Outliers (probabilistic measures): For example, detect outliers

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

in diabetes patient records
Forecast Time Series: For example, forecast data center growth and capacity
planning
Cluster Numeric Events: For example, cluster hard drives by SMART metrics

We'll take a closer look at these assistants in the Build a model section of this chapter.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Extended SPL (search processing
language)
The Splunk Machine Learning Toolkit contains numerous custom search commands,
referred to as ML-SPL commands, that implement standard machine learning tasks.
You can use these commands on any Splunk platform instance on which the Splunk
Machine Learning Toolkit is installed.

These commands are fit, apply, summary, listmodels, deletemodel, and sample:

fit: This command is used to apply a machine learning model to Splunk data search
results
apply: This is used to calculate predictions for the current search results based on a
model that was learned by the fit command
summary: This generates a summary of a machine learning model that was learned
using the fit command
listmodels: This command is used to create a list of machine learning models that
were learned using the fit command
deletemodel: Used to delete a machine learning model that was learned using the fit
command
sample: This command can be used to randomly sample or partition events

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

ML-SPL performance app
As a note to the reader, there is a Splunk app gaining interest and popularity that is often
considered to be or referred to as a companion app to the Splunk Machine Learning
Toolkit.

This Splunk app is the ML-SPL Performance App for the Machine Learning Toolkit.
It can be downloaded from Splunkbase at https://splunkbase.splunk.com/app/3289.

This app produces performance testing results for each algorithm you have implemented
with ML-SPL in your Splunk environment and provides an app dashboard to browse the
results of performance testing of ML-SPL. These generated results can then be used for
direction and benchmarking applications.

There are numerous functions and features of this app that can be explored. The app's
main screen is shown here:

With the basics behind us, let us now proceed to the next section and build a machine
learning model using the ML toolkit.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://splunkbase.splunk.com/app/3289
https://technet24.ir
https://technet24.ir
https://technet24.ir

Building a model
If you are now reading this section, you have reviewed the basic information described
throughout the previous sections of this chapter and established at least a basic
understanding of what machine learning entails. You know how Splunk can help you
build a ML based model using its latest ML toolkit; and you have also located,
downloaded, and installed the Splunk Machine Language Toolkit into your Splunk
environment.

Have you? Great! Now let's review a use case that builds a ML model.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Time series forecasting
Machine learning actually attempts to generalize from provided examples. These
generalizations (that's what we call predictive models) can then be used to predict or
forecast. In the business world, the need for creating a quality forecast is obvious. A
time series forecast is a type of forecast model that is key to predicting future
performance based on past events. Specifically, the principal goal of the use of time
series forecasting is to observe historical, linear time series trends and to use those
identified patterns to predict future values (future performance).

Many methods (AR, MA, ARIMA, SARIMA, AANs, and SVMs) exist and are used to
create time series forecast-based models. Understanding the logic of the routines and the
differences between them can be overwhelming. Fortunately, the Splunk ML Toolkit
makes it a somewhat straightforward process to create a time series forecast model (a
degree in statistics not required!).

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Using Splunk
As we mentioned earlier in this chapter, Splunk proposes a three-tier architecture for
implementing machine learning solutions, defined as:

Tier 1: Core platform searching features
Tier 2: Packaged solutions and apps offered on Splunkbase
Tier 3: Using the Splunk Machine Learning Toolkit

Since we are focusing on the Splunk Machine Learning Toolkit in this chapter, we can
skip going over the first two tiers and jump right into tier 3, using the toolkit.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Launching the toolkit
The first step is to launch the toolkit. Once your logged in to Splunk, you can locate the
Splunk Machine Learning Toolkit App on the left of the main page:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Once you click on the Splunk Machine Learning Toolkit APP, the Showcase page is
displayed. For this use case example, we are interested in time series forecasts, so if
we scroll down, we will see that section (shown here):

You can see the main link Forecast Time Series well as the sections sub-links offered
for that type of modeling below it. In our use case, we are interested in forecasting sales
by month; so we can click on that link now, which then displays the Forecast Time
Series page, made up of multiple sections or output panels.

The Splunk Machine Learning Toolkit provides a Forecast Monthly Sales showcase
using a sample file:

The top section/panel contains two tabs, Create New Forecast and Load Existing
Sections, as shown here:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

In this output panel, you'll notice the familiar Splunk Enter a search input line
(preloaded with the toolkit's supplied sample historic sales file), and under that, there
are selectors to set the configuration parameters required to create our time series
forecast machine learning model.

The configuration parameters are:

Algorithm: Allows you to select the methodology the toolkit will use to build the
model. The options listed are based on the time series type we selected (forecast
monthly sales).
Field to forecast: This is where you select the field that you want your model to
predict (forecast) based on the data source. In the sample file, there are only two
fields: Month (time) and Sales.
Method: This is where you indicate the method that the algorithm will implement.
Based on the selected Method, additional selections will be displayed and offered.

Caution: Trend forecasting is scientific, but it can also be ambiguous. The longer into the future a
forecast is applied, the more uncertain the results can be. Unexpected events can occur, and they
can disrupt any pattern or trend. Additionally, the more complicated the pattern seems to be, the
more uncertain the trend forecast usually will be.

You can configure your machine learning forecast model with the aforementioned
selection parameters. The Splunk Machine Learning Toolkit makes it quite easy to
change the method for the model to use, re-forecast, view, and evaluate the results.

Note that if you are not familiar with the various algorithm methods, it is worth some google time
to gain some knowledge on each; another approach is through experimentation, which is always
recommended as part of any model configuration evaluation.

In a time series forecast model, perhaps some reasonable advice is to select and use the
LLP5 method as this method combines both the LLP and LLT methods (since historical
sales data over time most likely will include seasonal and trend patterns) to create
predictions:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Other configurable forecast inputs include the number of future periods to forecast and a
confidence interval.

Note: Confidence intervals are a very common way of presenting forecast certainty. These
intervals are expected to cover the likely outcomes some percentage of the time, such as 67%,
90%, or 95%. Again, reasonable advice is to set this value to 95%.

Using the showcase supplied sample data, we can modify (or enter) the search as the
first step to configuring your forecast model and the data will be previewed. For
example, if we are not happy with the timeframe interval (although perhaps not a
realistic time selection), we can select a relative time search of Previous year:

After updating the search, you can click on the button labelled Forecast to have the
model re-forecast and then display see the visual effect of the change in time interval on
the output panel shown here:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

The next section or output panel on the page is the Forecast (visualization), shown here:

In this output panel, the Machine Learning Toolkit has automatically created a
visualization of the input data, the generated forecast, and the corresponding confidence
intervals—designed to help you evaluate the quality of the current model results.

For clarity, helpful tips are always obtainable if you hover your mouse over the panel titles.

When you're happy with all of your configuration settings, you can click on the button
corresponding with the action you'd like to take. For example, you can view the
underlying SPL or set up an alert to trigger when a forecast value falls outside a
particular range.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

The Splunk Machine Learning Toolkit gives you the opportunity to view and/or edit (and
save versions of) SPL for each of the output panels on the page.

For example, you can click on the button labeled Show SPL to access the commands
used to generate the visualization:

The final output panels located across the bottom of the page (shown next) show various
detailed data points that can be used to score or evaluate the performance of the
machine learning predictive model, including:

R2 Statistic: The square of the correlation coefficient between the forecasted and
actual values
Root Mean Squared Error (RSME): The quadratic mean of the prediction errors
Forecast Outliers: The number of values in the test period that fall outside the
confidence interval

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Validation
Validation of a forecast model involves training the model with a portion of data
(referred to as your training data) and then testing the model with a different portion
(referred to as your test data).

For forecasting tasks, the training data is a prefix of the data and the test data is a suffix
of the data that is withheld to compare against the forecasts.

Validating a trained model with the test set can be performed several ways, depending
on the type of model. Each assistant provides methods in the Validate section, which is
displayed after you train a model.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Deployment
A model is ready to be deployed after you have validated it and are comfortable with its
performance. Deployment actions are usually categorized as:

Generate a forecast to use directly or as input to other analytics applications
Detect outliners and anomalies to help improve the overall process
Trigger an action or alert of a needed decision

The Splunk Machine Learning Toolkit makes deploying and sharing the results generated
easily through Splunk's inherit ability to create dashboards, alerts and reports. In
addition, once a forecast is created, it's easy to export the generated data.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Saving a report
From the Visualization output panel, you can select the visualization type you'd like to
use to show your data:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

Once you have selected your desired visualization type, you can then use the Save As
feature to save your visualization as a Splunk Report or Dashboard Panel:

You can use all of the visualizations you create (referred to as applying a custom
visualization to your data) and save on any Splunk platform instance on which the
Splunk Machine Learning Toolkit is installed.

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Exporting data
As we mentioned earlier, you can also export the data generated by the machine learning
model. To do this, in the visualization output panel you can export the generated data by:

1. Click on the button labeled Open in Search:

2. Click on Export:

3. Fill out the Export Results details and then click on Export:

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

4. The output file is created and ready for use directly and/or in other analytical
systems or tools:

||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir

Summary
In this chapter, we provided a brief definition of what machine learning is. We reviewed
the fundamentals of Splunk's Machine Learning Toolkit and explained how it can be
used to create a machine learning model.

Technet24
||||||||||||||||||||

||||||||||||||||||||

https://technet24.ir
https://technet24.ir
https://technet24.ir

	Title Page
	Copyright and Credits
	Implementing Splunk 7 Third Edition

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	The Splunk Interface
	Logging in to Splunk
	The home app
	The top bar
	The Search & Reporting app
	Data generator
	The Summary view
	Search
	Actions
	Timeline
	The field picker
	Fields

	Search results
	Options
	Events viewer

	Using the time picker
	Using the field picker
	The settings section
	Splunk Cloud
	Try before you buy
	A quick cloud tour
	The top bar in Splunk Cloud
	Splunk reference app – PAS
	Universal forwarder
	eventgen
	Next steps
	Summary

	Understanding Search
	Using search terms effectively
	Boolean and grouping operators
	Clicking to modify your search
	Event segmentation
	Field widgets
	Time

	Using fields to search
	Using the field picker

	Using wildcards efficiently
	Supplementing wildcards in fields

	All about time
	How Splunk parses time
	How Splunk stores time
	How Splunk displays time
	How time zones are determined and why it matters
	Different ways to search against time
	Presets
	Relative
	Real-time
	Windowed real-time versus all-time real-time searches

	Date range
	Date and time range
	Advanced

	Specifying time in-line in your search
	_indextime versus _time

	Making searches faster
	Sharing results with others
	The URL
	Save As Report
	Save As Dashboard Panel
	Save As Alert
	Save As Event Type

	Searching job settings
	Saving searches for reuse
	Creating alerts from searches
	Enable Actions
	Action Options
	Sharing

	Event annotations
	An illustration

	Summary

	Tables, Charts, and Fields
	About the pipe symbol
	Using top to show common field values
	Controlling the output of top

	Using stats to aggregate values
	Using chart to turn data
	Using timechart to show values over time
	The timechart options

	Working with fields
	A regular expression primer
	Commands that create fields
	eval
	rex

	Extracting loglevel
	Using the extract fields interface
	Using rex to prototype a field
	Using the admin interface to build a field
	Indexed fields versus extracted fields
	Indexed field case 1 - rare instances of a common term
	Indexed field case 2 - splitting words
	Indexed field case 3 - application from source
	Indexed field case 4 - slow requests
	Indexed field case 5 - unneeded work

	Chart enhancements in version 7.0
	charting.lineWidth
	charting.data.fieldHideList
	charting.legend.mode
	charting.fieldDashStyles
	charting.axis Y.abbreviation

	Summary

	Data Models and Pivots
	What is a data model?
	What does a data model search?
	Data model objects
	Object constraining
	Attributes

	Acceleration in version 7.0
	Creating a data model
	Filling in the new data model dialog
	Editing fields (attributes)

	Lookup attributes
	Children

	What is a pivot?
	The Pivot Editor
	Working with pivot elements
	Filtering pivots

	Split (row or column)
	Column values

	Pivot table formatting

	A quick example
	Sparklines
	Summary

	Simple XML Dashboards
	The purpose of dashboards
	Using wizards to build dashboards
	Adding another panel
	A cool trick

	Converting the panel to a report
	More options

	Back to the dashboard
	Add input
	Editing source
	Edit UI

	Editing XML directly
	UI examples app
	Building forms
	Creating a form from a dashboard
	Driving multiple panels from one form
	Post-processing search results
	Post-processing limitations

	Features replaced
	Autorun dashboard
	Scheduling the generation of dashboards
	Summary

	Advanced Search Examples
	Using subsearches to find loosely related events
	Subsearch
	Subsearch caveats
	Nested subsearches

	Using transaction
	Using transaction to determine session length
	Calculating the aggregate of transaction statistics
	Combining subsearches with transaction

	Determining concurrency
	Using transaction with concurrency
	Using concurrency to estimate server load
	Calculating concurrency with a by clause

	Calculating events per slice of time
	Using timechart
	Calculating average requests per minute
	Calculating average events per minute, per hour

	Rebuilding top
	Acceleration
	Big data – summary strategy
	Report acceleration
	Report acceleration availability

	Version 7.0 advancements in metrics
	Definition of a Splunk metric
	Using Splunk metrics
	Creating a metrics index
	Creating a UDP or TCP data input

	Summary

	Extending Search
	Using tags to simplify search
	Using event types to categorize results
	Using lookups to enrich data
	Defining a lookup table file
	Defining a lookup definition
	Defining an automatic lookup
	Troubleshooting lookups

	Using macros to reuse logic
	Creating a simple macro
	Creating a macro with arguments

	Creating workflow actions
	Running a new search using values from an event
	Linking to an external site
	Building a workflow action to show field context
	Building the context workflow action
	Building the context macro

	Using external commands
	Extracting values from XML
	xmlkv
	XPath

	Using Google to generate results

	Summary

	Working with Apps
	Defining an app
	Included apps
	Installing apps
	Installing apps from Splunkbase
	Using Geo Location Lookup Script
	Using Google Maps

	Installing apps from a file

	Building your first app
	Editing navigation
	Customizing the appearance of your app
	Customizing the launcher icon
	Using custom CSS
	Using custom HTML
	Custom HTML in a simple dashboard
	Using server-side include in a complex dashboard

	Object permissions
	How permissions affect navigation
	How permissions affect other objects
	Correcting permission problems

	App directory structure
	Adding your app to Splunkbase
	Preparing your app
	Confirming sharing settings
	Cleaning up our directories

	Packaging your app
	Uploading your app

	Self-service app management
	Summary

	Building Advanced Dashboards
	Reasons for working with advanced XML
	Reasons for not working with advanced XML
	Development process
	Advanced XML structure
	Converting simple XML to advanced XML
	Module logic flow
	Understanding layoutPanel
	Panel placement

	Reusing a query
	Using intentions
	stringreplace
	addterm

	Creating a custom drilldown
	Building a drilldown to a custom query
	Building a drilldown to another panel
	Building a drilldown to multiple panels using HiddenPostProcess

	Third-party add-ons
	Google Maps
	Sideview Utils
	The Sideview search module
	Linking views with Sideview
	Sideview URLLoader
	Sideview forms

	Summary

	Summary Indexes and CSV Files
	Understanding summary indexes
	Creating a summary index

	When to use a summary index
	When to not use a summary index
	Populating summary indexes with saved searches
	Using summary index events in a query
	Using sistats, sitop, and sitimechart
	How latency affects summary queries
	How and when to backfill summary data
	Using fill_summary_index.py to backfill
	Using collect to produce custom summary indexes

	Reducing summary index size
	Using eval and rex to define grouping fields
	Using a lookup with wildcards
	Using event types to group results

	Calculating top for a large time frame
	Summary index searches

	Using CSV files to store transient data
	Pre-populating a dropdown
	Creating a running calculation for a day

	Summary

	Configuring Splunk
	Locating Splunk configuration files
	The structure of a Splunk configuration file
	The configuration merging logic
	The merging order
	The merging order outside of search
	The merging order when searching

	The configuration merging logic
	Configuration merging – example 1
	Configuration merging – example 2
	Configuration merging – example 3
	Configuration merging – example 4, search

	Using btool

	An overview of Splunk.conf files
	props.conf
	Common attributes
	Search-time attributes
	Index-time attributes
	Parse-time attributes
	Input-time attributes

	Stanza types
	Priorities inside a type
	Attributes with class

	inputs.conf
	Common input attributes
	Files as inputs
	Using patterns to select rolled logs
	Using blacklist and whitelist
	Selecting files recursively
	Following symbolic links
	Setting the value of the host from the source
	Ignoring old data at installation
	When to use crcSalt
	Destructively indexing files

	Network inputs
	Native Windows inputs
	Scripts as inputs

	transforms.conf
	Creating indexed fields
	Creating a loglevel field
	Creating a session field from the source
	Creating a tag field
	Creating host categorization fields

	Modifying metadata fields
	Overriding the host
	Overriding the source
	Overriding sourcetype
	Routing events to a different index

	Lookup definitions
	Wildcard lookups
	CIDR wildcard lookups
	Using time in lookups

	Using REPORT
	Creating multivalue fields
	Creating dynamic fields

	Chaining transforms
	Dropping events

	fields.conf
	outputs.conf
	indexes.conf
	authorize.conf
	savedsearches.conf
	times.conf
	commands.conf
	web.conf

	User interface resources
	Views and navigation
	Appserver resources
	Metadata

	Summary

	Advanced Deployments
	Planning your installation
	Splunk instance types
	Splunk forwarders
	Splunk indexer
	Splunk search

	Common data sources
	Monitoring logs on servers
	Monitoring logs on a shared drive
	Consuming logs in batch
	Receiving syslog events
	Receiving events directly on the Splunk indexer
	Using a native syslog receiver
	Receiving syslog with a Splunk forwarder

	Consuming logs from a database
	Using scripts to gather data

	Sizing indexers
	Planning redundancy
	The replication factor
	Configuring your replication factors
	Syntax

	Indexer load balancing
	Understanding typical outages

	Working with multiple indexes
	Directory structure of an index
	When to create more indexes
	Testing data
	Differing longevity
	Differing permissions
	Using more indexes to increase performance

	The life cycle of a bucket
	Sizing an index
	Using volumes to manage multiple indexes

	Deploying the Splunk binary
	Deploying from a tar file
	Deploying using msiexec
	Adding a base configuration
	Configuring Splunk to launch at boot

	Using apps to organize configuration
	Separate configurations by purpose

	Configuration distribution
	Using your own deployment system
	Using the Splunk deployment server
	Step 1 – deciding where your deployment server will run
	Step 2 - defining your deploymentclient.conf configuration
	Step 3 - defining our machine types and locations
	Step 4 - normalizing our configurations into apps appropriately
	Step 5 - mapping these apps to deployment clients in serverclass.conf
	Step 6 - restarting the deployment server
	Step 7 - installing deploymentclient.conf

	Using LDAP for authentication
	Using single sign-on
	Load balancers and Splunk
	web
	splunktcp
	deployment server

	Multiple search heads
	Summary

	Extending Splunk
	Writing a scripted input to gather data
	Capturing script output with no date
	Capturing script output as a single event
	Making a long-running scripted input

	Using Splunk from the command line
	Querying Splunk via REST
	Writing commands
	When not to write a command
	When to write a command
	Configuring commands
	Adding fields
	Manipulating data
	Transforming data
	Generating data

	Writing a scripted lookup to enrich data
	Writing an event renderer
	Using specific fields
	A table of fields based on field value
	Pretty printing XML

	Writing a scripted alert action to process results
	Hunk
	Summary

	Machine Learning Toolkit
	What is machine learning?
	Content recommendation engines
	Natural language processing
	Operational intelligence

	Defining the toolkit
	Time well spent
	Obtaining the Kit
	Prerequisites and requirements
	Installation

	The toolkit workbench
	Assistants
	Extended SPL (search processing language)
	ML-SPL performance app

	Building a model
	Time series forecasting
	Using Splunk
	Launching the toolkit

	Validation
	Deployment
	Saving a report
	Exporting data

	Summary

