

Advanced Splunk

Table of Contents

Advanced Splunk
Credits
About the Author
Acknowledgements
About the Reviewer
www.PacktPub.com

eBooks, discount offers, and more
Why subscribe?
Instant updates on new Packt books

Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the color images of this book
Errata
Piracy
Questions

1. What's New in Splunk 6.3?
Splunk's architecture

The need for parallelization
Index parallelization

Search parallelization
Pipeline parallelization
The search scheduler
Summary parallelization

Data integrity control
Intelligent job scheduling
The app key-value store

System requirements
Uses of the key-value store
Components of the key-value store
Managing key-value store collections via REST

Examples
Replication of the key-value store

Splunk Enterprise Security
Enabling HTTPS for Splunk Web
Enabling HTTPS for the Splunk forwarder
Securing a password with Splunk
The access control list

Authentication using SAML
Summary

2. Developing an Application on Splunk
Splunk apps and technology add-ons

What is a Splunk app?
What is a technology add-on?

Developing a Splunk app
Creating the Splunk application and technology add-on
Packaging the application
Installing a Splunk app via Splunk Web
Installing the Splunk app manually

Developing a Splunk add-on
Building an add-on
Installing a technology add-on

Managing Splunk apps and add-ons
Splunk apps from the app store
Summary

3. On-boarding Data in Splunk
Deep diving into various input methods and sources

Data sources
Structured data
Web and cloud services
IT operations and network security
Databases
Application and operating system data

Data input methods
Files and directories
Network sources
Windows data

Adding data to Splunk – new interfaces
HTTP Event Collector and configuration

HTTP Event Collector
Configuration via Splunk Web
Managing the Event Collector token

The JSON API format
Authentication
Metadata
Event data

Data processing
Event configuration

Character encoding
Event line breaking

Timestamp configuration
Host configuration

Configuring a static host value – files and directories
Configuring a dynamic host value – files and directories
Configuring a host value – events

Managing event segmentation
Improving the data input process
Summary

4. Data Analytics
Data and indexes

Accessing data
The index command
The eventcount command
The datamodel command
The dbinspect command
The crawl command

Managing data
The input command
The delete command
The clean command
Summary indexing

Search
The search command
The sendmail command
The localop command

Subsearch
The append command

The appendcols command
The appendpipe command
The join command

Time
The reltime command
The localize command

Fields
The eval command
The xmlkv command
The spath command
The makemv command
The fillnull command
The filldown command
The replace command

Results
The fields command
The searchtxn command
The head / tail command
The inputcsv command
The outputcsv command

Summary
5. Advanced Data Analytics

Reports
The makecontinuous command
The addtotals command
The xyseries command

Geography and location
The iplocation command
The geostats command

Anomalies
The anomalies command
The anomalousvalue command
The cluster command
The kmeans command
The outlier command
The rare command

Predicting and trending
The predict command

The trendline command
The x11 command

Correlation
The correlate command
The associate command
The diff command
The contingency command

Machine learning
Summary

6. Visualization
Prerequisites – configuration settings
Tables

Tables – Data overlay
Tables – Sparkline

Sparkline – Filling and changing color
Sparkline – The max value indicator
Sparkline – A bar style

Tables – An icon set
Single value
Charts

Charts – Coloring
Chart overlay
Bubble charts

Drilldown
Dynamic drilldown

The x-axis or y-axis value as a token to a form
Dynamic drilldown to pass a respective row's specific column value
Dynamic drilldown to pass a fieldname of a clicked value

Contextual drilldown
The URL field value drilldown
Single value drilldown

Summary
7. Advanced Visualization

Sunburst sequence
What is a sunburst sequence?
Example
Implementation

Geospatial visualization

Example
Syntax
Search query

Implementation
Punchcard visualization

Example
Search query

Implementation
Calendar heatmap visualization

Example
Search query

Implementation
The Sankey diagram

Example
Implementation

Parallel coordinates
Example

Search query
Implementation

The force directed graph
Example
Implementation

Custom chart overlay
Example
Implementation

Custom decorations
Example

What is the use of such custom decorations?
Implementation

Summary
8. Dashboard Customization

Dashboard controls
HTML dashboard
Display controls

Example and implementation
Syntax

Form input controls
Example and implementation

Panel controls
Example and implementation

Enabling/disabling refresh time
Disabling the manual refresh link
Enabling auto refresh

Multi-search management
Example
Implementation

Tokens
Eval tokens

Syntax of the eval token
Example
Implementation

Custom tokens
Example
Implementation

Null search swapper
Example
Implementation

Switcher
Link switcher

Example and implementation
Button switcher

Example and implementation
Summary

9. Advanced Dashboard Customization
Layout customization

Panel width
Example
Implementation

Grouping
Example

Single-value grouping
Visualization grouping

Implementation
Panel toggle

Example
Implementation

Image overlay
Example

What is the use of image overlay?
Where can image overlay be used?

Implementation
Custom look and feel

Example and implementation
The custom alert action

What is alerting?
Alerting
The features
Implementation
Example

Summary
10. Tweaking Splunk

Index replication
Standalone environment
Distributed environment
Replication

Searching
Failures

Indexer auto-discovery
Example
Implementation

Sourcetype manager
Field extractor

Accessing field extractor
Using field extractor
Example

Regular expression
Delimiter

Search history
Event pattern detection
Data acceleration

Need for data acceleration
Data model acceleration

Splunk buckets
Search optimizations

Time range
Search modes
Scope of searching
Search terms

Splunk health
splunkd log
Search log

Summary
11. Enterprise Integration with Splunk

The Splunk SDK
Installing the Splunk SDK
The Splunk SDK for Python

Importing the Splunk API in Python
Connecting and authenticating the Splunk server
Splunk APIs

Creating and deleting an index
Creating input
Uploading files
Saved searches
Splunk searches

Splunk with R for analytics
The setup
Using R with Splunk

Splunk with Tableau for visualization
The setup
Using Tableau with Splunk

Summary
12. What Next? Splunk 6.4

Storage optimization
Machine learning
Management and admin
Indexer and search head enhancement
Visualizations
Multi-search management
Enhanced alert actions
Summary

Index

Advanced Splunk

Advanced Splunk
Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written permission
of the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1030616

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-435-1

www.packtpub.com

http://www.packtpub.com

Credits
Author

Ashish Kumar Tulsiram Yadav

Reviewer

Randy Rosshirt

Commissioning Editor

Veena Pagare

Acquisition Editor

Manish Nainani

Content Development Editor

Viranchi Shetty

Technical Editor

Ravikiran Pise

Copy Editors

Karuna Narayanan

Neha Vyas

Project Coordinator

Izzat Contractor

Proofreader

Safis Editing

Indexer

Rekha Nair

Graphics

Abhinash Sahu

Production Coordinator

Manu Joseph

Cover Work

Manu Joseph

About the Author
Ashish Kumar Tulsiram Yadav is a BE in computers and has around four and a half
years of experience in software development, data analytics, and information security,
and around four years of experience in Splunk application development and
administration. He has experience of creating Splunk applications and add-ons,
managing Splunk deployments, machine learning using R and Python, and analytics and
visualization using various tools, such as Tableau and QlikView.

He is currently working with the information security operations team, handling the
Splunk Enterprise security and cyber security of the organization. He has worked as a
senior software engineer at Larsen & Toubro Technology Services in the telecom
consumer electronics and semicon unit providing data analytics on a wide variety of
domains, such as mobile devices, telecom infrastructure, embedded devices, Internet of
Things (IOT), Machine to Machine (M2M), entertainment devices, and network and
storage devices.

He has also worked in the area of information, network, and cyber security in his
previous organization. He has experience in OMA LWM2M for device management and
remote monitoring of IOT and M2M devices and is well versed in big data and the
Hadoop ecosystem. He is a passionate ethical hacker, security enthusiast, and Linux
expert and has knowledge of Python, R, .NET, HTML5, CSS, and the C language.

He is an avid blogger and writes about ethical hacking and cyber security on his blogs
in his free time. He is a gadget freak and keeps on writing reviews on various gadgets
he owns. He has participated in and has been a winner of hackathons, technical paper
presentations, white papers, and so on.

Acknowledgements
I would like to take this opportunity to thank my wonderful mom and dad for their
blessings and for everything. I would sincerely like to thank Karishma Jain and Apurv
Srivastav for helping me with examples, test data, and various other required material
that enabled me to complete this book on time. I would also like to thank my friends,
team, and colleagues at L&T TS for their support and encouragement. Special thanks to
Nate Mckervey and Mitesh Vohra for guiding and helping me in various stages of
writing this book. Last, but not least, a big thanks to Manish, Viranchi, Ravikiran, and
the entire Packt Publishing team for their timely support and help.

About the Reviewer
Randy Rosshirt has had a 25-year career in technology, specializing in enterprise
software and big data challenges. Much of his background has been in the healthcare
industry. Since he started working with Splunk in 2012, his focus has been to introduce
Splunk into the healthcare informatics community. While working at Splunk, Randy was
involved with creating Splunk solutions for HIPAA privacy, clinical quality indicators,
and adverse events data. He also spoke on behalf of Splunk at the 2014 HIMSS event on
the topic Mining Big Data for Quality Indicators. He continues to provide private
consulting to solve healthcare problems with Splunk.

For more, look at www.rrosshirt.com

I would like to thank Packt Publishing, especially the project coordinator and the author
for inviting me to participate in this project.

http://www.rrosshirt.com

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at <customercare@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise
on Twitter or the Packt Enterprise Facebook page.

Preface
Big data: the term itself suggests a large amount of data. Big data can be defined as
high-volume, high-velocity, and high-variety information. Data is sometimes also
referred to as logs generated from machines that can be used for the purpose of
operations, engineering, business insight, analytics and prediction, and so on as the case
may be.

Now, as we have a large amount of data, there is a need for a platform or tool that can
be used to create visualizations and derive insights and patterns to make informed
business decisions beforehand. To overcome all these challenges of big data, Splunk
came into the picture. Splunk is a big data tool that generates insights and reveals
patterns, trends, and associations from machine data. It is a powerful and robust big data
tool used to derive real-time or near real-time insights, and it enables you to take
informed corrective measures.

Splunk can be put to use for data generated from any source and available in a human
readable format. As Splunk is a feature-rich tool, it becomes difficult for a Splunk user
to start and make the best use of Splunk right away. This book takes the reader through a
complete understanding of making the best and most efficient use of Splunk for machine
data analytics and visualization. The book covers everything from which type of data
can be uploaded to how to do it in an efficient way. It also covers creating applications
and add-ons on Splunk, learning analytics commands, and learning visualizations and
customizations as per one's requirements. The book also talks about how Splunk can be
tweaked to make the best out of Splunk, along with how it can be integrated with R for
analytics and Tableau for visualization.

This step-by-step comprehensive guide to Splunk will help readers understand Splunk's
capabilities, thus enabling you to make the most efficient and best use of Splunk for big
data.

What this book covers
Chapter 1, What's New in Splunk 6.3?, explains in detail how Splunk works in the
backend, and also explains the backbone of Splunk, thanks to which it can process big
data in real time. We will also go through all the new techniques and architectural
changes that have been introduced in Splunk 6.3 to make Splunk faster, better, and
provide near real-time results.

Chapter 2, Developing an Application on Splunk, talks about creating and managing an
application and an add-on on Splunk Enterprise. You will also learn how to use
different applications available on the Splunk app store to minimize the work by using
the already available applications for similar requirements.

Chapter 3, On-boarding Data in Splunk, details the various methods by which data can
be indexed on Splunk. We will also have a look at various customization options
available while uploading data onto Splunk in order to index the data in such a way that
trends, pattern detection, and other important features can be used efficiently and easily.

Chapter 4, Data Analytics, helps the reader learn the usage of commands related to
searching, data manipulation, field extraction, subsearches, and so on on Splunk, thus
enabling him/her to create analytics out of the data.

Chapter 5, Advanced Data Analytics, teaches the reader to generate reports and become
well-versed with commands related to geographic and locations. This chapter will also
cover advanced section of commands such as anomaly detection, correlation,
prediction, and machine learning.

Chapter 6, Visualization, goes through the basic visualization options available in
Splunk to represent data in an easier-to-understand format. Along with visualization, we
will also discuss tweaking visualizations to make them easier to read and understand.

Chapter 7, Advanced Visualization, teaches the reader to use custom plugins and
extensions to implement advanced visualizations in Splunk. These advanced
visualizations can even be used by the nontechnical audience to generate useful insight
and derive business decisions.

Chapter 8, Dashboard Customization, teaches the reader to create basic custom
dashboards with the visualization and analytics you've learned so far. We will go
through the various dashboard customization techniques that can be implemented to

make the most of out the data on Splunk.

Chapter 9, Advanced Dashboard Customization, instructs the reader about the
techniques that will help in developing a highly dynamic, customizable, and useful
dashboard over the data on Splunk.

Chapter 10, Tweaking Splunk, talks about how we can make the best use of Splunk
features so that we can get the maximum use out of Splunk efficiently. You will also
learn the various management and customization techniques to use Splunk in the best
possible way.

Chapter 11, Enterprise Integration with Splunk, teaches the reader to set up and use the
Splunk SDK along with the integration of Splunk with R for analytics and Tableau for
visualization.

Chapter 12, What Next? Splunk 6.4, discusses the features introduced in Splunk 6.4,
along with how they can be put to use to maximize the benefit of Splunk for analytics
and visualizations.

What you need for this book
Listed as follows are the requirements for getting through the series of tasks performed
through this book:

A Windows machine
Splunk 6.3/Splunk 6.4, which can be downloaded from the Splunk website
Python 2.7 and the Splunk SDK for Python
R 3.1.0
Tableau 9.3
Machine data, on which analytics and visualization is to be done.

Who this book is for
This book is for anyone who wants to learn Splunk and understand its advanced
capabilities and doesn't want to get lost in loads of online documentation. This book
will help readers understand how Splunk can be put to use to derive valuable insights
from machine data in no time. This book covers Splunk from end to end, along with
examples and illustrations, to make the reader a "master" of Splunk.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of their
meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We
can include other contexts through the use of the include directive."

A block of code is set as follows:

[general]
parallelIngestionPipelines = 2 # For 2 Ingestion Pipeline sets

Any command-line input or output is written as follows:

./splunk check-integrity -index [index name] [verbose]

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Clicking the Next
button moves you to the next screen."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
https://technet24.ir

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in the
output. You can download this file from
https://www.packtpub.com/sites/default/files/downloads/AdvancedSplunk_ColorImages.pdf

https://www.packtpub.com/sites/default/files/downloads/AdvancedSplunk_ColorImages.pdf
https://technet24.ir

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please report them by visiting http://www.packtpub.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be uploaded to our website or added to any list of existing
errata under the Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works in any form on the Internet, please provide
us with the location address or website name immediately so that we can pursue a
remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

mailto:copyright@packtpub.com
https://technet24.ir

Questions
If you have a problem with any aspect of this book, you can contact us at
<questions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com

Chapter 1. What's New in Splunk 6.3?
Splunk is known as the Google of machine log analytics. It is a very powerful, robust,
and real-time big data analytics tool. In this chapter, we will study in detail how Splunk
works in the backend and what is the backbone of Splunk due to which it can process
big data in real time. We will also go through all the new techniques and architectural
changes that have been introduced in Splunk 6.3 to make Splunk faster, better, and
provide near real-time results.

The following topics will be covered in this chapter:

The architecture
Index parallelization
Search parallelization
Data integrity control
Intelligent job scheduling
The app's key-value store
Securing Splunk Enterprise
Single sign-on using SAML

https://technet24.ir

Splunk's architecture
Splunk's architecture comprises of components that are responsible for data ingestion
and indexing and analytics.

The lowest level of Splunk architecture depicts various data input methods supported by
Splunk. These input methods can be configured to send data on Splunk indexers. Before
the data reaches Splunk indexers, it can be parsed or manipulated, that is, data cleaning
can be done if required. Once the data is indexed on Splunk, the next layer, that is,
searching, comes into the picture for analytics over the log data.

Splunk supports two types of deployment: standalone deployment and distributed
deployment. Depending on the deployment type, corresponding searches are performed.
The Splunk engine has other additional components of knowledge manager, reporting
and scheduling, and alerting. The entire Splunk engine is exposed to users via Splunk
CLI, Splunk Web Interface, and Splunk SDK, which are supported by most languages.

Splunk installs a distributed server process on the host machine called splunkd. This
process is responsible for indexing and processing a large amount of data through
various sources. splunkd is capable of handling large volumes of streaming data and

indexing it for real-time analytics over one or more pipelines.

Every single pipeline comprises of a series of processors, which results in faster and
efficient processing of data. Listed below are the blocks of the Splunk architecture:

Pipeline: This is a single-threaded configurable process residing in splunkd.
Processors: They are individual reusable functions that act on incoming data
passing through a pipeline. Pipelines exchange data among themselves through a
queue.

splunkd allows users to search, navigate, and manage data on Splunk Enterprise through
the web interface called Splunk Web. It is a web application server based on Python
providing a web interface to use Splunk. In the earlier version of Splunk, splunkd and
Splunk Web were two separate processes, but from Splunk 6, both the processes were
integrated in splunkd itself. It allows users to search for, analyze, and visualize data
using the web interface. Splunk Web interface can be accessed using the Splunk web
port, and Splunk also exposes the REST API for communication via the splunkd
management port.

One of the important components of Splunk's architecture is the data store. It is
responsible for compressing and storing original (raw) data. The data is stored in Time

https://technet24.ir

Series Index (TSIDX) files. A data store also includes storage and archiving based on
the configurable retention policy.

Splunk Enterprise deployments can range from single-server deployments (which index
a few gigabytes of data per day and are accessed by a few users who are searching,
analyzing, and visualizing the data) to large, distributed enterprise deployments across
multiple data centers, indexing hundreds of terabytes of data and searches performed by
hundreds of users. Splunk supports communication with another instance of a Splunk
Server via TCP to forward data from one Splunk server to another to archive data and
various other clustering and data distribution requirements via Splunk-to-Splunk TCP
communication.

Bundles are the components of the Splunk architecture that store the configuration of
data input, user accounts, Splunk applications, add-ons, and various other environment
configurations.

Modules are those components of the Splunk architecture that are used to add new
features by modifying or creating processors and pipelines. Modules are nothing but
custom scripts and data input methods or extensions that can add a new feature or
modify the existing features of Splunk.

The need for parallelization
Splunk's traditional indexer had a single splunkd daemon running on a server that
fetched data from different sources, which was then categorized into different indexes.
Here, a traditional indexer refers to the indexers that were available in the older version
of Splunk. The Splunk search queries are then processed by job queues depending on
their priority. The indexer is capable of processing more searches. So, to utilize the
underutilized indexer, there is need for parallelization. Parallelization leads to full
utilization of the processing power of the indexer. Expanding Splunk to meet almost any
capacity requirement in order to take advantage of the scaling capability of Splunk
deployment requires parallel processing of indexers and search heads.

The following figure shows a traditional indexer host, where there is no parallelization
and hence the indexer is left underutilized:

https://technet24.ir

Index parallelization
Index parallelization allows an indexer to have multiple pipeline sets. A pipeline set is
responsible for processing data from ingestion of raw data, through event processing, to
writing the events to a disk.

A traditional indexer runs just a single pipeline set. However, if the underlying machine
is underutilized, both in terms of available cores and I/O, you can configure the indexer
to run additional pipeline sets. By running multiple pipeline sets, you potentially double
the indexer's indexing throughput capacity. Increasing throughput also demands disks
with high Input/output Operations Per Second (IOPS). So, hardware requirements
should be taken into consideration while implementing parallelization.

When you implement two pipeline sets, you have two complete processing pipelines,
from the point of data ingestion to the point of writing events to a disk. As shown in the
following figure, there is a parallel process for each of the input method and each input
is serviced by individual pipelines in the Splunk Server daemon. By enabling an
indexer to create multiple pipelines, several data streams can be processed with
additional CPU cores that were left underutilized earlier.

This implies that by implementing index parallelization, potentially more data can be
indexed on a single indexer with the same set of hardware. It can accelerate parsing of
data and writing to a disk up to the limit of indexers' I/O capacity. Index parallelization
can double the indexing speed in case of sudden increase of data from the forwarders.

Each pipeline set has its own set of queues, pipelines, and processors. Exceptions are
input pipelines that are usually singleton. No states are shared across pipelines sets, and
thus, there is no dependency or a situation of deadlock. Data from a single unique source
is handled by only one pipeline set at a time. Each component performs its function
independently.

The following are the various components of Splunk that are enhanced in Splunk 6.3 and
they function as follows to support index parallelization:

Monitor input: Each pipeline set has its own set of TailReaders, BatchReaders,
and archive processors. This enables parallel reading of files and archives on
forwarders. Each file/archive is assigned to one pipeline set.
Forwarder: There will be one TCP output processor per pipeline set per
forwarder input. This enables multiple TCP connections from forwarders to
different indexers at the same time. Various rules such as load balancing rules can
be applied to each pipeline set independently.
Indexer: Every incoming TCP forwarder connection is bound to one pipeline set
on the indexer.
Indexing: Every pipeline set will independently write new data to indexes. Data is
written in parallel for better utilization of underutilized resources. The buckets
produced by different pipeline sets could have an overlapping time range.

Next, we'll discuss how to configure multiple ingestion pipeline sets. To do that modify
Server.conf located at $SPLUNK_HOME\etc\system\local as follows for a number
of ingestion pipeline sets:

[general]
parallelIngestionPipelines = 2 # For 2 Ingestion Pipeline sets

Note

According to Splunk documents, the default value is 1.

https://technet24.ir

Search parallelization
Once the data is boarded on Splunk, a search is used to create analytics over the
indexed data. Here, the faster the search results produced, the more the real-time results
will be. Search parallelization is the easiest and most efficient way to speed up
transforming searches by adding additional search pipelines on each indexer. This helps
in processing of multiple buckets at the same time. Search parallelization can also
enable acceleration for a transforming search when saved as a report or report-based
dashboard panel.

Pipeline parallelization
Underutilized indexers and resources provide us with opportunities to execute multiple
search pipelines. Since there is no sharing of states, there exists no dependency across
search pipelines among each other. Though underutilized indexers are candidates for
search pipeline parallelization, it is always advised not to enable pipeline
parallelization if indexers are fully utilized and don't have the bandwidth to handle more
processes.

The following figure depicts that search parallelization searches are designed to search
and return event data by bucket instead of time. More the search pipelines added, more
the search buckets are processed simultaneously, thus increasing the speed of returning
the search results. The data between different pipelines is not shared at all. Each
pipeline services a single target search bucket and then processes it to send out the
search results.

The default value of batch_search_max_pipeline is 1, and the maximum
recommended value is 2.

Now, we'll discuss how to configure batch search in a parallel mode. To configure a

https://technet24.ir

batch search in a parallel mode, modify the limits.conf file located at
$SPLUNK_HOME\etc\system\local as:

[search]
batch_search_max_pipeline = 2

Note

Note that the value should be increased in multiples of 2.

This increases the number of threads and thus improves the search performance in terms
of retrieving search results.

The search scheduler
There have been tremendous improvements in the search scheduler in Splunk 6.3 to
improve the search performance and for proper and efficient resource utilization. The
following two important improvements were introduced in Splunk 6.3 that reduces lags
and fewer skipped searches:

Priority scoring: Earlier versions of Splunk had simple, single-term priority
scoring that resulted in a lag in a saved search, skipping, and could also result in
starvation under CPU constraint. Thus, Splunk introduced priority scoring in
Splunk 6.3 with better, multi-term priority scoring that mitigates the problem and
improves performance by 25 percent.
Schedule window: In earlier versions of Splunk, a scheduler was not able to
distinguish between searches that should run at a specific time (such as cron) from
those that don't have to. This resulted into skipping of those searches from being
run. So, Splunk 6.3 was featured with a schedule window for searches that don't
have to run at a specific time.

We'll learn how to configure the search scheduler next. Modify the limits.conf file
located at $SPLUNK_HOME\etc\system\local as follows:

[scheduler]
#The ratio of jobs that scheduler can use versus the manual/dashboard
jobs. Below settings applies 50% quota for scheduler.
Max_searches_perc = 50

allow value to be 80 anytime on weekends.
Max_searches_perc.1 = 80
Maxx_searches_perc.1.when = ****0,6

Allow value to be 60 between midnight and 5 am.
Max_searches_perc.2 = 60
Max_searches_perc.2.when = * 0-5 ***

https://technet24.ir

Summary parallelization
The sequential nature of building summary data for data models and saved reports is
very slow, and hence, the summary building process has been parallelized in Splunk
6.3.

As shown in the preceding figure, in the earlier versions of Splunk, the scheduler
summary building was sequential. Because of this, one after the other, there was a
performance bottleneck. Now, the summary building process has been parallelized,
resulting into faster and efficient summary building.

Now we're going to configure summary parallelization. Modify the
savedsearches.conf file located at $SPLUNK_HOME\etc\system\local as follows:

[default]
Auto_summarize.max_concurrent = 3

Then, modify the datamodels.conf file located at $SPLUNK_HOME\etc\system\local
as follows:

[default]
Acceleration.max_concurrent = 2

Data integrity control
Splunk has now come up with the data integrity managing feature in its latest version
6.3. It provides a way to verify the integrity of data that is indexed over Splunk. On
enabling this feature, Splunk computes hashes on every slice of uploaded data and
stores those hashes so that they can be used to verify the integrity of the data. It is a very
useful feature where the logs are from sources such as bank transactions and other
critical data where an integrity check is necessary.

On enabling this feature, Splunk computes hashes on every slice of newly indexed raw
data and writes it to an l1Hashes file. When the bucket rolls from one bucket to another,
say from hot to warm, Splunk computes the hash of contents of the l1Hashes file and
stores it into the l2Hash file.

Hash validation can be done on Splunk's data by running the following CLI command:

./splunk check-integrity -bucketPath [bucket path] [verbose]

./splunk check-integrity -index [index name] [verbose]

In case hashes are lost, they can be regenerated using the following commands:

./splunk generate-hash-files -bucketPath [bucket path] [verbose]

./splunk generate-hash-files -index [index name] [verbose]

Let's now configure data integrity control. To configure data integrity control, modify the
indexes.conf file located at $SPLUNK_HOME\etc\system\local as follows:

enableDataIntegrityControl=true

Note

In a clustered environment, all the clusters and peers should run Splunk 6.3 to enable
accurate data integrity control.

https://technet24.ir

Intelligent job scheduling
This section will explain in detail how Splunk Enterprise handles scheduled reports in
order to run them concurrently. Splunk uses a report scheduler to manage scheduled
alerts and reports. Depending on the configuration of the system, the scheduler sets a
limit on the number of reports that can be run concurrently on the Splunk search head.
Whenever the number of scheduled reports crosses the threshold limit set by the
scheduler, it has to prioritize the excess reports and run them in order of their priority.

The limit is set by a scheduler so as to make sure that the system performance is not
degraded and fewer or no reports get skipped disproportionally more than others.
Generally, reports are skipped when slow-to-complete reports crowd out quick-to-
complete reports, thus causing them to miss their scheduled runtime.

The following table shows the priority order in which Splunk runs different types of
searches:

Priority Search/report type Description

First
priority Ad hoc historical searches

Manually run historically searches always run first
Ad hoc search jobs are given more priority than scheduled ad
hoc search reports

Second
priority

Manually scheduled reports and
alerts with real-time scheduling

Reports scheduled manually use a real-time scheduling mode
by default
Manually run searches are prioritized against reports to reduce
skipping of manually scheduled reports and alerts

Third
priority

Manually scheduled reports with
continuous scheduling

The continuous scheduling mode is used by scheduled reports,
populating summary indexes and other reports

Last
priority Automatically scheduled reports

Scheduled reports related to report acceleration and data
model acceleration fall into this category
These reports are always given last priority

Tip

Caution:

It is suggested that you do not change the settings until and unless you are aware of what
you are doing.

The limit is automatically determined by Splunk on the basis of system-wide concurrent
historical searches, depending upon the values of max_searches_per_cpu,
base_max_searches in the limits.conf file located at
$SPLUNK_HOME\etc\system\local.

The default value of base_max_searches is 6.

It is calculated as follows:

Maximum number of concurrent historical searches = (max_searches_per_cpu * number
of CPU) + base_max_searches

So, for a system with two CPUs, the value should be 8. To get a better clarity see the
following worked out example:

Maximum number of concurrent historical searches = (1 * 2) + 6 = 8

The max_searches_perc parameter can be set up so that it allows more or less
concurrent scheduled reports depending on the requirement. For a system with two
CPUs, the report scheduler can safely run only four scheduled reports at a time (50
percent of the maximum number of concurrent historical searches), that is, 50 percent of
8 = 4.

For efficient and full use of the Splunk scheduler, the scheduler limit can vary by time.
The scheduler limit can be set to whether to have fewer or more concurrent scheduled
reports.

Now, let's configure intelligent job scheduling. Modify the limits.conf file located at
the $SPLUNK_HOME\etc\system\local directory. The max_searches_perc.n is to be
set up with appropriate percentages for specific cron periods:

The default limit, used when the periods defined below are not in
effect.
max_searches_perc = 50

Change the max search percentage at 5am every day when
specifically there is less load on server.
max_searches_perc.0 = 70
max_searches_perc.0.when = * 0-5 * * *

Change the max search percentage even more on Saturdays and
Sundays

https://technet24.ir

max_searches_perc.1 = 90
max_searches_perc.1.when = * 0-5 * * 0,6

There are two scheduling modes of manually scheduled reports, which are as follows:

Real-time scheduling: In this type of scheduling, Splunk ensures that the recent run
of the report returns current data. This means that a scheduled report with real-time
scheduling runs at its scheduled runtime or not at all.

If there are longer running reports that have not finished or there are many reports
with real-time scheduling set to run at the same time, then in that case, some of the
real-time scheduling reports may be skipped.

A report scheduler prioritizes reports with real-time scheduling over reports with
continuous scheduling.
Continuous scheduling: Continuous scheduling is used in a situation where
running the report is eventually required. In case a report with continuous
scheduling is not able to run due to one or other reason, then it will run in future
after other reports are finished.

All the scheduled reports are, by default, set to real-time scheduling unless they are
enabled for summary indexing. In case of summary indexing, the scheduling mode
is set to continuous scheduling because summary indexes are not that reliable if
scheduled reports that populate them are skipped.

If there is any server failure or Splunk Enterprise is shut down for some reason,
then in that case, the continuous scheduling mode's configured reports will miss
scheduled runtime. The report scheduler can replace all the missed runs of
continuously scheduled reports of the last 24 hours when Splunk Enterprise goes
online, provided that it was at least once on its schedule before the Splunk
Enterprise instance went down.

Let's configure the scheduling mode next. To configure scheduled reports so that they are
in a real-time scheduling mode or in a continuous scheduling mode, the
realtime_schedule parameter in the savedsearches.conf file is to be manually
changed from realtime_schedule to 0 or 1. Both the scheduling modes are explained
as follows:

realtime_schedule = 0: This mode enables scheduled reports that are to be in a
continuous scheduling mode. This ensures that the scheduled reports never skip any
run. If it cannot run at that moment, it will run later when other reports are over.

realtime_schedule = 1: This mode enables a scheduled report to run at its
scheduled start time. If it cannot start due to other reports, it skips that scheduled
run. This is the default scheduling mode for new reports.

https://technet24.ir

The app key-value store
The app key-value store is a feature provided by Splunk Enterprise to manage and
maintain the state of the application. Using an app key-value store, users can save and
retrieve data from Splunk apps.

System requirements
The app key-value store feature is only available in the 64-bit distribution of Splunk
Enterprise. It is not available in the 32-bit version of Splunk. It uses the 8191 port by
default, but it can be configured from Server.conf located at
$SPLUNK_HOME\etc\system\local by modifying the [kvstore] code block.

https://technet24.ir

Uses of the key-value store
The following are some of the uses of a key-value store:

It can be used to manage the app state of the user interface by storing the
session/application state information
It creates a checkpoint of the uploaded data in case of modular inputs
It enlists the environment variable used, accessed, or modified by users
It is the metadata storage of the user
It caches results from search queries

Components of the key-value store
The key-value store saves data in the collections of the key-value pair. The key-value
store files are located on the search heads. The following are the various components of
the key-value store:

Collections: Collections are containers for data storage similar to a database
table.
Records: Records store the entry of data in the collection.
Fields: Fields contain the value of data in the JSON format file. Fields correspond
to the key name similar to columns in the database table.
_key: This is the reserved field that contains a unique ID for each record. It is an
autogenerated field that is not explicitly specified.
_user: This is also a reserved field that is used to map the user ID of each record.
Accelerations: This is used to improve search performance that contains the
accelerated fields.

Let's take a look at how to create a key-value store collections via a config file. To use a
key-value store, we need to create a key-value store collection using the following
steps:

1. Create a collections.conf file in the application's default or local directory,
as follows $SPLUNK_HOME\etc\apps\APPNAME\default\collections.conf or
$SPLUNK_HOME\etc\apps\APPNAME\local\collections.conf.

2. Modify collections.conf by specifying the name of the collection and
optionally, the schema of the data. Listed in the following sublist is the description
of the parameters which need to be configured in collections.conf file:

[collection_name]: This is the collection name
enforceTypes: This is set to True or False to enforce the data types of
values when inserting them into the collection.
field.name: This is an optional field. The available data types are string,
time, Boolean, and number. If the data type is not set explicitly, then it is set to
JSON.

Any change in collections.conf needs a restart of the Splunk instance to apply the
changes on the search heads. Refer to the following example for better understanding:

[AndroidCollections] #collection_name

https://technet24.ir

The screenshot that follows shows a code snippet of the sample JSON data:

The following screenshot is the code snippet of the enforce data type for the preceding
JSON data:

The following screenshot shows the sample code snippet for hierarchical JSON data:

The following screenshot shows how a data type can be enforced on hierarchical data
using a dot (.) notation:

https://technet24.ir

Managing key-value store collections via REST
The Splunk REST API can be used to create, read, delete, update, and manage key-
value store data and collections. The Splunk REST API accesses Splunk via the
management port (by default, 8089). The following are the REST endpoints for the key-
value store:

storage/collections/config:
GET: This fetches a list of collections in a specific app
POST: This creates a new collection in a specific app

storage/collections/config/{collection}:
GET: This fetches information about a specific collection
DELETE: This deletes a collection
POST: This updates a collection

storage/collections/data/{collection}:
GET: This fetches records from a specific collection
POST: This inserts a new record into a specific collection
DELETE: This deletes all records from a specific collection

storage/collections/data/{collection}/{id}:
GET: This fetches records in a collection by a key ID
POST: This updates records in a collection by a key ID
DELETE: This deletes a record in a collection by a key ID

storage/collections/data/{collection}/batch_save:
POST: This runs one or more save (insert and replace) operations in a specific
collection

Examples

There are various notations used in the following examples, such as username,
password, IPAddress, and others. Users need to replace them with their own
corresponding values to execute the examples. The following are the examples:

Fetching a list of collections for an android app:

curl -k -u username:password \
https://IPAddress:8089/servicesNS/nobody/android/storage/collecti
ons/config

Creating a new collection called AndroidCollections in the android app:

curl -k -u username:password \ -d name= AndroidCollections \
https://IPAddress:8089/servicesNS/nobody/android/storage/

collections/config

Defining a collection schema:

curl -k -u username:password \
https://IPAddress:8089/servicesNS/nobody/android/storage/
collections/config/ AndroidCollections \
-d field.Devicename = string \
-d field.DeviceID = number \
-d field.DeviceInfo.DeviceBuild = string \
-d field.DeviceInfo.DeviceAndroidVersion = string

Adding data of the hierarchical JSON format to a collection:

curl -k -u username:password \
https://IPAddress:8089/servicesNS/nobody/android/storage/
collections/config/ AndroidCollections \
-H 'Content-Type: application/json' \
-d '{ "Devicename" : "Test Device", "DeviceID" : 9661,
"DeviceInfo" : { "DeviceBuild" : "Test build 9661C",
"DeviceAndroidVersion" : "Marshmallow 6.0", "DeviceIMEI" :
12345678909876, "DeviceMAC" : "AA:BB:CC:DD:EE:FF" }} '

Getting all data from the collection:

curl -k -u username:password \
https://IPAddress:8089/servicesNS/nobody/android/storage/
collections/config/ AndroidCollections

Getting a specific range of records from collections, for example, records
from 10 to 15:

curl -k -u username:password \
https://IPAddress:8089/servicesNS/nobody/android/storage/
collections/config/ AndroidCollections?
sort=Devicename&skip=10&limit=5

Getting a record of a specific key ID:

curl -k -u username:password \
https://IPAddress:8089/servicesNS/nobody/android/storage/
collections/config/ AndroidCollections/KEYID

Where the key ID is the unique _key of collections for which the record is to be
fetched.
Deleting the record of the specific key ID:

curl -k -u username:password –X DELETE \
https://IPAddress:8089/servicesNS/nobody/android/storage/

https://technet24.ir

collections/config/ AndroidCollections/KEYID

Deleting all records of the AndroidCollections collection:

curl -k -u username:password –X DELETE \
https://IPAddress:8089/servicesNS/nobody/android/storage/
collections/config/ AndroidCollections

Replication of the key-value store
In case of a distributed environment, the key-value store can be replicated to a large
number of search heads by enabling replication. By default, the key-value store is not
replicated to indexers in distributed deployment of Splunk.

To enable replication, the collections.conf file is to be modified and we need to add
replicate = true to the file.

https://technet24.ir

Splunk Enterprise Security
Splunk Enterprise is connected to various data input sources, indexers, and search heads
over a network, and hence, it is very important to harden the security of Splunk
Enterprise. Taking necessary steps for Splunk Enterprise Security (SES) can mitigate
risk and reduce attacks from hackers.

The following are ways to secure the Splunk Enterprise deployment:

Setting up user authentication and creating and managing user access by assigning
roles. Splunk has a built-in system for user authentication and to assign roles.
Along with the built-in system, it provides integration with the Lightweight
Directory Access Protocol (LDAP). Splunk can be integrated with an active
directory and can be used as a centralized authentication system for authentication
and to assign roles. Splunk Enterprise 6.3 has been introduced with additional
authentication using the Security Assertion Markup Language (SAML). Splunk
Enterprise can be enabled for single sign-ons using SAML, which was explained
in detail in the previous section of the chapter.
Use Secure Socket Layer (SSL) for secure communication of Splunk deployment.
Splunk provides, by default, certificates and keys that can be used to enable SSL
communication to provide encryption and data compression while communicating
with different components of Splunk deployment. It secures the communication
between browsers, Splunk Web, and data sent from forwarders to indexers. Splunk
provisions to use your own certificates and keys to secure the communication of
Splunk deployment components.
Keep Splunk installation updated with the latest security patches and updates.
Splunk continuously keeps on fixing bugs and comes up with updates on Splunk
Enterprise. Splunk releases the bug fix report that has a complete description about
the fixes that were updated in the next release. If there are any security-related
fixes, Splunk Enterprise deployment should apply that security patch/bug fix so as
to make sure that Splunk Enterprise is secure from outside threats. Continuous
auditing of Splunk configuration files and Splunk audit events will result in secure
Splunk deployment.

Enabling HTTPS for Splunk Web
We will see how to enable HTTPS from the Splunk Web console for all communications
happening via Splunk's web channel. On enabling HTTPS, Splunk will not be able to
listen over the HTTP connection, and this is the time when Splunk can be configured to
either listen to HTTP or HTTPS communications only!

The following are the steps to enable HTTPS via the Splunk Web console:

1. Access the Splunk Web console via a web browser by typing the IP address
followed by the port number.

For example, http://IPAddress:Port or http://localhost:8000. Here, 8000
is a default web access port of Splunk Enterprise.

2. Go to System Menu | System Settings.
3. Click on the radio button to enable HTTPS. Splunk is configured to use default

certificates when HTTPS is enabled. The default configuration is available at
$SPLUNK_HOME\etc\auth\web.conf:

[settings]
enableSplunkWebSSL = true
privKeyPath = etc\auth\splunkweb\privkey.pem #Path of Default
Private Key
caCertPath = etc\auth\splunkweb\cert.pem #Path of Default
Certificate Path

We'll now configure Splunk Web with your own certificate and private key. We are
talking about securing Splunk, so the default private key and default certificate provided
by Splunk Enterprises should be changed for better authentication and security.

Certificates can be self-signed or can be purchased from third-part vendors. Once you
have the certificate and private key, the following procedure is to be followed for the
changes to take effect.

In our explanation, let's say the certificate filename is TestCertificate.pem and the
private key is TestPrivateKey.key. The following are a series of steps to configure
Splunk Web with a certificate and private key:

1. Copy TestCertificate.pem and TestPrivateKey.key to
$SPLUNK_HOME\etc\auth\splunkweb\

2. Do not overwrite or delete the existing certificate located at

https://technet24.ir

$SPLUNK_HOME\etc\auth\splunkweb\, as the certificates are generated on every
restart, and any changes made on this certificate and key will be reset

3. Configure web.conf located at $SPLUNK_HOME\etc\system\local as follows:

[settings]
enableSplunkWebSSL = true
privKeyPath = etc\auth\splunkweb\TestPrivateKey.key
caCertPath = etc\auth\splunkweb\TestCertificate.pem

Splunk needs to be restarted for the newer settings to take effect, and after the restart of
Splunk Server, Splunk Web will be available only via HTTPS URL, that is,
https://localhost:8000.

Enabling HTTPS for the Splunk forwarder
Configure inputs.conf located at $SPLUNK_HOME\etc\system\local\ of the
indexer, as mentioned in the following code block. In this example, port number 9000 is
to be configured on the indexer:

[SSL]
rootCA = $SPLUNK_HOME\etc\auth\cacert.pem #Path of default Key
serverCert = $SPLUNK_HOME\etc\auth\server.pem #Path of default
Certificate
password = password
[splunktcp-ssl:9000]
disabled=0

The Splunk forwarder needs to be configured to forward using the secure certificate and
key. To configure the outputs.conf forwarder located at
$SPLUNK_HOME\etc\system\local, place the following code block as in the
following mentioned code block. In this example, 192.168.1.10 is the IP address of
the indexer that was configured in the previous instance:

[tcpout]
defaultGroup = splunkssl

[tcpout:splunkssl]
server = 192.168.1.10:9000
sslVerifyServerCert = false
sslRootCAPath = $SPLUNK_HOME\etc\auth\cacert.pem
sslCertPath = $SPLUNK_HOME\etc\auth\server.pem
sslPassword = password

Similar to the previous section, even in the indexer and forwarder, the certificates and
private keys can be copied to their respective folders. The path of the certificate and
private key can be configured in their respective config files. Splunk must be restarted
for the settings to take effect.

https://technet24.ir

Securing a password with Splunk
Splunk has an in built feature of encrypting configuration files via SSH. Splunk for its
first start up, creates a file named splunk.secret, which contains a secret key that is
used to encrypt authentication information in configuration files.

The following is the list of information that is encrypted via the splunk.secret key:

web.conf: This refers to SSL passwords of every instance
authentication.conf: This refers to the LDAP password; if deployment is
LDAP integrated
inputs.conf: This refers to SSL passwords
outputs.conf: This refers to SSL passwords

When Splunk starts and if it detects a clear-text password in any of the preceding
configuration files, it creates a configuration in the equivalent local folder with the
encrypted password.

In a clustered and distributed environment, when Splunk is deployed on multiple
servers, a secure password mechanism of encryption can be very useful to ensure
consistency across the deployment.

To apply the same settings of a secret key to all the instances, users just need to
configure all the changes in the configuration files and restart Splunk to ensure that the
splunk.secret file is updated with the latest information.

Once you have the updated file, just copy the splunk.secret file to all the other
instances and restart the instance, and you will have the same settings you applied to all
the instances.

The access control list
Splunk can be configured for high security with an access control list. Using an access
control list, various restrictions on the basis of IP address to various components of
Splunk deployment can be applied.

The server.conf and inputs.conf can be edited or modified to specify which IP
address should be allowed and which should be restricted for various communications
within the Splunk deployment.

In server.conf and inputs.conf, the [accept from] block can be added to allow
communication only from a specific IP address. For example, to instruct a node to
accept communication from a specific IP address, edit the [httpserver] block in
server.conf; likewise, to restrict TCP communication using SSL to a specific IP
address, edit the [tcp-ssl] block in inputs.conf.

Similarly, various communications of Splunk Web, forwarder, and indexers can be
restricted or allowed only from a specific IP address, and thus, security can be
enhanced using the access control list features of Splunk Enterprise 6.3.

https://technet24.ir

Authentication using SAML
SAML is an XML standard that allows secure web domains to exchange user
authentication and authorization data. It allows one online service provider to contact an
identity service provider in order to authenticate users who are trying to access the
secure content.

Splunk Enterprise supports the use of SAML authentication and authorization for Single
Sign-On (SSO). SSO can be enabled in Splunk with the configuration settings provided
by the Identity Provider (IdP).

SSO can be configured by Splunk Web or by modifying authentication.conf located
at $SPLUNK_HOME\etc\system\default directly. At present, Splunk Enterprise
supports the Ping Identity product from PingFederate® for SSO.

To configure SSO with SAML, the following is the requirement list:

An identity provider (at present, PingIdentity) is a tested identity provider, and
others can also be integrated on similar lines.
Configuration that uses an on-premise search head.
A user with an admin role and change_authentication Splunk capability. This
permission allows us to enable SAML and edit authentication settings on the
Splunk search head.

Note

SSO must be configured on all the search heads in the Splunk deployment for it to
function properly.

We'll now learn how to set up SSO using SAML. Let's get acquainted with the steps of
setting up SSO:

1. The following information will be required from IdP to configure Splunk in order
to authenticate the user:

role

realName

mail

2. The groups returned by IdP are mapped to Splunk roles. A single Splunk role can
be assigned to multiple groups.

Let's configure SSO using SAML via Splunk Web. The following are the steps to
configure SSO on Splunk Web:

1. Access Splunk Web by going to localhost:8000 from the deployment server
machine or via IPAaddress:PortNo from a machine in the same network.

2. Go to Settings | Access Controls | Authentication Method.
3. Choose SAML as the External Authentication Method and click on Configure

Splunk to use SAML.
4. In the SAML Groups page, click on SAML Configuration.
5. Browse and select the XML file provided by the IdP provider and fill in all the

details and click on Save.

If all the settings are correct, the SAML Groups page will be populated with all the
users and groups where specific groups and Splunk roles can be assigned.

https://technet24.ir

Summary
In this chapter, we went through the architectural enhancement done by Splunk in order
to speed up data ingestion and indexing to Splunk by utilizing the underutilized
resources. We went through index and search parallelization and how it enhances and
scales the performance of Splunk. We also went through the details of the data integrity
control mechanism and intelligent job scheduling that was introduced in Splunk
Enterprise 6.3. Later, we studied how the app key-value store can be used to maintain a
state and other information. The last part of this chapter was concentrated on Splunk
Enterprise security techniques, implementations, and configuration. We also studied in
detail SSO using SAML that was introduced in Splunk 6.3. In the next chapter, we will
cover how to create and manage Splunk applications and add-ons.

Chapter 2. Developing an Application on
Splunk
In this chapter, we will quickly go through the process of creating an application and
add-on on Splunk Enterprise. You will learn how to install and manage applications and
add-ons on Splunk. You will also learn how to use different applications available on
the Splunk app store to minimize your work using the already available applications for
similar requirements.

The following topics will be covered in this chapter:

Splunk apps and technology add-ons
Developing a Splunk app
Developing a technology add-on
Managing Splunk apps
Splunk apps from the app store (covers examples and usage of a few apps from the
app store)

https://technet24.ir

Splunk apps and technology add-ons
It is very easy and simple to create a basic Splunk app or technology add-on using the
Splunk Web console. We will also study how Splunk apps and add-ons can be manually
created and configured in the further topics.

What is a Splunk app?
A Splunk app is basically a collection of all the dashboards, alerts, and visualizations
created for a specific use case. It is a collection of an entire use case packaged in such a
way that it can be installed on any Splunk Enterprise deployment to gain specific insight
from the uploader, provided that its minimum requirements are fulfilled.

Splunk apps can be configured on the basis of user roles and permissions, thus
providing a level of control when deploying and sharing the application across different
stakeholders of the app. A Splunk app is created taking a use case into consideration
and to avoid rework in case of the same use case or data sources. Splunk apps are
applications that are ready to be used once the data is on board the Splunk Enterprise
server.

Splunk apps make it easier for users of Splunk Enterprise to use the same deployment
for different use cases; for example, the same Splunk deployment is used for network
health monitoring, security and threat detection, and many more… Each Splunk
application can be used for each use case, even though it is available on the same
Splunk Enterprise deployment server and has the ability to assign roles where the apps
will be visible and can be used only by authenticated users of each app.

Later in this chapter, you will learn how to create Splunk apps and manage and install
Splunk applications on Splunk Enterprise.

https://technet24.ir

What is a technology add-on?
A Splunk add-on is basically a single-component, reusable application with no user
interface, and it can be used in many uses cases. A Splunk add-on can be a script that is
used to fetch data from a web server and upload it to Splunk. Now, this add-on can be
used along with any other application and use case where one of the requirements is to
fetch and upload data from a web server. In such scenarios, Splunk add-ons can reduce
the rework required to do the same task.

Splunk add-ons can be bundled with one or more Splunk apps that have similar
requirements. The following are a few examples of Splunk add-ons:

Custom data parsing and field extraction before data is uploaded on Splunk
Custom scripts to fetch data from one or more sources and then upload it on Splunk
Creating custom macros and sourcetypes
Reusable JavaScript and CSS
Custom regular expression detection and data cleaning before uploading data on
Splunk

Developing a Splunk app
Developing or creating a simple Splunk application is very easy in Splunk Enterprise,
but developing a Splunk app that solves a business problem specific to a use case
requires the following basic process:

1. On-boarding data on Splunk: Using various data input methods to upload data on
Splunk.

2. Analytics: Using the Splunk search query language to create meaningful insights
into the data uploaded on Splunk.

3. Visualization: Creating visualizations for better understanding of the uploaded
data on Splunk.

A Splunk app can include various components of Splunk Enterprise, such as data inputs,
search queries, custom dashboards, macros, custom CSS, JavaScript, and many more…

https://technet24.ir

Creating the Splunk application and technology
add-on
The Splunk application framework works on a directory structure. All the installed and,
by default, available applications are available at $SPLUNK_HOME\etc\apps.

The following procedure needs to be followed to create a sample Splunk app via the
Splunk Web console which is accessible via http://localhost:8000 (this address
needs to be replaced with the IP address and configured port number of the Splunk
instance in case it is not accessed from the Splunk Server machine.)

The procedure to create a Splunk application and Splunk technology add-ons is almost
same with just a small difference in one step. The change will be highlighted in the
following steps:

1. On the home screen which Splunk navigates to, after logging in, navigate to Apps |
Manage Apps.

2. The screen where we navigated to after clicking on Manage Apps, click on the
Create App button.

3. Splunk Web navigates to a new page called Create App, where textboxes are
given to fill the following information:

Name: In this field, we need to fill the name of the Splunk application or
technology add-on. This will be the same name that will be visible in the app
list of Splunk.
Folder Name: Here, we need to fill the name of the folder where all the

configuration files, dashboards, saved searches, and alerts will be stored with
reference to the app. The folder name mentioned here will be created at
$SPLUNK_HOME\etc\app. The folder name cannot have a dot (.) character in
its name. Even though users are free to keep any name for the add-on, Splunk
recommends you to use TA- as a prefix to the name of the add-on folder so as
to uniquely differentiate Splunk applications and add-ons.
Visible: If the application contains a UI (visualizations), then this field should
be marked as YES. Generally, add-ons do not have a UI, so when creating an
add-on, the NO option is marked.
Description: In this field, we need to provide the description of the Splunk
application or technology add-on. This field is required in case you plan to
upload the application on the Splunk app store; otherwise, this is an optional
field.
Template: Splunk provides two templates by default: Sample_app and
Barebones. The Barebones template provides a sample app directory
structure, whereas Sample_app includes sample views and saved searches. In
the case of a technology add-on, this is not applicable as there are no visible
UIs.
Upload Asset: This option provides users the ability to upload any custom
scripts, HTML, images, CSS, or JavaScript that may be required for the
application.

4. Save the settings by clicking on Save.

For the application to be visible in the app list of Splunk, it is required that the Splunk
instance is restarted.

Now, users can navigate to the Splunk application that we created and start creating
custom dashboards, visualizations, and alerts that we will be studying in the upcoming
chapters in this book.

https://technet24.ir

Packaging the application
Our Splunk app needs to be packed properly so that it can be redistributed to other users
working on Splunk deployment. There is a specific set of instructions that needs to be
followed and the app needs to be made compliant to all the instructions so that we are
able to upload the Splunk app on the Splunk app store. However, making the Splunk
application compliant with the Splunk app store is out of the scope of this book.

The following is the easiest and simplest method to package the Splunk app in order to
install it on other Splunk deployments:

1. Make sure that all the settings are properly configured so that the application has
all the configuration files updated.

2. Traverse to the $SPLUNK_HOME\etc\app directory on the Splunk Server and copy
the Application folder to another path, say, your desktop. The folder name is the
same that the user specified in the preceding section while creating the application.

3. For our example, the Splunk app located at $SPLUNK_HOME\etc\app is
TestApplication.

4. Using any compression/decompression tool, such as 7Zip, compress the app
directory into a .zip or .tar.gz file. In our case, the application after
compression will become TestApplication.zip or TestApplication.tar.gz.

5. Now, the Splunk app (TestApplication.zip or TestApplication.tar.gz) is
ready for redistribution and can be installed on other Splunk deployments that are
running on the compatible version of Splunk.

Installing a Splunk app via Splunk Web
Installing the Splunk app via a web interface is very simple. The following steps are
required for the installation of the Splunk app:

1. Log on to Splunk Web.
2. Navigate to Apps | Manage Apps.
3. Then, click on Install app from file.
4. Click on Browse and navigate to the folder where your compressed application is

available, and then choose the Splunk app.
5. Tick on Upgrade App if you are installing an upgrade version of the already

installed application; otherwise leave it unchecked.
6. Click on Upload to install the application.
7. After the successful installation, restart the Splunk Server to make it visible in the

app list.

https://technet24.ir

Installing the Splunk app manually
In deployments where the access to Splunk Web is not enabled or the user wants to
manually install the application, the following procedure is to be followed:

1. Uncompress the compressed Splunk application package (TestApplication.zip
or TestApplication.tar.gz) using any decompressing tool such as 7Zip.

2. Make sure that you have decompressed it fully so the root folder's name is that of
the application's followed by the subfolders, such as default, local, and others.

3. Copy the uncompressed application folder at $SPLUNK_HOME\etc\app, making
sure that the folder copied is the root folder of the application.

For example, in our case, the application folder path will look like
$SPLUNK_HOME\etc\app\TestApplication.

4. Now, restart the Splunk Server.

Yes, copying the application folder to the respective app directory and then restarting
the Splunk Server installs the application on Splunk. On every restart, the Splunk Server
refreshes its app list and the newly added application gets listed on the Splunk app list.

The Splunk application can be installed or updated from the command line as well.
Open Command Prompt in Windows or a terminal in a Linux system and traverse to
$SPLUNK_HOME\bin.

Then, run the following command to install the application for Windows users:

splunk install app <app_package_filename> -update 1 -auth <username>:
<password>

For Linux users, run the following command:

./splunk install app <app_package_filename> -update 1 -auth
<username>:<password>

After running this command, restart Splunk Enterprise to let the changes take effect.

Developing a Splunk add-on
It is very important to first identify the problem that the Splunk add-on will solve. On
identifying the problem, the following procedure is to be followed to create an add-on.

https://technet24.ir

Building an add-on
It is very important to define the need and problems that the add-on will be solving
before we build it.

If the add-on will be used to add data to Splunk, then how do we get that data into
Splunk?

The various methods of data input are shown in the following screenshot. An add-on can
be configured to use any one of them depending on the requirement and use case.

You may wonder, what will the add-on do next? What configuration files need to be
configured in the add-on for the given requirement? Add-ons can be configured for data
acquisitions, data transformation, normalization, and enrichment. Add-ons can also be
configured to have one or more than one features depending on the need:

Installing a technology add-on
The steps to install technology add-ons via the Web and manually are exactly the same
as the steps to install a Splunk application, as described in the earlier sections. Users
need to follow the same steps and choose the add-on folder in place of the Splunk app
folder specified in the preceding steps to install a technology add-on on Splunk
Enterprise.

https://technet24.ir

Managing Splunk apps and add-ons
Since you have learned how to create and install a Splunk application and Splunk add-
on, we will now move on to how to manage apps and add-ons on Splunk Enterprise.

The following settings can be managed from the Manage Apps console of Splunk Web:

Permission management of Splunk apps and add-ons: Splunk apps and add-ons
can be applied with specific roles and permissions, and we can also decide
whether the app or add-on should be shared with other applications on Splunk.
From the permission section, the object created in the application or add-on can
also be shared in other apps by choosing Sharing for config file only object to all
apps.
Enabled and disable applications and add-ons: All the applications and add-ons
installed on Splunk Enterprise will be listed in the menu, and applications and
add-ons can be enabled and disabled from this section.
Properties: The name of the Splunk application or add-on can be updated from
this section. Other options such as making the application visible or not and
uploading customs scripts, CSS, and JavaScript can be chosen from this menu.
View objects: All the objects, regex, and field extractions that are stored in the
application or add-on configuration will be visible from the option. The object's
permission can be modified and objects can be enabled or disabled from this
option.

The application or add-on can also have other configuration options that can be enabled
or disabled and configured via Splunk Web.

For example, suppose there is an add-on that fetches data from any web source and
uploads to Splunk. Once the add-on is installed, since there is a data upload script
defined in the Scripts section of Data Upload, the settings can be configured from the
Splunk Web console.

From the Splunk Web console, go to Settings | Data inputs | Scripts.

In the Scripts section, there will be an entry of the data upload configured in the Splunk
add-on. From this menu, we can enable/disable the data input script, and from this
menu, we can modify the run interval of the script and define or change the source type
of the data to be uploaded on Splunk.

Depending on the types of configuration defined in the Splunk app or technology add-on,
different sections of Splunk settings can be configured after the installation of the
application or add-on.

You must have noted that there is an option to enable and disable the application, but
there is no option to uninstall the Splunk application or Splunk add-on from the web
console. To uninstall, the following command needs to be run on Command Prompt or
the terminal in Windows and Linux, respectively:

Windows users:

splunk remove app [appname] -auth <username>:<password>

Linux users:

./splunk remove app [appname] -auth <username>:<password>

Another easy and clean way of uninstalling a Splunk application or add-on is to remove
the application or add-on directory from $SPLUNK_HOME\etc\apps and restart the
Splunk Enterprise server.

https://technet24.ir

Splunk apps from the app store
We went through the process of creating, installing, and uninstalling applications on
Splunk Enterprise. Now, we will see some examples of applications or add-ons from
the Splunk app store that can be used to solve common problems:

The Splunk add-on for the Oracle database: This add-on is available on the
Splunk app store, and can be downloaded and installed on Splunk to connect with
any Oracle database. Logs such as audit trails, trace files, incident, alert, listener,
and other logs on the operating system where the Oracle database server is
installed will be made available on Splunk, and thus, users can analyze, visualize,
and create alerts on the uploaded data from the Splunk add-on for Oracle.
Browsing history analysis: Browsing history analysis is a ready-to-use app
available on the Splunk app store that can be installed and used to analyze the
browsing behavior of the user on the instance on which Splunk is installed. This
app scans, extracts, and analyzes history from the most popular browsers. Hence,
by installing this application, users will be able to use it without any query writing
and development work.
The Splunk add-on for Microsoft Azure: This add-on can be used to connect to
Microsoft Azure and to retrieve data from Azure Storage and Diagnostics into
Splunk for analysis and visualizations.
The Splunk app for web analytics: This Splunk app can generate analytics and
give insight from the web logs of websites like any other analytics tools such as
Google Analytics and Webtrends can. This application can be installed on Splunk
Enterprise.

These were a few applications/add-ons available on the Splunk app store. There are a
lot of applications and add-ons that have been created for different use cases. Splunk
users can search for applications defined for various use cases, and they can download,
install, and use the application as per need. The Splunk app store has applications of
various categories, such as application management, IT operations, security and
compliance, business analytics, and many more.

Summary
In this chapter, you learned how to create Splunk apps and technology add-ons and how
to develop and manage them. We also had a look at a few examples and use cases where
Splunk applications and add-ons can be used from the Splunk app store, and you can use
them as per your requirements and cases. In the next chapter, you will not only learn the
various methods to upload data to Splunk, but also the type of data that can be uploaded.
Basically, we will be going through the in and out of on-boarding data on Splunk.

https://technet24.ir

Chapter 3. On-boarding Data in Splunk
This chapter will detail the most important aspect of Splunk, that is, adding data to
Splunk. We will go through the newly added feature in Splunk 6.3 of JSON and REST
API format of IoT event collections, HTTP Event Collector, and then, we will cover the
various interfaces and options to on-board data on Splunk. We will also study how to
manage event segmentation and improvise the data input process.

The following topics will be covered in this chapter:

Deep diving into various input methods and sources
Adding data to Splunk—new interfaces
Data processing
Managing event segmentation
Improving the data input process

Deep diving into various input methods
and sources
Splunk supports numerous ways to ingest data on its server. Any data generated from a
human-readable machine from various sources can be uploaded using data input
methods such as files, directories, and TCP/UDP scripts which can be indexed on the
Splunk Enterprise server and analytics and insights can be derived from them.

https://technet24.ir

Data sources
Uploading data on Splunk is one of the most important parts of analytics and
visualizations of data. If data is not properly parsed, timestamped, or broken into
events, then it can be difficult to analyze and get proper insight on the data. Splunk can
be used to analyze and visualize data ranging from various domains, such as IT security,
networking, mobile devices, telecom infrastructure, media and entertainment devices,
storage devices, and many more. The machine-generated data from different sources can
be of different formats and types, and hence, it is very important to parse data in the best
format to get the required insight from it.

Splunk supports machine-generated data of various types and structures, and the
following screenshot shows the common types of data that comes with an inbuilt support
in Splunk Enterprise. The most important point of these sources is that if the data source
is from the following list, then the preconfigured settings and configurations already
stored in Splunk Enterprise are applied. This helps in getting the data parsed in the best
and most suitable formats of events and timestamps to enable faster searching, analytics,
and better visualization.

The following screenshot enlists common data sources supported by Splunk Enterprise:

Structured data

Machine-generated data is generally structured, and in some cases, it can be
semistructured. Some of the types of structured data are EXtensible Markup Language
(XML), JavaScript Object Notation (JSON), comma-separated values (CSV), tab-
separated values (TSV), and pipe-separated values (PSV).

Any format of structured data can be uploaded on Splunk. However, if the data is from
any of the preceding formats, then predefined settings and configuration can be applied
directly by choosing the respective source type while uploading the data or by
configuring it in the inputs.conf file.

The preconfigured settings for any of the preceding structured data is very generic.
Many times, it happens that the machine logs are customized structured logs; in that
case, additional settings will be required to parse the data.

https://technet24.ir

For example, there are various types of XML. We have listed two types here. In the first
type, there is the <note> tag at the start and </note> at the end, and in between, there
are parameters and their values. In the second type, there are two levels of hierarchies.
XML has the <library> tag along with the <book> tag. Between the <book> and
</book> tags, we have parameters and their values.

The first type is as follows:

<note>
<to>Jack</to>
<from>Micheal</from>
<heading>Test XML Format</heading>
<body>This is one of the format of XML!</body>
</note>

The second type is shown in the following code snippet:

<Library>
 <book category="Technical">
 <title lang="en">Splunk Basic</title>
 <author>Jack Thomas</author>
 <year>2007</year>
 <price>520.00</price>
 </book>
 <book category="Story">
 <title lang="en">Jungle Book</title>
 <author>Rudyard Kiplin</author>
 <year>1984</year>
 <price>50.50</price>
 </book>
</Library >

Similarly, there can be many types of customized XML scripts generated by machines.
To parse different types of structured data, Splunk Enterprise comes with inbuilt settings
and configuration defined for the source it comes from. Let's say, for example, that the
data received from a web server's logs are also structured logs and it can be in either a
JSON, CSV, or simple text format. So, depending on the specific sources, Splunk tries to
make the job of the user easier by providing the best settings and configuration for many
common sources of data.

Some of the most common sources of data are data from web servers, databases,
operation systems, network security, and various other applications and services.

Web and cloud services

The most commonly used web servers are Apache and Microsoft IIS. All Linux-based
web services are hosted on Apache servers, and all Windows-based web services on
IIS. The logs generated from Linux web servers are simple plain text files, whereas the
log files of Microsoft IIS can be in a W3C-extended log file format or it can be stored in
a database in the ODBC log file format as well.

Cloud services such as Amazon AWS, S3, and Microsoft Azure can be directly
connected and configured according to the forwarded data on Splunk Enterprise. The
Splunk app store has many technology add-ons that can be used to create data inputs to
send data from cloud services to Splunk Enterprise.

So, when uploading log files from web services, such as Apache, Splunk provides a
preconfigured source type that parses data in the best format for it to be available for
visualization.

Suppose that the user wants to upload Apache error logs on the Splunk server, and then
the user chooses apache_error from the Web category of Source type, as shown in the
following screenshot:

https://technet24.ir

On choosing this option, the following set of configuration is applied on the data to be
uploaded:

The event break is configured to be on the regular expression pattern ^\[
The events in the log files will be broken into a single event on occurrence of [at
every start of a line (^)
The timestamp is to be identified in the [%A %B %d %T %Y] format, where:

%A is the day of week; for example, Monday
%B is the month; for example, January
%d is the day of the month; for example, 1
%T is the time that has to be in the %H : %M : %S format
%Y is the year; for example, 2016

Various other settings such as maxDist that allows the amount of variance of logs
can vary from the one specified in the source type and other settings such as
category, descriptions, and others.

Any new settings required as per our needs can be added using the New Settings option
available in the section below Settings. After making the changes, either the settings
can be saved as a new source type or the existing source type can be updated with the
new settings.

IT operations and network security

Splunk Enterprise has many applications on the Splunk app store that specifically target
IT operations and network security. Splunk is a widely accepted tool for intrusion
detection, network and information security, fraud and theft detection, and user behavior
analytics and compliance. A Splunk Enterprise application provides inbuilt support for
the Cisco Adaptive Security Appliance (ASA) firewall, Cisco SYSLOG, Call Detail
Records (CDR) logs, and one of the most popular intrusion detection application,
Snort. The Splunk app store has many technology add-ons to get data from various
security devices such as firewall, routers, DMZ, and others. The app store also has the
Splunk application that shows graphical insights and analytics over the data uploaded
from various IT and security devices.

Databases

The Splunk Enterprise application has inbuilt support for databases such as MySQL,
Oracle Syslog, and IBM DB2. Apart from this, there are technology add-ons on the
Splunk app store to fetch data from the Oracle database and the MySQL database. These
technology add-ons can be used to fetch, parse, and upload data from the respective
database to the Splunk Enterprise server.

There can be various types of data available from one source; let's take MySQL as an
example. There can be error log data, query logging data, MySQL server health and
status log data, or MySQL data stored in the form of databases and tables. This
concludes that there can be a huge variety of data generated from the same source.
Hence, Splunk provides support for all types of data generated from a source. We have

https://technet24.ir

inbuilt configuration for MySQL error logs, MySQL slow queries, and MySQL database
logs that have been already defined for easier input configuration of data generated from
respective sources.

Application and operating system data

The Splunk input source type has inbuilt configuration available for Linux dmesg,
syslog, security logs, and various other logs available from the Linux operating system.
Apart from the Linux OS, Splunk also provides configuration settings for data input of
logs from Windows and iOS systems. It also provides default settings for Log4j-based
logging for Java, PHP, and .NET enterprise applications. Splunk also supports lots of
other applications' data such as Ruby on Rails, Catalina, WebSphere, and others.

Splunk Enterprise provides predefined configuration for various applications,
databases, OSes, and cloud and virtual environments to enrich the respective data with
better parsing and breaking into events, thus deriving at better insight from the available
data. The applications' sources whose settings are not available in Splunk Enterprise
can alternatively have apps or add-ons on the app store.

Data input methods
Splunk Enterprise supports data input through numerous methods. Data can be sent on
Splunk via files and directories, TCP, UDP, scripts, or using universal forwarders.

Files and directories

Splunk Enterprise provides an easy interface to the uploaded data via files and
directories. Files can be directly uploaded from the Splunk web interface manually or
they can be configured to monitor the file for changes in content, and the new data will
be uploaded on Splunk whenever it is written in the file. Splunk can also be configured
to upload multiple files by either uploading all the files in one shot or the directory can
be monitored for any new files, and the data will get indexed on Splunk whenever it
arrives in the directory. Any data format from any sources that are in a human-readable
format, that is, no propriety tools are needed to read the data, can be uploaded on
Splunk.

Splunk Enterprise even supports uploading in a compressed file format such as (.zip
and .tar.gz), which has multiple log files in a compressed format.

Network sources

Splunk supports both TCP and UDP to get data on Splunk from network sources. It can
monitor any network port for incoming data and then can index it on Splunk. Generally,
in case of data from network sources, it is recommended that you use a Universal
forwarder to send data on Splunk, as Universal forwarder buffers the data in case of any
issues on the Splunk server to avoid data loss.

https://technet24.ir

Windows data

Splunk Enterprise provides direct configuration to access data from a Windows system.
It supports both local as well as remote collections of various types and sources from a
Windows system.

Splunk has predefined input methods and settings to parse event logs, performance
monitoring reports, registry information, hosts, networks and print monitoring of a local
as well as remote Windows system.

So, data from different sources of different formats can be sent to Splunk using various
input methods as per the requirement and suitability of the data and source. New data
inputs can also be created using Splunk apps or technology add-ons available on the
Splunk app store.

https://technet24.ir

Adding data to Splunk – new interfaces
Splunk Enterprise introduced new interfaces to accept data that is compatible with
constrained resources and lightweight devices for Internet of Things. Splunk Enterprise
version 6.3 supports HTTP Event Collector and REST and JSON APIs for data
collection on Splunk.

HTTP Event Collector is a very useful interface that can be used to send data without
using any forwarder from your existing application to the Splunk Enterprise server.
HTTP APIs are available in .NET, Java, Python, and almost all the programming
languages. So, forwarding data from your existing application that is based on a specific
programming language becomes a cake walk.

Let's take an example, say, you are a developer of an Android application, and you want
to know what all features the user uses that are the pain areas or problem-causing
screens. You also want to know the usage pattern of your application. So, in the code of
your Android application, you can use REST APIs to forward the logging data on the
Splunk Enterprise server. The only important point to note here is that the data needs to
be sent in a JSON payload envelope. The advantage of using HTTP Event Collector is
that without using any third-party tools or any configuration, the data can be sent on
Splunk and we can easily derive insights, analytics, and visualizations from it.

HTTP Event Collector and configuration
HTTP Event Collector can be used when you configure it from the Splunk Web console,
and the event data from HTTP can be indexed in Splunk using the REST API.

HTTP Event Collector

HTTP Event Collector (EC) provides an API with an endpoint that can be used to send
log data from applications into Splunk Enterprise. Splunk HTTP Event Collector
supports both HTTP and HTTPS for secure connections.

The following are the features of HTTP Event Collector, which make's adding data on

https://technet24.ir

Splunk Enterprise easier:

It is very lightweight is terms of memory and resource usage, and thus can be used
in resources constrained to lightweight devices as well.
Events can be sent directly from anywhere such as web servers, mobile devices,
and IoT without any need of configuration or installation of forwarders.
It is a token-based JSON API that doesn't require you to save user credentials in
the code or in the application settings. The authentication is handled by tokens used
in the API.
It is easy to configure EC from the Splunk Web console, enable HTTP EC, and
define the token. After this, you are ready to accept data on Splunk Enterprise.
It supports both HTTP and HTTPS, and hence it is very secure.
It supports GZIP compression and batch processing.
HTTP EC is highly scalable as it can be used in a distributed environment as well
as with a load balancer to crunch and index millions of events per second.

Configuration via Splunk Web

The following are the steps to configure HTTP EC via Splunk Web:

1. Enabling the Event Collector:
1. Open the Splunk Web console and go to Settings | Data Inputs.
2. On the Data Inputs page, click on HTTP Event Collector.
3. On the HTTP Event Collector page, in the top right corner, click on Global

Settings.
4. The Edit Global Settings page pops up after this, which is similar to the

following screenshot:

For the All Tokens option, click on Enable

5. Depending on the source from where the data is coming or the type of data,
choose your respective source type. On selecting the specific source type,
relevant configuration and event parsing settings will be applied by default to
the data getting uploaded through EC.

6. If you wish to use the deployment server to configure EC tokens, then the Use
Deployment Server checkbox needs to be selected.

7. Various other settings such as the index in which data needs to be uploaded,
whether to use HTTP or HTTPS (the SSL option), and the port number to be
used in the endpoint can be configured accordingly from the Settings section.

8. After modifying the relevant settings, click on Save to apply the settings.

2. Creating a new token: New tokens can be created either from the Add Data
section of Splunk or from the HTTP Event Collector page from where the Global
Settings were modified.

The following are the steps to create a new token from the Global Settings page:
1. Click on the New Token button on the top right-hand side of the Global

Settings page. This takes the user to the Add Data screen with the HTTP
Event Collector options

https://technet24.ir

2. This page asks for Name, Source name override, and Description of the
token, similar to what is shown in the following screenshot:

Enter the Name, Source name override, and Description to identify the
token. Also, users can set Output Group if any and then click on Next.

3. The next page gives users the option to choose the index and source type. If
the user wants to create a new index or a new source type, then it can be
created from this page itself. After selecting the index and source type, click
on Next.

4. A review page appears, where you can verify all the inputs and settings
configured for the new token, and then click on the Submit button to create the
new token.

5. After clicking on Submit, the HTTP Event Collector token is generated and
displayed on the screen. This token can now be used in the HTTP API to
forward data on Splunk.

3. Verifying HTTP Event Collector: Follow the given series of steps to verify
Event Collector:

1. To test and verify whether the Event Collector and token is properly
configured, developers can use the following simple curl command:

curl -k
https://IPAddress:PortNumber/services/collector/event -H
"Authorization: Splunk TOKEN_GENERATED_IN_ABOVE_STEP" -d
'{"event": "This is a test of HTTP Event Collector"}'

Note that PortNumber refers to the port number which was configured in the
Edit Global Settings page. In our case, we used 8088.

In response to the preceding curl command, the following response
concludes that the events were successfully uploaded on Splunk:

{"text": "Success", "code": 0}

2. The uploaded event can also be checked by logging into the Splunk Web
console and using the search in the selected source type or index.

Managing the Event Collector token

Event Collector tokens can be modified by going to the Settings menu from the Splunk
Web console and then clicking on Data Inputs. On the Data Input page, click on the
HTTP Event Collector option. This page will list all the tokens that we created.

The tokens can be created, modified, and deleted from the Data Input section. Click on
the respective Edit button of the token that needs to be modified. On doing so, various
parameters such as Source type, Index, Output group, and others can be modified
from here for the selected tokens. If any token is not in use for some time or not required
at all, then it can be disabled or deleted as per the need.

https://technet24.ir

The JSON API format
The HTTP Event Collector data needs to be in a specific format that is understood by
Splunk Enterprise for it to parsed correctly by Splunk. Splunk HTTP Event Collector
accepts the data sent from various sources in a series of JSON packets. The JSON
packets comprise of two parts, one is the metadata and the other part is the data
contained in the event key. The metadata has various parameters in a key-value format,
whereas the event key has the actual data in it.

The sender of data is responsible for packaging data in the JSON format. The data can
be packed either using Splunk logging libraries available for Java and .NET or using
Java Apache HTTP Client or scripts or code can be written which encodes the data in
the format specified in the following sections.

Authentication

The authentication is done by Splunk Event Collector using tokens. The data source
needs to be authenticated and authorized first before it starts sending data to the Splunk
server. The authorization is done using a client-side authorization header. Each JSON
data package carries the same unique token in the authorization header. When the token
is verified by HTTP EC, it consumes the data and sends a positive response to the
sender. The response looks like this:

Authorization: Splunk 87654321-4321-1234-4321-0987654321XZ

Metadata

The following are the key-value pairs that can be included in the event's metadata for
any set of settings that are to be overridden by what is defined in the token settings:

time: The event data can be timestamped using this key-value pair of metadata.
The default time format is epoch time in the <seconds>.<milliseconds> format.
host: The hostname of the source can be defined in this key. This key can be very
useful to identify the device from which the data came. In case of IoT, there can be
a number of devices to uniquely identify the data of specific devices to which the
hostname can be assigned.
source: The source name can be specified in this key. This along with the host can
be used to identify the source of the data in multiple-source deployment of Splunk.
sourcetype: This key is used to identify the type of data so that the respective
parsing and event processing can be done as per the data type or data source.

index: This is the index in which the event will be uploaded on Splunk.

Note

All the preceding keys are optional. If it is not explicitly specified in the metadata,
then the default settings are applied for a token.

An example of metadata is as follows:

{
 "time": 1448190998,
 "host": "192.168.10.150",
 "source": "Humiditysensor-Mumbai",
 "sourcetype": "csv",
 "index": "IoT"
}

Event data

Event data is associated with the event key, and it contains the actual data that needs to
be uploaded on Splunk for analytics and visualization. Event data is also represented in
the JSON format:

An example of event data is as follows:

"event":
{
 "8.00": "32",
 "12.00": "35",
 "16.00": "33",
 "20.00": "29",
}

The following is a complete JSON packet with metadata and event data:

{
 "time": 1448190998,
 "host": "192.168.10.150",
 "source": "Humiditysensor-Mumbai",
 "sourcetype": "csv",
 "index": "IOT",
 "event":
 {
 "8.00": "32",
 "12.00": "35",
 "16.00": "33",

https://technet24.ir

 "20.00": "29",
 }
}

When a collected HTTP event receives the preceding JSON packet, it parses the data
and then sends it to the indexers for event processing. It uses the metadata if any specific
set of settings and configurations is applied on the uploading data by the event collected
before it gets uploaded in the indexer.

Splunk introduced HTTP-based and JSON-based REST APIs to encourage the use of
Splunk for IoT devices. There are various messaging and communication protocols and
message brokers that are more widely used in IoT, such as CAOP, MQTT, Apache
KAFKA, JMS, AMQP Broker, and the cloud streaming protocol such as Amazon
Kinesis. The Splunk app store has modular input technology add-ons for all of these
protocols supported by HTTP Event Collector that are ready to use. Respective modular
inputs can be used along with HTTP EC to upload data on Splunk Enterprise.

Data processing
Data processing plays a very important role in parsing and enriching data to create
insights faster and visualize data with the required analytics. Data processing basically
includes event, timestamp, and host configuration.

https://technet24.ir

Event configuration
Any data uploaded on Splunk is termed as an event. An event can be anything from a log
activity, error logs, usage logs, to machine-generated data from devices, servers, or
from any other sources. Events are used to create visualization and get insight about the
source in the Splunk environment. So, it is required to process the events properly,
depending on the data and source. The processed events' settings and configurations can
be stored later in a source type.

Character encoding

Splunk supports many languages to support internationalization of Splunk Enterprise.
The default character's set encoding on Splunk Enterprise is UTF-8, whereas it has
inbuilt support for various other encoding available internationally. If the data is not
UTF-8 or it contains non-ASCII data, then Splunk tries to convert it to UTF-8 until and
unless it is specified by the user in the Splunk configuration file to not convert it.

Splunk supports various characters' sets, but it always uses UTF-8 by default. If the data
is of the other encoding type, it is required to be configured in the props.conf file. The
following line in props.conf forces the data uploaded from the SatelliteData host
to be parsed using a Russian encoding character set:

[host::SatelliteData]
CHARSET=ISO-8859-5

Splunk also supports automatic detection of character set encoding. In a situation
wherein the data is uploaded on Splunk to a specific source type or a specific host
contains a mixture of various character sets, in that case, Splunk's powerful algorithm
can automatically detect the character set encoding and apply it accordingly to the data.
Props.conf needs to be modified with the following lines to force the source type to
autoencoding, rather than using the default UTF-8 character set:

[host::SatelliteData]
CHARSET=AUTO

Event line breaking

A single event can be of a few words, a single line, or multiple lines as well. The
Splunk Enterprise engine has the capability to automatically detect the events. However,
since there are various types and formats of data, it may not be necessary that the events
will be well detected and broken into events properly. So, manual line breaking can be

required if the automatic line break does not detect multiple line events properly.

Event line breaking can be configured to be based on a regular expression, a specific
word that occurs at the start of every new event, a specific word that ends the events,
when a new date or time is encountered, and so on.

The following is a list of event-line breaking commands that can be configured from
Splunk Web via data uploading or can be configured in the props.conf file:

TRUNCATE=<NUMBER>: This commands accepts a number, which is in bytes, after
which the lines are to be truncated. If the data is in a long line and only up to a few
specific bytes, the data is useful. Using this command, data that is not required can
be truncated.

For example, TRUNCATE=500 will truncate the line after 500 bytes of data. So, any
line that has more than 500 bytes will be truncated. Generally, truncate is used to
avoid memory leaks, search slowdown, and avoid indexing of useless data.
LINE_BREAKER=<REGULAR_EXPRESSION>: This command is used to break the
event at the occurrence of a specific regular expression. Whenever that specific
regular expression is detected, the preceding data is termed as a new event.
SHOULD_LINEMERGE = [true or false]: This command combines several lines
into a single line until and unless the condition pertaining to any of the following
set of attributes is satisfied:

BREAK_ONLY_BEFORE_DATE = [true or false]: Here, the data is marked
as a new event whenever a new line with a date is detected
BREAK_ONLY_BEFORE = < REGULAR_EXPRESSION >: A new event is created
whenever a specific regular expression is encountered in a new line
MUST_BREAK_AFTER = < REGULAR_EXPRESSION >: Splunk creates a new
event for the next input on occurrence of a specified regular expression on the
given line
MUST_NOT_BREAK_AFTER = < REGULAR_EXPRESSION >: Splunk does not
break for a given regular expression until and unless events that satisfy the
condition of MUST_BREAK_AFTER are satisfied
MAX_EVENTS = <NUMBER>: This number specifies the maximum number of
lines a single event can be of.

The following is an example of configuring the event breaking in the props.conf file:

[SatelliteData]
SHOULD_LINEMERGE = true

https://technet24.ir

MUST_BREAK_AFTER = </data>

The preceding change in props.conf instructs the events to be broken after the
occurrence of </data> for the SatelliteData source type.

Timestamp configuration
A timestamp is one of the very important parameters of data. It is very useful in creating
visualization and insight by time, that is, the number of errors and crashes occurred in
one day, in the last 10 min, in the last one month, and so on. A timestamp is required to
correlate data overtime, create visualizations based on time, run searches, and so on.
The data that we upload from different sources may or may not have a timestamp in it.
The data that has a timestamp should be parsed with a correct timestamp format, and for
the data that does not have a timestamp, Splunk automatically adds a timestamp during
the upload for better time-based visualizations.

The Splunk procedure of assigning a timestamp to the data is based on various
parameters such as the timestamp settings in props.conf. If no settings are found in the
props.conf file, then it checks for the sourcetype timestamp format in the events. If
the event doesn't have a timestamp, then it tries to fetch a date from the source or
filename. If it is not able to find the date, then it assigns the current time to the event. In
most cases, we are not required to do any specific configuration, since Splunk checks
for almost all the possible options to assign a timestamp to the data.

In some cases, if the timestamp is not properly parsed, then the timestamp can be
configured during the upload of data in the Source type Settings page or it can be
manually configured in the props.conf file as well.

The following are the attributes that can be configured in props.conf for timestamp
configuration:

TIME_PREFIX = <REGULAR_EXPRESSION>: This helps us to search for a specific
regular expression that is prefixed to the timestamp. For example, if in your data, a
timestamp is available after the <FORECAST> tag, then define it as TIME_PREFIX.
MAX_TIMESTAMP_LOOKAHEAD = <NUMBER>: In this attribute, we specify the
position number in the event, where the timestamp is located. Let's suppose that we
have configured to break the events by every line and after every 15 words, a
timestamp is found, then MAX_TIMESTAMP_LOOKAHEAD=15 needs to be configured.
TIME_FORMAT = <STRPTIME_FORMAT>: The format of timestamp strptime().
TZ = <TIMEZONE>: The time zone can be specified in the (+5:30) format or in the
format of UTC. For example, TZ=+5:30 specifies the time zone of India.
MAX_DAYS_AGO = <NUMBER>: These configuration settings can be very useful if
you do not want to upload older data on Splunk. Let's suppose that the user is
interested in uploading the data of the last one month only, then this attribute can be

https://technet24.ir

configured and any data older than the specified days will not be uploaded on
Splunk. The default value of this parameter is 2000 days.
MAX_DAYS_HENCE =<NUMBER>: These settings upload data that has a date less than
the number of days in the future. For example, the default value for this attribute is
2, and then, from the present day, if the data has a date greater than two days, it
will be ignored and not uploaded.

Let's look at an example of a timestamp extraction.

The following settings in props.conf will search for a timestamp after the word
FORECAST. It will parse the timestamp in the following mentioned format and time zone
of Asia/Kolkata, which is +5:30, and it will not allow to upload the data that is more
than 30 days old:

[SatelliteData]
TIME_PREFIX = FORECAST:
TIME_FORMAT = %b %d %H:%M:%S %Z%z %Y
MAX_DAYS_AGO = 30
TZ= Asia/Kolkata

Host configuration
A hostname or host is the name used to identify the source from where the data is
uploaded on Splunk. It is a default field, and Splunk assigns a host value to all the data
that gets uploaded on Splunk. The default host value is generally a hostname, IP address,
or path of the file or TCP/UDP port number from where the data was generated.

Let's take an example, where we have data being uploaded from four different web
servers located at Mumbai, Jaipur, Delhi, and Bangalore. All the data is uploaded from
web servers, so it will be available under the same source type. In such situations, it
becomes difficult to get insight of only one specific location. So, a hostname can be
assigned to it from where the data is getting uploaded to uniquely identify the source and
also create visualizations and insight specific to that source. If a user is interested in
finding the number of failures, server downtime, and other insights only specific to one
web server, in that case, the hostname assigned to that specific location's web server
can be used as a filter to fetch information respective to that source.

As mentioned earlier, Splunk automatically tries to assign a hostname if not already
specified or configured by the user in the transforms.conf configuration or while
defining the source type during data input configuration. In many situations, there can be
a need for manual configuration of hostnames for better insight and visualizations.

The default host value can be configured from the inputs.conf file as follows:

[default]
host = <string>

Setting a host as <string> configures Splunk to keep the IP address or domain name of
the source as the host.

Tip

Never include quotes (") in the host value. For example, host=Mumbai is valid, but
host="Mumbai" is the wrong way of assigning a host value in the inputs.conf file.

In a large distributed environment, it may happen that data is uploaded via forwarders
or via a directory path, and it may be required that the hostname be assigned depending
on the directory in which the data needs to be classified or on the basis of events.
Splunk can be configured to handle such complex scenarios, where the hostname can be
either statically or dynamically assigned based on a directory structure or on the basis

https://technet24.ir

of the events of the data.

Configuring a static host value – files and directories

This method is useful when the data received from one specific file or directory is to be
assigned a single host value. The following procedure is to be applied to define a single
host value for data sourced from a specific file or directory.

Let's look at the Web Console method:

1. Navigate to Settings | Data Input | Files and Directories from Splunk Web
Console.

2. If the settings are to be applied on the existing input, choose the respective input to
update or create a new input in order to configure the host value.

3. Under the Set host drop-down menu, choose Constant value, and in the Host
filed value textbox, enter the hostname that you wish to set for the respective input
source.

4. Click on Save/Submit to apply the settings.

Now, Splunk will ensure that any data uploaded from the configured data input will be
assigned the specified host value.

Let's see the Config File method. Here, static host values can also be configured
manually by modifying the inputs.conf file as follows:

[monitor://<path>]
host = <Specify_host_name>

In case of the existing data input, just replacing the host value will ensure that any data
uploaded in future will be assigned the mentioned host value. If the input method does
not exist, then an entry similar to the preceding one with the path of the file/directory
from where the data will be uploaded and the host value required can be configured.

Here is an example. The following settings in inputs.conf ensure that any data getting
uploaded from the Data folder of the F drive will have the TestHost host value:

[monitor://F:\Data]
host = TestHost

Configuring a dynamic host value – files and directories

This configuration is useful when we are dependent on the name of the file or a regular

expression from the source where the data of different hosts can be differentiated.
Generally, this is useful when archived data is uploaded on Splunk and the filename has
some information about the host, or this can be useful in scenarios where a single
forwarder fetches data from different sources and then uploads it on Splunk.

Let me explain this with an example. Suppose that the data from the following folders is
uploaded on Splunk:

F:\Data\Ver\4.4

F:\Data\Ver\4.2

F:\Data\Ver\5.1

If for the preceding scenario, the data uploaded from the 4.4 folder has the Kitkat host
value, the 4.2 folder has Jellybean, and the 5.1 folder has Lollipop, then a dynamic
host value configuration is required.

The steps for the Web Console method are as follows:

1. Navigate to Settings | Data Input | Files and Directories from Splunk Web
Console.

2. If the settings are to be applied on the existing input, choose the respective input to
update or create a new input in order to configure the host value.

3. Under the Set host drop-down menu, you will find the following options:
Regex on Path: This option can be chosen if the hostname is to be extracted
using a regular expression on the path.

The preceding example can be implemented using this method by setting the
Regular expression textbox as F:\Data\Ver\(\w+).

Segment in Path: This option is useful in scenarios where the path segment
can be used as a host value.

The preceding example can also be implemented by choosing this option and
by setting the Segment Number textbox as 4, that is, F:\Data\Ver\4.4; in
this case, 4.4 is the fourth segment of the path.

4. Click on Save/Submit to apply the settings.

With the Config File method, dynamic host values can be configured manually by
modifying the inputs.conf file as follows. For the preceding example, input.conf
will look like this:

https://technet24.ir

Regex on Path:

[monitor://F:\Data\Ver]
host_regex =F:\Data\Ver\(\w+)

Or, the input.conf file will look as follows:

Segment in Path:

[monitor://F:\Data\Ver]
host_segment = 4

Configuring a host value – events

Splunk Enterprise supports assigning different hostnames based on the events in data.
Event-based host configuration plays a very important role when the data is forwarded
by a forwarder or the data is from the same file/directory where hostname classification
cannot be done on the basis of files/directories. Event-based host configuration can be
configured by modifying the config files, which we will look at in a later section.

The Transforms.conf file should have the following settings, which include a unique
name using which the props.conf file will be updated:

[<name>]
REGEX = <regex>
FORMAT = host::$1
DEST_KEY = MetaData:Host

Now, the props.conf file needs to be configured accordingly in reference to
transforms.conf. It will have a source or source type. The TRANSFORMS parameter
will have the same name that we have used for transforms.conf.

For Props.conf, the code block should look like this:

[<source or sourcetype>]
TRANSFORMS-<class> = <name>

Let's suppose that we have data that is uploaded from the test.txt file to Splunk
Enterprise, which has events from various sources, and while uploading it to Splunk, the
user needs to assign different hosts based on the content of the event.

This is how the transforms.conf and props.conf files need to be configured to
implement this host configuration (the host value for matching events):

//For Transforms.conf file
 [EventHostTest]
 REGEX = Event\soriginator:\s(\w+\-?\w+)
 FORMAT = host::$1
 DEST_KEY = MetaData:Host
//For Props.conf file
 [TestTXTUpload]
 TRANSFORMS-test= EventHostTest

The preceding configuration will ensure that it assigns a host based on the detected
regular expression.

All the host configuration methods explained earlier need to be implemented before the
data gets uploaded on Splunk. In a situation where the data is already uploaded on
Splunk, the host configuration can either be done by deleting and reindexing the data or
by creating tags for incorrect host values. There is also one more approach that can be
useful in case when the data is already uploaded: the use of lookup tables.

https://technet24.ir

Managing event segmentation
Splunk breaks the uploaded data into events. Events are the key elements of Splunk
search that are further segmented on index time and search time. Basically, segmentation
is breaking of events into smaller units classified as major and minor. Segmentation can
be explained with the help of the following example.

The complete IP address is a major segment, and a major segment can be further broken
down into many minor segments, as shown in the following screenshot:

It is very important to configure event segmentation, as index-time segmentation affects
storage size and indexing speed, and search-time segmentation affects the search speed
and ability to create searches based on the result of searches on Splunk Web; depending
on the need, specific types of segmentation can be configured. Splunk even provides the
facility to apply event segmentation on a specific host, source, or source type.

The following are three types of event segmentation that can be configured for index-
time and search-time segmentation:

Inner segmentation: This type of segmentation ensures that the events are broken
down into smallest (minor) segments. Inner segmentation leads to fast indexing and
searching and less disk usage, but it also leads to the degradation in the lookahead
functionality of search prediction while searching in the Splunk Web console.

For example, the IP address 127.0.0.1 will be broken as 127, 0, 0 and 1 in the
inner segmentation.
Outer segmentation: Outer segmentation is exactly the opposite of inner

segmentation. In this segmentation, major segments are not broken down into minor
segments. However, it is less efficient than inner segmentation, but it is said to be
more efficient than full segmentation. It also leads to restriction of the ability to
click on different segments of search results while searching on the Splunk Web
Console.

For example, the IP address 127.0.0.1 will only be segmented as 127.0.0.1. So,
to search for any events having the IP address 127.0.0, we will have to use
wildcards such as 127.0.0.* This will result in all the IP addresses starting with
127.0.0.
Full segmentation: Full segmentation is a mixture of both inner and outer
segmentation. It keeps both major and minor segments. This is said to be the least
efficient option for indexing and is more versatile for searching.

For example, the IP address 127.0.0.1 will be segmented as 127.0.0.1, 127.0,
127.0.0.

Splunk Enterprise is, by default, configured to the indexing type, which is a combination
of outer and inner segmentation for index-time segmentation and full segmentation for
search-time segmentation in segmenters.conf located at
$SPLUNK_HOME/etc/system/default.

The props.conf can be configured if event segmentation is to be performed on a
specific host, source type, or source. The following block can be added to props.conf
for the respective event's segmentation. Inner, outer, none, and full are the values
that can be configured in the SEGMENTATION attribute.

Index-time segmentation:

[Source/Sourcetype/Host]
SEGMENTATION = <SEGMENTATION_TYPE> # SEGMENTATION_TYPE can be
Inner, Outer, None or Full

For better clarity, refer the following example:

[TestTXTUpload]
SEGMENTATION = Outer

Search-time segmentation:

[Source/Sourcetype/Host]
SEGMENTATION-<SEGMENT> = <SEGMENTATION_TYPE>
SEGMENTATION_TYPE can be Inner, Outer, None or Full & SEGMENT

https://technet24.ir

can be full, inner, outer or raw.

For example:

[TestTXTUpload]
SEGMENTATION-full = Outer

Note

Splunk needs to be restarted to apply the effects of changes applied for the event
segment configuration.

Improving the data input process
Data input is a very important process before you generate insight and visualizations
from data. So, it is very important that the data is indexed, parsed, processed, and
segmented properly. It may not be the case that the first approach/setting the user applies
is the best, and there may be a need for a trial-and-error method to find the best settings
for the data of those types for which settings are not available, by default, in Splunk.

It is always advisable to first upload small amount of data on a test index on a
development server of Splunk. Once the data is available on Splunk in the correct
format of events in which queries can result in the required visualizations, then the input
can be forwarded to the correct index and source on the production server.

Many times, it happens that when you are testing and trying to upload the same file more
than once to try different settings of event configuration, Splunk may not index the file,
as the filename or file contents are already on Splunk to avoid redundancy. In such
scenarios, the index can be cleaned or the index can be deleted or disabled using the
following commands, respectively:

Cleaning an index: splunk clean eventdata -index <index_name>
Deleting an index: splunk remove index <index_name>
Disabling an index: splunk disable index <index_name>

If there is a stream of data directly sent to Splunk from a TCP or UDP stream, it is
advisable to write that data to a file and then configure Splunk to monitor the file. This
helps to avoid loss of data when Splunk or a network is down, and it can also be helpful
in case you're deleting and reindexing on Splunk for some reason. Use persistent queues
to buffer data in case the forwarder, TCP, UDP, or scripted data input is used. This
helps us to store data in a queue in case of any issues.

It is advisable to use Splunk forwarders when data is to be uploaded on Splunk
Enterprise remotely. Forwarders have a feature of sending a heartbeat to the indexer
every 30 sec, and in case of connectivity loss, it will hold the data until connected
again.

When the data that is to be uploaded on Splunk does not have a timestamp and Splunk is
configured to use the uploaded time as a timestamp, in that scenario, timestamp
searching should be disabled. Disabling timestamp searching on data that doesn't have a
timestamp at all enhances the processing considerably and makes it faster. To disable

https://technet24.ir

timestamp searching inputs.conf append the [host::SatelliteData] block with
the DATETIME_CONFIG attribute as NONE.

Refer to the following example for better clarity:

[host::SatelliteData]
DATETIME_CONFIG = NONE

Data input is a very important and crucial process of Splunk tools. The following are
some of the points to be considered while setting up the input process:

Identify how and which input methods will be used to upload data on Splunk
Use Universal forwarder if required
Look for the Splunk app store and utilize any technology add-on depending on the
requirement, if any
Apply the Common Information Model (CIM), which specifies the standard host
tags, fields, event type tags used by Splunk when processing most of the IT data
Always test the upload on a test environment first and then proceed to the
deployment server

Summary
In this chapter, we walked through various data input methods along with various data
sources supported by Splunk. We also looked at HTTP Event Collector, which is a new
feature added in Splunk 6.3 for data collection via REST to encourage the usage of
Splunk for IoT. We studied data processing, event segmentation, and ways by which we
can improve the data input process. In the next chapter, we will cover how to create
analytics and provide meaningful insight over the data uploaded on Splunk.

https://technet24.ir

Chapter 4. Data Analytics
This chapter will help you understand how to analyze the data and get insight on the data
that is uploaded on Splunk from various sources. Right from searching, sending search
results over e-mail, combining search results, and accessing the data, you will be able
to do basic analytics and data manipulation on Splunk Enterprise via the web console.
The reader will also be able to add, extract, and modify fields and format the output as
per their requirements. We will use Splunk search commands to fetch the desired the
insights and statistics on Splunk Enterprise.

In this chapter, we will cover the following topics:

Data and indexes
Search
Subsearch
Time
Fields
Results

Data and indexes
When data is sent on Splunk Enterprise, it consumes the raw data and converts it into
searchable events. This processed data gets stored in an index in Splunk. We will now
go through the search commands that can be used on Splunk Web to view and manage
the data and indexes.

You will now learn to use Splunk commands to analyze the data. There are many Splunk
commands, and each command has many parameters. We will go through the important
commands and the required parameters.

https://technet24.ir

Accessing data
The following set of commands can be used to access data from indexes. These
categories of commands just fetch the information and display it. They do not modify the
data or indexes.

The index command

Splunk's index command displays the event data of the specified index. On installation,
Splunk Enterprise already has the default index as main. It also has few other indexes
names, such as _audit, _internal, _introspection, and so on. They can be used for
Splunk error lookup, Splunk health status, and Splunk license usages and violations.

The available list of indexes can be seen by navigating to Settings | Indexes from the
Splunk Web console. This Indexes page can be used to create, delete, and manage
indexes.

The syntax for the index command is as follows:

index = <index_name>

Refer to the following example for better clarity:

index = _internal
index = main

The following screenshot shows the event data for the _internal index:

Using the index command along with index_name, you can fetch all the information of
a specific index. Using index = _internal will list out the data only of the
_internal index. There can be many indexes on which various sources may be
forwarding data. Specifying which index to search narrows the search to a specific
index only and, thus, gives faster results. The _internal index can be used to debug
issues with respect to Splunk. The splunkd.log file is continuously being indexed in
_internal index, and thus, any errors and issues can be searched using this index.

If, while searching, the index is not specified, then Splunk searches in the default index,
that is, the main index. So, if the data is in any index other than main, it needs to be
explicitly specified in Splunk CLI queries to get the desired results.

The eventcount command

This Splunk command is used to get the count of the events for the specified index or
indexes.

The syntax for the eventcount command is as follows:

| eventcountindex=<string>
 summarize=<bool>
 report_size=<bool>
 list_vix=<bool>

https://technet24.ir

This is the parameter description of the eventcount command:

index: This is the name of the index or indexes whose event count is to be fetched
and needs to be specified here.
summarize: This accepts the Boolean value which determines whether to
summarize events from all the peers and indexes or not.
report_size: This accepts the Boolean value which determines whether to
display the size of the index or not. The index size is reported in bytes.
list_vix: This accepts the Boolean value which determines whether to list virtual
indexes or not.

Refer to the following example for better clarity:

| eventcount index=* summarize=false

The following screenshot describes the eventcount command:

In the preceding example, the eventcount command is used to list the count of events
for all the index=* (all indexes default or user created) and index=_* (all internal
Splunk indexes created by Splunk Enterprise for auditing and debugging of the Splunk
instance) indexes, along with the size of the eventcount (report_size=true). The
event count is split by index and search peers by the summarize=false parameter.

The datamodel command

Splunk Knowledge Manager generates a hierarchical structured data model from one or

more datasets to generate reports for pivot users. The data model has enough
information to run specialized searches to create visualization as per user needs.

The syntax for the eventcount command is as follows:

| datamodel
 <data_model_name>
 <object_name>
 <search>

This is the parameter description of the datamodel command:

data_model_name: This specifies the name of the specific model, and the result
will be restricted to only the specified model
object_name: This specifies the name of the object to be searched in the specified
data model
Search: This specifies that Splunk should search for the specified object name and
data model

Refer to the following examples of the datamodel command:

Example 1:

| datamodel internal_server daily_usage

The following screenshot describes the datamodel command:

https://technet24.ir

In this example, Splunk will show the data model of the internal_server dataset
and the daily_usage object in the JSON format. If data_model_name and
object_name are not specified, then all the data models available on Splunk will
be listed.
Example 2:

| datamodelinternal_serverdaily_usage search

The following screenshot describes the datamodel command usage in the second
way:

In this example, all the entries of the internal_server data model with the
daily_usage as the object will be searched and displayed. In short, all the entries
that satisfy the daily_usage object criteria defined during the creation of the data
model creation will be searched and displayed.

The dbinspect command

The Splunk command—dbinspect enlists comprehensive information about the index,
such as the bucket ID, event count, path of the database index, state of the index, and so
on. This command basically helps users fetch information about the index, thus, the
name dbinspect.

The syntax for the dbinspect command is as follows:

| dbinspect
 index=<string>
 span=<timeformat>

This is the parameter description of the dbinspect command:

index: This is the name of the index whose information is required. If no index is
specified, then the data of the default index is shown.
span: This parameter is used to specify the length of the bucket; Span can also be
specified in the format of time.

Refer to the following examples of the dbinspect command:

Example 1:

| dbinspect index=_*

The following screenshot describes the dbinspect command:

The dbinspect command of Splunk lists our detailed information about the
specified index (index=_*). In this case, it provides information about all the
internal indexes. If the index is not specified, then the default index data is shown.
Example 2:

| dbinspect index=_*span=1week

https://technet24.ir

The following screenshot describes the usage dbinspect command with the span
parameter:

On specifying the span (span=1week), the output shows bucket information with
respect to time for the specified index.

The crawl command

The crawl Splunk command is used to index files from different sources such as a file
system or from network sources as well. The default behavior of crawl can be
configured in the crawl.conf file. Splunk also logs the circumstances in which the
crawl command is used, which can be referred to track the usage of this command.

The syntax for the crawl command is as follows:

|crawl <file/Network_Path>
 <options>

This is the parameter description of the crawl command:

file or Network_Path: Path of the file system or the network which is to be
crawled to index the data to Splunk.
options: Any specific settings that are to be overridden from the default
crawl.conf file can be specified here. A few examples of options that can be
configured here are index, collapse_threshold, big_dir_filecount, and so
on.

Refer to the following example for better clarity:

|crawl

The following screenshot describes the crawl command:

The crawl command of Splunk is used to crawl to all the files and folders in the
specified directory or network location. In the preceding example, the file location or
network path is not specified. Hence, the crawling will take place at the default path
specified in crawl.conf. The default path is specified in crawl.conf is C:\.

If crawling is to be done at a location other than the default location, then root=<path>
can be specified after the crawl command, as shown here:

https://technet24.ir

|crawl root=d:\temp\; #for directory
|crawl host=10.20.8.47 #for network path

Managing data
All the preceding commands under the Accessing Data section were generating
commands, that is, these commands do not alter the data. They just fetch and display the
data. Now, you will learn about how to manage the data on indexes.

The input command

The input command is used to enable or disable sources from being processed in a
Splunk Enterprise index. Any attributes added using the input command will be added
to the inputs.conf file. The logs of the input command are available in the
inputs.log file.

The input command is generally used along with the crawl command to add sources
obtained from the crawl command in the inputs.conf file.

The syntax for the input command is as follows:

input add/remove
 sourcetype=string
 index=string
 string_name=string

The parameter description of the input command is as follows:

add/remove: whether the input is to be added or to be removed
sourcetype: specifies the source type in which the data is to be added
index: specifies the index in which the data is to be added
string_name: custom user fields that need to be added

Refer to the following code of the input command:

| crawl | input add sourcetype=CrawlTest index=CrawlIndex

The following screenshot describes the input command:

https://technet24.ir

In the preceding example, the input command is used along with the crawl command to
add as an input with the source type as CrawlTest and the index as CrawlIndex. If the
index and source type are not specified, then the data will be added in the default
index, and automatic source type will be classified by Splunk Enterprise, depending
on the type of data.

The delete command

The delete command of Splunk is an irreversible command used to make events
irretrievable from the indexes. This command marks the event as deleted. Hence, the
deleted events will not be returned in any search result even by the user with admin
privileges.

Using the delete command will not free up any space on the disk, and if the deleted
data is required, then it has to be reindexed from the original source. This command
cannot be used for real-time search.

The syntax for the delete command is as follows:

delete

Refer to the following example for better clarity:

sourcetype="crt-too_small" Address | delete

The following screenshot describes the delete command:

In the preceding example, all the events that had Address in the crt-too_small source
type will be deleted and will be inaccessible from the Splunk index. If the address is
not mentioned as in the preceding example, then all the events under the crt-
too_small source type will be deleted.

The clean command

The clean command is used to delete all the events of the specified index. Generally,
this command is used when using the trial-and-error method to choose the best source
type and event-breaking configuration while defining new source types to empty the
index. This command makes an irreversible change in the index, and the data removed
can be brought back in Splunk only by reindexing it.

The syntax for the clean command is as follows:

splunk clean eventdata
 -index <index_name>

The Index_name parameter of the clean command specifies the name of index that is to
be cleaned.

Following is an example of the clean command:

splunk clean eventdata -index TestIndex

https://technet24.ir

The screenshot that follows shows the execution of a clean command instance:

To run this command, the Splunk instance needs to be stopped first. The Splunk instance
can be stopped by running the splunk stop command from the Command prompt. Once
the Splunk instance is stopped, then the splunk clean eventdata -index
TestIndex command cleans the TestIndex. If just the splunk clean eventdata
command is run, then the event data of all the events are cleaned. After the index is
clean, Splunk can be restarted using the splunk start command.

Summary indexing

Summary indexing is used to speed up searches that do not qualify for report
acceleration. Using summary indexing commands such as sichart (the summary index
version of the chart command), sitimechart (the summary index version of the

timechart command), sistats (the summary index version of the stats command),
sitop (the summary index version of the top command), and sirare (the summary
index version of the rare command), you can compute the relevant information required
to later run the non-summary indexing version of the respective commands on the
summary index. The summary index is created by the collect command.

The syntax for performing a summary indexing operation is as follows:

|collect index=<index_name>
 File=<file_name>
 Host=<host_name>
 Source=<source_name>
 Sourcetype=<sourcetype_name>

The parameter description of the above summary indexing instance is as follows:

index_name: Name of the summary index in which the events are to copied. The
specified index name should be created before running this command.
File_name: Name of the file can be specified where the summary index data will
be written.
Host_name: Host name can be configured using this parameter for the summary
index.
Source_name: Source can be specified for the summary index data.
Sourcetype_name: Source type can be configured using this parameter for the
created summary index.

Following this is an example of a summary indexing operation:

index=_internal error | collect index=TestIndex

The following screenshot describes a summary indexing operation performing the
collect action:

https://technet24.ir

The preceding search query will export all the events of the _internal index that has
error to index entries named TestIndex. Similarly, the collect command can be used
to create summary indexes for the hourly error statistics based on the host value using
the following search query:

index=_internal |search error _time span=1h | stats count by host
_time | collect index=TestIndex

Also, the sichart command can be used to compute the necessary information to later
do a chart sum(field_name) by _time operation on the summary indexed results:

| sichart sum(field_name) by _time

Similarly, sistats and sitop can be used to create computation for respective
commands on summary indexes:

|sistats count(field_name) by _time
sourcetype="android_data" | sitop android_version

Thus, using different summary indexing commands, searches can be accelerated, and
long-running search results can be obtained faster.

https://technet24.ir

Search
Splunk is said to be the Google of machine data. So, searching is the most important set
of actions that is performed to retrieve the exact information the user is looking for from
the indexes. You will now learn how to make efficient use of search commands to fetch
the relevant and required information precisely from the whole set of data.

The search command
The search command is used to search events and filter the result from the indexes. The
search command, followed by keywords, phrases, regular expressions, wildcards, and
key-value pairs, can be used to fetch filtered events from the indexes.

Mentioned as follows is the syntax for a search command instance:

<keywords>
 <wildcards>
 <key_value_pairs> or <fields>
 <phrases>
 <operators>
 <logical_expressions>
 <regular_expressions>
 <time_specifiers>

The parameter description for the preceding parameters is as follows:

keywords: A keyword can be any string or strings that are to be searched in the
data. Depending on the data and the requirement, the keywords can be anything. If
the data in the Splunk index is of a website login transaction, then the keywords
can be Login, failed, authenticated, error, and so on.
wildcards: If the user wants to find the information of all the users whose IP
address starts with 192.168, then the 192.168.* wildcard can be used.
key_value_pairs / fields: Key-value pairs are fields that are either
automatically extracted by Splunk or user extracted. Key-value pairs can be
server="America", android_version=5.1, and so on, depending on the data
and the requirement.
phrases: The search command can be followed by phrases to be searched in
indexes. Phrases are nothing but a set of keywords, and they are to be specified in
quotes (") after the search commands, such as login failed, request
timeout, and incorrect password.
operators: Operators such as OR and AND can be used to filter the search results
logical_expression: Splunk accepts the usage of logical expressions such as <,
>, <=, >=, =, and !=.
regular_expression: The search command can be specified with a regular
expression to search in the data, and the events with the specified regular
expression will be returned in the search results.
time_specifiers: Time range can be specified in the search command to

https://technet24.ir

restrict the search to the said time range only. Only those events that fall in the
given time range will be displayed in the search result. Time can be specified
using parameters such as starttime, endtime, earliest, and latest. Time
format can also be specified using the timeformat parameter.

The following are examples of a search operation with two different scenarios:

index=web_server error 404
index=web_server IP=192.168.* AND IP=10.20.* | search "login failed"
OR "incorrect password"

In the first example, all the events that have an error and 404 will be shown in the
search result. Here, we have used the keyword (error and 404) to be searched in the
index. In the second example, the query will result in all the events that have IP
(192.168.* and 10.20.*). We have used the AND Boolean operator along with
wildcard (*) for the IP address to filter the required result. In the later section of the
second example, after pipe (|) phrases in quotes (login failed and incorrect
password) are used along with the Boolean operator OR to get all the events that have
either failed to log in or used an incorrect password.

The sendmail command
The sendmail command is used to send the search result over e-mail. The search
results can be sent inline in the e-mail or as a PDF attachment. This command can be
used in the scripts or while scheduling reports to run search queries with the specified
filters and keywords. Then, the results are to be e-mailed to the specified recipient(s).

The syntax for the sendemail command is as follows:

sendemail to=<email_id(s)>
 from=<email_id(s)>
 cc=<email_id(s)>
 bcc=<email_id(s)>
 subject=<enter_subject_for_email>
 format=csv/ raw / table
 inline= true/false
 sendpdf=true/false

server=<email_server>

The parameter description of the sendemail command is as follows:

email_id(s): List of e-mail ID(s) can be specified for the to, from, cc, and bcc
parameters.
subject: Subject of the e-mail can be specified, for example, hourly report of
login failures, daily report of errors occurred, and so on.
format: This parameter is used to specify how the report is to be formatted for
inline e-mails. It specifies whether the result is to be displayed in a CSV, table, or
in raw format in the inline e-mail.
inline: If set to true, then the results are sent inline in the e-mail.
sendpdf: If set to true, then the results are sent as a PDF attachment in the e-mail.
server: The SMTP server address through which the e-mail is to be sent. If the
SMTP server is configured on the same host, there is no need to specify the server,
as the local host is set as the default SMTP server.

Refer to the following example for a better understanding:

index=_internal error | head 10 | sendemailto=test@domain.com
cc=cctest@domain.com subject="Top 10 errors of this hour"
sendpdf=true inline=true format=raw

The preceding search query will send an e-mail to <test@domain.com>, which will be

mailto:test@domain.com
https://technet24.ir

Cced to <cctest@domain.com> with the subject Top 10 errors of this hour
having a PDF attachment (sendpdf=true). The PDF will contain the top 10 errors of
the _internal index events in the raw (format=raw) format, and this information will
also be available inline (inline=true) in the e-mail.

mailto:cctest@domain.com

The localop command
Splunk is generally deployed in a distributed architecture, and it can have many
indexers and search heads in a real deployment environment. Whenever a search is run
on a search head, the results are fetched from all the indexers of the distributed
architecture. If the user wants to run the search on only local indexers and does not
require data from all the other remote indexes, then the localop command can be used.

The syntax for the localop command is as follows:

|localop

Refer to the following example for better lucidity:

Index=web_server error |localop | userIP

The preceding search query will return userIP only from the local indexer and error
from the local as well as remote indexers of Index=web_server.

https://technet24.ir

Subsearch
The search that is enclosed in a square bracket and whose result is passed as a
parameter value to the search is called a subsearch. Basically, subsearches are used
when the search requires some input that cannot be directly specified or that keeps on
changing. Hence, another search query is written, and the result is passed to the
original search.

Let's assume a user wants to know the location and IP address of top three users who
have failed the login attempt. Now, the top three users who are failing the login will
keep on changing, so subsearches are used. The subsearch will show the top three users
that will be passed to the original search. This search will result in the location and IP
address of those three users.

You will learn in detail how the preceding scenarios can be solved using various
subsearch commands.

The append command
The append command of the subsearch category, as the name suggests, is used to append
the result of one search with another search result. The subsearch may or may not have
the same name and the same number of fields. So, the append command is used to
append the final result of two searches (which cannot be combined in a single search)
into one result.

The syntax of the append command is as follows:

Search … |append [search …]

The example that follows will give you a better understanding of the append command:

index=_internal | stats count by sourcetype |head 3 | append [search
index=main | stats count by sourcetype | head 3]

The following screenshot describes the append command:

The preceding search query runs the subsearch specified under append, and the results
are appended with the search result of the main search query. So, in the preceding
screenshot, the first three rows are the results of the main query, and the last three rows
are the results of the subsearch written in the append section of the query.

https://technet24.ir

The appendcols command
This command is used to append the fields of one search result with another search
result (subsearch). The resulting fields are added row wise. For example, the first row
of the first search will be combined with the first row of the second search. In the
scenario when the fields of the first and second search results are common, then the
value will be overwritten by the result of second search.

The syntax of the appendcols command is as follows:

Search … |appendcols
 [override= true/false
 | search ...]

The override parameter accepts the Boolean value of true or false whether to
override the value of a common field with the result of a second search or not.

Refer to the following example for better lucidity:

index=_internal | timechart span=1d count as Count1| appendcols
[search index=_audit | timechart span=1d count as Count2]

The following screenshot describes the appendcols command:

In the preceding example query, the output column Count1 is the result of the first search
query and Count2 is the result of the second search query. The appendcols command
can be basically used for comparative analysis of two or more search results in the
same table or chart.

The appendpipe command
The appendpipe command is used to append the search results of the post process
(subpipeline) of the current result set. In short, appendpipe can be used to add a
summary to the current result set.

The syntax for appendpipe is as follows:

Search … | appendpipe [search …]

The following screenshot describes the appendpipe command:

Listed as follows is an example of appendpipe command:

index=_internal | stats count by action user | appendpipe [stats
sum(count) as count by action | eval user = "ALL USERS"] | sort
action

In the preceding example, appendpipe creates a summary of the edit action whose
count is grouped by the user. Thus, the third entry of the edit action has ALL USERS in
the user filed, and the count is the sum of all the users. Thus, appendpipe can be used
to create a summary of any number of fields by grouping them into one based on the
specified field.

https://technet24.ir

The join command
The join command is used to combine the results of the subsearch with the main search
result. The join command of Splunk works similar to the join command used in SQL.
Join in Splunk can be of mainly of two types, that is, inner join and left join (left join is
also known as outer join in Splunk). There should be at least one field common for the
join command.

The syntax for the join command is as follows:

search … | join jointype [search …]

The jointype parameter can be defined as Left Join (outer join) or Inner Join. If
the join type is not defined, then the default is set to Inner join.

Refer the following example for a better clarity:

| inputlookup dmc_assets | stats first(serverName) as serverName,
first(host) as host, first(machine) as machine | join type=outer
serverName [| rest splunk_server=Heart-Hackers
/services/server/info | fields serverName, numberOfCores,
physicalMemoryMB, os_name, cpu_arch]

The following screenshot describes the join command:

In the preceding example, the result highlighted in the left-hand box is the output of the
query written before the join command, and the one highlighted in the right-hand box is
the output of the subsearch written after the join command. In this example,
serverName is the common field that is used to join the output of both the search
actions, and the result is as shown in the preceding image. Information such as
cpu_arch, numberOfCores, os_names is fetched for the serverName specified, and the
results are matched and displayed as a single result.

https://technet24.ir

Time
The time subset of commands is used to enrich the data with the ability to search based
on time and make data more user friendly for analytics and visualization.

The reltime command
The reltime Splunk command is used to create a relative time field called reltime. It
shows the time value in a format that humans can read, relative to current time. The time
in reltime would appear as 2 hours ago, 3 days ago, 1 month ago, and so on.

The syntax for the reltime command is as follows:

… | reltime

Refer to the following example for better clarity:

index=_internal |reltime

As shown in the preceding screenshot, reltime creates a more user friendly and human
readable format output of relative time, which can be used in analytics and
visualizations.

https://technet24.ir

The localize command
The localize command is used to create a list of time ranges in which the results have
occurred.

The syntax for the localize command is as follows:

localize maxpause

The maxpause parameter can be used to specify the maximum time between two
consecutive events for a given time period. The default value for this parameter is 1
minute.

Mentioned as follows is an example of the localize command:

index=_internal |localize maxpause=5m

The preceding Splunk query will return all the events within a five minute time range.

Fields
The fields subset of commands on Splunk is used to add, extract, and modify fields and
field values. These commands help users enrich the data, do mathematical and string
operations on the fields, and derive insight from the data.

https://technet24.ir

The eval command
The eval command of Splunk is very useful and powerful. It can be used to evaluate
Boolean, mathematical, or string expressions. It can also be used to create custom (new)
fields using existing fields or arbitrary expressions. This command can be used to create
new fields, which is the result of some calculations, or use conditional operators such
as if, case, match, and so on to apply some expression and evaluate the result.

The eval command can also be used to coalesce fields from different sources or
indexes to create a transaction of events. The command can be used to extract
information to create multiple fields from an event(s).

The syntax for the eval command is as follows:

eval fieldname = expression/Functions

The parameter description of the eval command is as follows:

Expressions can be either arithmetic (+, -, *, /, %), Boolean (AND, OR, NOT, XOR,
LIKE), comparison (<, >, <=, >=, =, ==, !=), and concatenation operator (.)
There is a large number of functions that can be used in the eval expression. Some
of them are abs, if, lower, min, max, pi, power, random, split, and so on.

Refer to the following examples for better clarity:

… | eval Expression1 = (Field1 +Field2)/Field3

… | eval Result = min(field1, field2)

… | evalComplete_Address = Address_Line1." ".Address_Line2."

".Pincode

… | evalAndroid_Ver_Name = case(Version == 4.4, "KITKAT", Version

== 5.0, "LOLLIPOP", Version == 6.0, "MARSHMALLOW")

index=kitkat OR index=lollipop |

evalcache_errors=coalesce(dalvic_cache,art_cache)

Refer to the following list for an insight on the above examples:

In the first example, the eval command is used to do a mathematical calculation
where an addition of Field1 and Field2 is divided by Field3 and the result is
stored in Expression1.
In the second example, the eval command will store the minimum value from
field1 and field2 and store it in the Result variable.

In the third example, a concatenation operator (.) is used to concatenate
Address_Line1, Address_Line2, and pincode to get Complete_Address.
In the fourth example, case condition is used to get the name of the Android
version, that is, if the Version is 4.4, then the Android_ver_name field will get
assigned as KITKAT. If the Version is 5.0, then LOLLIPOP will get assigned and so
on.
In the fifth example, coalcese is used along with the eval command to fetch
information from different sources and indexes where field values are the same but
field names are different. For example, for index=kitkat, cache_error is
available under the dalvic_cache field, and for index=Lollipop, cache_error
is available under art_cache. So, basically, depending on the index, the cache
field name is changing, but the field information is the same. Hence, the coalcese
command can be used to combine and get the result into a new field. In our
example, the new field name is cache_errors.

https://technet24.ir

The xmlkv command
This command is used when the data is in the XML format to exact the key-value pairs
form the XML data. Using xmlkv automatically creates fields of the XML tags and
makes them available for use on Splunk for analytics.

The syntax for the xmlkv command is as follows:

… |xmlkv

Refer to the following example of the xmlkv command:

sourcetype="xmltest" | xmlkv

The following screenshot describes the xmlkv command:

The test XML file uploaded on Splunk looks like this:

<phone id="phone101">
 <Manufacuter>TestPhone1</Manufacuter>
 <Model>C2123</Model>
 <Android_ver>4.2</Android_ver>

 <price>44.95</price>
</phone>

After running the xmlkv command, fields from the XML file, such as Manufacturer,
Model, Android_ver, and price automatically get extracted from the file and are
available as fields that can be used to create analytics and visualizations. This xmlkv
command makes it easier to do to analysis on XML files.

https://technet24.ir

The spath command
This command is similar to the xmlkv command, but unlike xmlkv, which can be used
only for XML files, spath can be used on any structured data, such as JSON and XML
files, to extract the tags from the structured data into fields. spath commands can be
used to extract multivalued fields from JSON and XML events or to extract a subset of
an attribute.

The syntax for the spath command is as follows:

… |spath
 input=field_name
 output=field_name
 path=datapath

The parameter description of the spath command is as follows:

input: The field from which the data is to be extracted can be specified in this
parameter. The default value for this parameter is _raw.
output: The name of the field to which the data is to be extracted to. This is used
where a custom name of the field is needed rather than the auto extracted field
name.
path: This is the path of the value that is to be extracted. Let's take an example of a
path from the following sample XML file:

<library>
 <book category="Technical">
 <title lang="en">Splunk Basic</title>
 <author>Jack Thomas</author>
 <year>2007</year>
 <price>520.00</price>
 </book>
</library>

Now, the path of the tag year will be library.book.year and so on. Depending
on the hierarchy, the path can be defined and specified accordingly.

Take a look at the following example:

sourcetype="_json" | spath

As shown in the preceding example, using spath, structured data tags can be extracted
into fields. In the left box in the image, the path to the data can be seen like an access
alignment field and the path would be widget.image.alignment. The output
parameter can be used to get the value from the specified path into a fieldname of user
choice.

https://technet24.ir

The makemv command
This makemv Splunk command is used to convert a single value field into a multivalued
field based on the specified delimiter. This command can be useful to extract
information that is available in a single file. For example, from an e-mail ID,
xyz.abc@domain.com, the username and domain can be extracted using the makemv
command.

The syntax for the makemv command is as follows:

makemv delim=Delimiter_string
 | tokenizer=Regex/tokens
 Allowempty=true/false
 setsv=true/false

The description of the parameters is given as follows:

delim: Splits the string on every occurrence of the delimiter specified here. The
default delimiter is a single space.
tokenizer: A regular expression of a token that is to be matched in the string to
split.
setsv: If this parameter is set to true, then there is simultaneous existence of
multivalue and single value for the same field.

An example of the makemv command is discussed as follows:

sourcetype=EmailFile | makemvdelim="@" EmailID | table EmailID

As shown in the preceding screenshot and example, we will convert all the single value
EmailID fields into multivalued attributes by breaking them on every occurrence of @.
Hence, the EmailID field, after applying the makemv command, will have two values,
that is, username and the domain.

https://technet24.ir

The fillnull command
The fillnull command of Splunk is used to replace null values in fields with specific
user-defined values. Null values are those values that are present for one field but not
for another field in a result set. For example, we have a table that displays the personal
information of students, such as Name, Address, Phone Number, PAN Number, SSN
Number, and so on. It may happen that some students may not have a PAN number or
SSN number, so for that specific user, the corresponding filed value will be null. Using
fillnull, those null fields can be filled with user-defined values.

The syntax for the fillnull command is as follows:

… | fillnull value=String

Here, the value parameter is a string that the user wants in place of null.

Take a look at the following example of the fillnull command:

index="_audit" | table action info | fillnull value="NOT AVAILABLE"

As shown in the example, any null field will be filled with the user-defined value. In
our example, the user-defined value is NOT AVAILABLE. If the value parameter is not
specified, then the default value, that is, 0 will be entered.

The filldown command
The filldown Splunk is a customized version of the fillnull command, where
instead of filling user-defined or zero values to the null fields, the previous non-null
value for the field or field set is applied. In a scenario where there is no non-null
previous fields, then it will be left blank (NULL).

Refer the following command skeleton for the syntax of the filldown command:

… | filldown field-list

The field-list parameter is a list of fields to which filldown is applied. If the
field list is not specified, then all the fields are applied with filldown.

Take a look at the following example for a better understanding:

index="_audit" | table action info | filldown

As shown in the fillnull example image, the fields with null values were filled with
the user-defined string NOT AVAILABLE. On using filldown for the same instead of
null, the previous non-null value, that is, granted, is assigned to that respective field.

https://technet24.ir

The replace command
The replace command of Splunk works similar to the fillnull command. In the
fillnull command, only the null fields were filled up with respective user-defined
values, whereas in the replace command, any field value can be replaced with a user-
defined string. replace can be used to make the output more readable and
understandable to end users or so on. For example, if the user wants the 127.0.0.1
hostname to be replaced with localhost, or say, in my data, android_version is 5.0
and the user wants 5.0 android_version instead to read lollipop then the replace
command can be used.

The syntax of the replace command is as follows:

…|replace old_string WITH new_string IN Field_list

The parameter description is as follows:

old string: The string that is to be changed
new string: Specifies the new string to which the old string is to be changed
Field_list: List of fields to which this replace command is to be applied

Refer to the following examples for a better understanding:

Example 1: … | replace 127.0.0.1 WITH localhost IN host
Example 2: …| replace 5.0 WITH lollipop IN Android_version

In Example 1, every occurrence of 127.0.0.1 in the host field will be replaced by
localhost. Similarly, in Example 2, 5.0 will be replaced with lollipop in the
Android_version field.

Results
The Results set of commands is used to manage the output of the search results. This set
of commands can be used to filter the events, reformat the events, group them, reorder
them, and read and write on the results.

https://technet24.ir

The fields command
The fields command is used to keep (+) or remove (-) fields from the search results. If
+ is used, then only the field list followed by + will be displayed, and if – is used,
then the field list followed by – will be removed from the current result set.

The syntax for the fields command is as follows:

… | fields +/- field_list

Refer to the following example for better clarity:

index=_internal | top component cumulative_hits executes | fields –
percent

In the preceding screenshot, we have used the top command. The top command returns
the count and percentage of the specified fields. So, we have used fields – percent,
which shows all the fields, except percent. Similarly, the fields command can be used
to get the desired output.

The searchtxn command
The searchtxn command of Splunk is a useful command to get events that match the
specific text and transaction type. This command can be used to find a transaction that
satisfies a certain set of conditions. Let's say the user is interested in finding out all the
login failed attempts due to an incorrect password. In this case, the searchtxn
command can be used.

The syntax for the searchtxn command is as follows:

| searchtxn transaction-name
 search_query

Refer to the following for parameter descriptions:

transaction-name: Name of the transaction as defined in the
transactiontypes.conf file
search_query: The search string for which the transactions are needed

Refer to the following example for better clarity:

| searchtxn webmaillogin="failed"login_error="Password Incorrect"

The preceding query will return all the search transactions of the webmail that has login
as failed and a login error as Password Incorrect.

https://technet24.ir

The head / tail command
The head Splunk command is used to fetch the first n number of specified results, and
the tail command is used to fetch the last n number of specified results from the result
set.

The syntax for the commands is as follows:

… | head n
 | Expression

… | tail n

The parameter description for the preceding query is as follows:

n: The number of results to be returned.
Expression: Any eval expression that returns a Boolean value. The expression
will list out all the results until the Expression returns false.

The example of the head…tail commands is mentioned with the explanation, as
follows:

… | head 10
… | tail 10

In the preceding search query, the head 10 will list out first 10 events, and the tail 10
will return the last 10 events in the search results.

The inputcsv command
The inputcsv command of Splunk is a generating command and can be used to load
search results directly from the specified .csv file located in
$SPLUNK_HOME/var/run/splunk. The inputcsv command does not upload the data on
Splunk; it fetches it directly from the .csv file and loads the result.

Following is the syntax for the inputcsv command:

|inputcsv
 dispatch=true / false
 append=true / false
 events=true / false
 filename

A parameter description of the preceding query is as follows:

dispatch: If the dispatch parameter is set to true, then Splunk looks for the
.csv file in the dispatch directory, that is,
$SPLUNK_HOME/var/run/splunk/dispatch/<job id>/. The default value for
the dispatch parameter is false.
append: The append parameter, if set to true, appends the data from the .csv file
to the current result set. The default value for this parameter is false.
events: If the events parameter is set to true, then the content loaded from the
.csv file is available as events in Splunk where timeline, fields, and so on will be
visible as if the file is uploaded on Splunk. Generally, for the CSV file to get
loaded as events, a timestamp is required in the file.
filename: The name of the CSV file. Splunk first searches for the filename. If it
does not exist, it searches for the .csv filename. So, this means if the file exists but
does not have a .csv extension, that file will still get loaded using the inputcsv
command.

An inputcsv query looks like the one shown following:

|inputcsv TestCSV

https://technet24.ir

As shown in the preceding screenshot, the TestCSV file gets loaded into Splunk using
the inputcsv command from $SPLUNK_HOME/var/run/splunk as the dispatch
parameter is not set and by default it is false.

The outputcsv command
The outputcsv command of Splunk works exactly opposite to the inputcsv command.
This command exports the results into a .csv file at $SPLUNK_HOME/var/run/splunk.

The syntax for the outputcsv command is as follows:

Outputcsv
 append=true / false
 create_empty=true / false
 dispatch=true / false
 singlefile=true / false
 filename

The parameter description for the ouputcsv command is as follows:

append: If append is set to true, then the results are appended to the file if it
exists or a new file is created. If there is a pre-existing file and it has headers, then
headers are omitted during appending. The default value for this parameter is
false.
create_empty: In a scenario when there is no result and this parameter is set to
true, then Splunk creates an empty file with the name specified. If append and
create_empty are set to false and there is no result, then in this case, any pre-
existing files will be deleted.
dispatch: If set to true, then the output will be saved in the dispatch directory,
that is, $SPLUNK_HOME/var/run/splunk/dispatch/<job id>/.
singlefile: If this parameter is set to true and the result is in multiple files, then
Splunk collapses the output in one single file.
filename: Name of the file in which the result is to be stored.

Refer to the following example of the outputcsv command:

index=_internal | top component cumulative_hits | outputcsv ResultCSV

The preceding Splunk query will output the result of the query in to a filename,
ResultCSV, which will be stored at $SPLUNK_HOME/var/run/splunk.

https://technet24.ir

Summary
In this chapter, you studied Visualization using examples and gained in-depth knowledge
on using the important search commands needed for data manipulation, searching, and
basic analysis on the uploaded data. Now, in the next chapter, you will study with
practical examples and illustrations, how to use advanced analytics commands.

Chapter 5. Advanced Data Analytics
This chapter will take you through important advanced data analytics commands to
create reports, detect anomalies, and correlate the data. You will also go through the
commands for predicting, trending, and machine learning on Splunk. This chapter will
illustrate with examples the usage of advanced analytics commands to be run on Splunk
to get detailed insight on the data.

In this chapter, we will cover the following topics:

Reports
Geography and location
Anomalies
Prediction and trending
Correlation
Machine learning

https://technet24.ir

Reports
You will now learn reporting commands that are used to format the data so that it can be
visualized using various visualizations available on Splunk. Reporting commands are
transforming commands that transform event data returned by searches in tables that can
be used for visualizations.

The makecontinuous command
The Splunk command makecontinuous is used to make x-axis field continuous to plot it
for visualization. This command adds empty buckets for the period where no data is
available. Once the specified field is made continuous, then charts/stats/timechart
commands can be used for graphical visualizations.

The syntax for the makecontinuous command is as follows:

… | makecontinous
 Field_name
 bin_options

The parameter description of the makecontinuous command is as follows:

Field_name: The name of the field that is to be plotted on the x axis can be
specified.
Bin_Options: This parameter can be used to specify the options for discretization.
This is a required parameter and can have values such as bins / span / start-
end. The options can be described as follows:

bins: This parameter is used to specify the number of bins in which the data
is to be discretize.
span: This parameter is used to specify the size of the bin based on time or
log-based span.
start-end: This parameter is used to define the maximum and minimum size
of the bins for discretization.

Refer to the following example for better clarity:

| inputcsv datanse.csv |eval _time=strptime (date, "%e-%b-%y") |
table _time DAX | makecontinuous span=1w DAX

The following screenshot describes the makecontinuous command:

https://technet24.ir

The preceding screenshot shows the output of the search result on the Splunk web
console under the Visualization tab. The following screenshot shows the output of the
same result under the Statistics tab:

The preceding example output graph shows how there are breaks in the line chart when
there is non-continuous data. So, the makecontinuous command adds empty bins for
the period when no data is available, thus making the graph continuous. The second
tabular image shows the time field along with the DAX field, which is specified to be

made continuous and has values of 0. The span parameter is set to one week (1w),
which is basically the size/range of the bin created to make the data continuous.

https://technet24.ir

The addtotals command
The Splunk addtotals command is used to compute the total of all the numeric fields
or of the specified numeric fields for all the events in the result. The total value of
numeric fields can either be calculated for all the rows, for all the columns, or for both
of all the events.

The syntax for the addtotals command is as follows:

… | addtotals
 row=true / false
 col=true / false
 labelfield=Field_name
 label=Label_name
 fieldname=Fieldnames/ Field_list

Refer to the following list for parameter description about the options of the addtotals
command:

row: The default value for this argument is true, which means that when the
addtotals command is used, it will result in calculating the sum of all the rows or
for the specified field_list for all the events. The result will be stored in a new
field named as Total by default or can be specified in the fieldname parameter.
Since the default value is true, this parameter is used when the total of each row
is not required. In that case, this parameter will be set to false.
col: This parameter, if set to true, will create a new event called the summary
event at the bottom of the list of events. This parameter results in the sum of column
totals in a table. The default value for this parameter is false.
labelfield: The Field_name can be specified to the newly created field for the
column total. This field is used when the col parameter is set to true to override
the field name of the summary field with the user specified field_name.
label: The label_name can be specified to name the field for row total, which,
by default, has label_name as total with the user-specified fieldname.
fieldname: The list of fieldnames/field_list delimited by a space for which
the sum is to be calculated is specified in this parameter. If this parameter is not
specified, then the total of all the numeric fields is calculated.

Take a look at the following example of the addtotals command:

|inputcsv datanse.csv | table EM EU | addtotals col=true

The output of the preceding query will be similar to the following screenshot:

The Splunk addtotals command computed the arithmetic total of fields (EM and EU)
and resulted in the fieldname Total. The parameter col is set to true, which means
each column total is also calculated and resulted in the output.

https://technet24.ir

The xyseries command
The Splunk xyseries command is used to convert the data into a format that is Splunk
visualization compatible. In other words, the data will be converted into a format such
that the tabular data can be visualized using various visualization formats such as line
chart, bar graph, area chart, pie chart, scatter chart, and so on. This command can be
very useful in formatting the data to build visualizations of multiple data series.

Refer to the following query block for the syntax:

xyseries
 grouped=true / false
 x_axis_fieldname
 y_axis_fieldname
 y_axis_data_fieldname

The description of the parameters of the preceding query is as follows:

grouped: This parameter, if set to true, will allow multifile input, and the output
will be sorted by the value of x_axis_fieldname
x_axis_fieldname: The fieldname that is to be set as x axis in the output
y_axis_fieldname: The fieldname that is to be used as a label for the data series
y_axis_data_fieldname: The field or list of fields containing the data to be
plotted

Refer to the following example for better clarity:

|inputcsvabc.csv |stats sum(Hits) AS Hits by Date UserID Transaction
| eval temp=Date+"##"+UserID| table temp Transaction Hits | xyseries
temp, Transaction Hits | fillnull | rex field=temp "(?<Date>.*)##(?
<UserID>.*)" | fields - temp | table Date, UserID *

The output of the preceding query would look similar to the following screenshot:

The preceding screenshot is the sample data image, which shows the data points on
which we will run the xyseries command. The following screenshot shows the output
of the search result on the given dataset:

The first screenshot displays the data that is basically logging off the type of transaction
and number of hits with respect to UserID and Time. In a scenario when the user wants
a summary of, for example, all transactions done by each user on each date in the

https://technet24.ir

dataset, then the xyseries command can be used. In the example of xyseries, first, the
stats command is used to create a statistical output by calculating the sum of hits based
on Date, UserID and Transaction. Then, a temporary variable temp is created using
the eval command to add Date and UserID into a fieldname temp. The xyseries
command of Splunk is used to create a statistical output, and then, the temporary
variable temp is expanded into its original variables, that is, Date and UserID. Hence,
you get the result as required (shown in the second screenshot). Thus, the xyseries
command can be used to plot data visualization for multiple data series.

Geography and location
Here, you will learn how we can add geographical information in the current dataset by
referencing to the IP address, or if the data already has location information, then how
that data can be made visualization ready on the world map.

https://technet24.ir

The iplocation command
The Splunk iplocation command is a powerful command that extracts location
information such as city, country, continent, latitude, longitude, region, zip code, time
zone, and so on from the IP address. This command can be used to extract relevant
geographic and location information, and those extracted fields can be used to filter and,
create statistical analytics based on location information. Let's suppose we have data
with IP addresses of users making transactions on the website. Using the iplocation
command, we can find the exact location and analytics, such as the highest number of
transactions done from which state or continent, or in a location an e-commerce site is
more popular. Such kind of location-based insight can be derived using the iplocation
command.

The syntax for the iplocation command is as follows:

… | iplocation
 allfields= True / False
 prefix=Prefix_String
 IPAddress_fieldname

The description of the parameters of the preceding query is as follows:

Allfields: If this parameter is set to true, then the iplocation command will
return all the fields, such as city, country, continent, region, Zone,
Latitude, Longitude and Zip code. The default value is false, which returns
only selected fields such as city, country, region, latitude, and longitude.
Prefix: This parameter can be used to prefix a specific string (Prefix_String)
before each of the fields generated by the iplocation command. For example, if
Prefix= "WebServer_", then the fields will be WebServer_City,
WebServer_Country, and so on. This command is generally useful to avoid
clashing of the same field name and also if the iplocation command is used on
more than one index or sourcetype of different data sources then the prefix
command can help us identify which generated fields belong to which data.
IPAddress_fieldname: This is the field name in which IP addresses are
available. This field can be an autogenerated or extracted field that contains an IP
address.

Take a look at the following example:

index="web_server" | iplocationallfields=true prefix=VisitorIP_
device_ip | fields + VisitorIP_* device_ip

The output of the preceding query would look similar to the following screenshot:

In the preceding example, the allfields parameter is set to true. Hence, all the fields
are generated with the respective IP address. Also, the prefix is set to VisitorIP_, and
hence, all the fields city, country, continents, and so on are prefixed with the given
prefix and the field names are VisitorIP_city, VisitorIP_country, and so on. The
IPAddress_fieldname for the preceding example is device_ip, which, as shown in
the preceding image is the file with the IP address. Also, in the example, the fields
command, which was explained in the previous chapter, is used to display on selected
fields, that is, fields that have VisitorIP_ as a prefix and device_ip. In the preceding
screenshot, it can be seen that some fields are not populated for some specific IP
addresses. This is because the information is fetched from a database, and it may be that
not all information is available for respective IP addresses in the database.

https://technet24.ir

The geostats command
The Splunk geostats command is used to create statistical clustering of locations that
can be plotted on the geographical world map. If the data on Splunk has an IP address,
we can use the iplocation command to get the respective location information. If the
data already has location information, then using geostats, the location can be
summarized in a way so that it can be plotted on the map. This command is helpful in
creating visualization showing the required information on the map marked at its
location. Let's suppose, in our web server data, we can use the geostats command to
see the count of users doing transactions from all over the world on the map.

The syntax for the geostats command is as follows:

… | geostats
 latfield= Latitude_FieldName
 longfield= Longitude_FieldName
 outputlatfield=Output_Latitude_FieldName
 outputlongfield=Output_Longitude_FieldName
 binspanlat=Bin_Span_Latitude
 binspanlong=Bin_Span_Longitude
 Stats_Agg_Function... by-clause

The parameter description of the geostats command is as follows:

Latfield: The fieldname of the field that has latitude co-ordinates from the
previous search result.
Longfield: The fieldname of the field that has longitude co-ordinates from the
previous search result.
Outputlongfield: The longitude fieldname in the geostats output data can be
specified in this parameter.
Outputlatfield: The latitude fieldname in the geostats output data can be
specified in this parameter.
Binspanlat: The size of the cluster bin in latitude degrees at the lowest zoom
level can be specified in this parameter. The default value for this parameter is
22.5, which returns a grid size of 8*8.
Binspanlong: The size of cluster bin in longitude degrees at the lowest zoom
level can be specified in this parameter. The default value for this parameter is
45.0, which returns a grid size of 8*8.
Stats_Agg_Function: Stats functions such as count, sum, avg, and so on can be
used followed by by-clause.

Take a look at the following example:

index="web_server" | iplocationallfields=true prefix=VisitorIP_
device_ip |geostatslatfield=VisitorIP_latlongfield=VisitorIP_lon
count by status

The output of the preceding query would look similar to the following screenshot:

As shown in the preceding example, by running the geostats command, the geobin
field with clusters of latitude and longitude are created. They output the information on
the world map. Depending on the data and parameters specified, clusters are created
accordingly, and hence, the relevant information that is available in the preceding
screenshot as a tabular format can be available in the visualization of the world map.
You will learn how to create customized world map visualizations in detail in the
upcoming chapters.

https://technet24.ir

Anomalies
Anomaly detection, also known as outlier detection, is a branch of data mining that
deals with identification of events, items, observations, or patterns that do not comply to
a set of expected events or patterns. Basically, a different (anomalous) behavior is a
sign of an issue that could be arising in the given dataset. Splunk provides commands to
detect anomalies in real time, and this can useful in detecting fraudulent transaction of
bank credit cards, network and IT security frauds, hacking activity, and so on. Splunk
has various commands that can be used to detect anomalies. There is also a Splunk app
named Prelert Anomaly Detective App for Splunk on the app store. It can be used to
mine the data for anomaly detection. The following commands can be either used to
group similar events or to create a cluster of anomalous or outlier events.

The anomalies command
The anomalies Splunk command is used to detect the unexpectedness in the given data.
This command assigns a score to each event, and depending on the threshold value, the
events are then classified as anomalous or not. The event will be reported as anomalous
if the unexpected score generated by the anomalies command under the
unexpectedness field is greater than the threshold value. Due to this, it is very
important to decide and specify the appropriate threshold value to detect anomalies in
the given dataset.

According to Splunk documentations, the unexpectedness score of an event is calculated
based on the similarity of that event (X) to a set of previous events (P) based on the
following formula:

unexpectedness = [s (P and X) - s(P)] / [s(P) + s(X)]

The syntax for the anomalies command is as follows:

… | anomalies
 threshold=threshold_value
 normalize= True / False
 field=Field_Name
 blacklist=Blacklist_Filename

All the parameters for this command are optional. Running the anomalies command
creates the unexpectedness field with the unexpectedness score. The parameter
description of the anomalies command is as follows:

Threshold: The threshold_value parameter is the upper limit of normal events.
All the events having the unexpectedness field value greater than this threshold
value will be reported as anomalous.
Normalize: The default value of this parameter is true, which means the numeric
text in the events will be normalized. In the process of normalizing, all the numeric
characters from 0 to 9 are considered identical to calculate the unexpectedness
value.
Field: Using this parameter, the field on which the unexpectedness value is to be
calculated to detect the anomaly can be specified. The default value for this
parameter is _raw.
Blacklist: The name of the file located at
$SPLUNK_HOME/var/run/splunk/containing the list of events that should be

https://technet24.ir

ignored while calculating the unexpectedness score.

Take a look at the following sample query:

source="outlierData" | anomalies labelonly=false by Strength | table
Strength Latitude unexpectedness

The output of the preceding query would look similar to the following screenshot:

The example dataset is of mobile signal strength with respect to location. The dataset
has respective signal strength (fieldname—Strength) reported by the mobile device at
the given location (fieldname—Latitude). The Splunk anomalies command resulted in
12 anomalies in the dataset, with their respective unexpectedness value. Thus, using the
anomalies command can help find out the anomalies in the given dataset, along with the
unexpectedness value. The threshold parameter can be set to get the result with less or
more unexpectedness value.

The anomalousvalue command
The Splunk anomalousvalue command, as the name suggests, is used to find the
anomalous value from the given dataset. This command calculates the anomaly score for
the specified field-list by calculating the frequency of occurrence or by means of
standard deviation. This command can be used to find anomalous values that are less
frequent or the values that are at a distance from the other values of respective fields of
the dataset.

The syntax of the anomalousvalue command is as follows:

… | anomalousvalue
 action = filter / annotate / summary
 pthresh = Threshold_value
 field-list

The parameter description of the anomalousvalue command is as follows:

Action: This parameter defines what action is to be taken on the result. If the value
of this parameter is filter, which is also the default value of this parameter, it
will show only the anomalous value in the result. The non-anomalous values are
ignored in the result. If the value of this parameter is summary, then the result
shows the statistical table containing fields such as count, distinct count,
mean, Standard deviation, Support, and various statistical frequencies. If the
action is set to annotate, then the result will show a new field containing the
anomalous value.
pthresh: This parameter is used to specify the threshold value to mark a value as
an anomalous value. The default value of this parameter is 0.01.
field-list: The list of fields for which the anomalous value is to be outputted. If
the field list is not specified, then all the fields of the events will be considered to
calculate the anomalous value.

Refer to the following example for better clarity:

source="outlierData" |table Strength Latitude | anomalousvalue
Strength

https://technet24.ir

The dataset used for this example is the same as the preceding example of the
anomalies command. The anomalousvalue Splunk command on the strength field,
Strength, resulted in five events out of a total of 831 events. This means that for the
respective Latitude values, the corresponding Strength value is anomalous in the
result. This command also resulted in Anomaly_score for the Strength field, which
depicts the anomaly score of the respective anomalous value.

The cluster command
Clustering is a process of grouping events on the basis of their similarity. The cluster
Splunk command is used to create groups based on content of events. According to the
Splunk documentation, Splunk has its own algorithm of grouping the fields into clusters.
The events are broken into terms (match=termlist), and then the vectors between
events are computed. This command creates two custom fields, one that is the size of the
cluster and the other cluster has the grouped events in it.

The syntax of the cluster command is as follows:

… | cluster
 t = Threshold_value
 field = Fieldname
 match = termlist / termset / ngramset
 countfield = Count_FieldName
 labelfield = Label_FieldName

The description of the parameters of the preceding query is as follows.

There are no compulsory parameters for this command. All the parameters are optional:

T: This parameter is used to specify threshold_value to create the clusters. The
default value for this parameter is 0.8, which can range from 0.0 to 1.0. Let's say if
threshold_value is set to 1, that means a greater number of similar events will
be required to be placed in one cluster than if the value is 0.8.
Field: This parameter can be used to specify on which field of every event the
clusters are to be created. The default value for this parameter is the _raw field.

Match: The grouping to create clusters in Splunk is done in the following
three ways, which can be specified in this parameter:
Termlist: This is the default value for a match parameter that required the
exact same ordering of the terms to create a cluster.
Termset: An unordered list of terms will be considered to create the cluster.
Ngramset: Compares sets of three character substrings (trigram).

Take a look at the following example:

source="DataSet.csv" |cluster

The output of the earlier query would generate an output like the following:

https://technet24.ir

The dataset used for this example contains sepal length, sepal width, petal length, and
petal width of three different species of plants. Given the values of sepal length, sepal
width, petal length, and petal width their species could be determined. The cluster
Splunk command creates three clusters, each containing each of the species in the given
data. This is a very simple example for explanatory purpose, but this command can be
very useful in creating clusters of events with similarities. Splunk provides the match
parameter, which can be used for different grouping methods such as Termlist,
Termset, and ngramset. If the algorithm is not giving accurate results of the clusters,
then the threshold value can be set accordingly by proving value to the T parameter in
this command.

The kmeans command
K-means is an algorithm of cluster analysis in data mining. The kmeans Splunk
command is used to create clusters of events defined by its mean values. The k-means
clustering can be explained with the help of an example. Let's say I have a dataset that
has information about Jaguar cars, jaguar animals, and Jaguar OS. Using k-means, three
clusters can be created, with each cluster having events of respective types only.
Basically, k-means creates a cluster of events on the basis of their occurrence of other
events. If event X occurs, then almost 90 percent of the time, event Y also occurs.
Hence, k-means can be used to detect issues, frauds, network outages, and so on in real
time.

Take a look at the following query syntax:

… | kmeans
 k = k_value
 field_list

The list that follows describes the parameters of the preceding query.

There are no mandatory parameters for this command. All the parameters are optional.:

K: Specifies the k_value, which is the integer value defining the number of
clusters to use in the algorithm. The default value of k is 2.
Field_list: List of fields that are to be considered to compute the algorithm. By
default, all the numeric fields are considered and non-numeric fields are ignored.

An example of the kmeans query looks like the one that follows:

sourcetype=kmeans | table Group Alcohol diluted_wines |kmeans k=3

The output would look similar to this:

https://technet24.ir

The dataset used in the preceding example is data containing various ingredients of
three different alcohols. The Splunk command kmeans creates three cluster (k=3) under
the CLUSTERNUM fieldname. To verify the result, if the clusters made by kmeans
match with the actual group, the Group field is shown in the preceding example image.
Cluster 1 matches with group 1, and cluster 2 matches with group 2. The kmeans
command can be useful in creating clusters as per requirement. Let's suppose we are
aware that the dataset is of three different alcohol types but want to cluster it into two
groups only. In this case, k=2 can be used in the command. The kmeans command also
calculates the centroid of each field and displays it in the result. K-means is one of the
efficient algorithms of clustering.

The outlier command
According to statistics, an outlier is an event that is at a distance from other events in the
typical distribution of data points. An outlier can be caused due to issues or errors in the
system from where the dataset is generated. The outlier Splunk command is not used
to find out the outliers, but it removes the outlier events from the data. This command
removes the outlying numeric values from the specified fields, and if no fields are
specified, then the command is processed on all the fields.

The Splunk documentation states the filtering method used in the outlier command is
Inter-quartile range (IQR).that is; if the value of a field in an event is less than (25th
percentile) - param*IQR or greater than (75th percentile) + param*IQR, that field is
transformed or that event is removed based on the action parameter.

The syntax for the outlier command is as follows:

… | outlier
 action = remove / transform
 mark = true / false
 param = param_value
 uselower = true / false

The parameter description of the outlier command is as follows.

There are no mandatory parameters for this command. All the parameters are optional:

Action: This parameter specifies the action to be performed on the outliers. If set
to remove, then the outliers containing events are removed, whereas if set to
transform, then it truncates the outlying values with the threshold value. The
default option for this parameter is transform.
Mark: This command prefixes the outlying value with 000 if action is set to
transform and this parameter is set to true. If action is set to remove, then this
parameter is ignored. The default value for this parameter is false.
Param: This parameter defines the threshold value for the outlier command with
the default value as 2.5.
Userlower: If set to true, then the values below the median will also be
considered for the outlier calculation. The default is set to false, which only
considers the values above the median.

Take a look at the following example:

https://technet24.ir

source = "outlier2.csv" | outlier action=remove Strength

The output should look like that shown in the following screenshot:

As explained earlier, the outlier Splunk command can be used to either remove or
transform the outlier values. In the preceding example, action is set to remove for the
outlier command on the strength field which removes the outlying values from the
result. In the preceding screenshot, the last three entries of strength are not available as
those values of the strength field were outliers. Using this command and setting action
to transform can transform the outlying values into the threshold limit. Thus, this
command can be useful in finding out outlier values for the specified or, by default, for
all the numeric fields.

The rare command
As the name suggests, the rare Splunk command finds the least frequent or rare values
of the specified field or field list. This command works exactly the opposite of top
commands, which return the most frequent values. The rare command returns the least
frequent values.

The syntax for the rare command is as follows:

… | rare
 countfield=Count_FieldName
 limit= Limit_Value
 percentfield= Percentage_FieldName
 showcount= true / false
 showperc= true / false
 Field_List… by-clause

The description of the parameters of the preceding query is as follows.

Of all the preceding parameters, Field_List is the compulsory field. The rest are
optional and can be used as per requirement:

Field List: This is the only compulsory field of this command is used to specify
the list of fields on which the rare command is to be run to calculate the rare
values. The specified fields or the field list's rare values will be calculated and
shown in the results. The field lists can be followed by the by clause to group one
or more fields.
CountField: This parameter defines the field name (Count_FieldName) where
the count of rare values is written. The default value for this parameter is count.
Limit: This parameter defines the number of results returned by this command.
The default value is 10.
PercentField: The fieldname (Percentage_FieldName) in which the percentage
values are to be stored can be specified in this parameter.
Showcount: If this field is set to false, then the Count field is not shown in the
results. The default value of this parameter is true.
Showperc: If this field is set to false, then the Percentage field is not shown in
the results. The default value of this parameter is true.

The sample query should look like this:

index="web_server" | rare limit=6 countfield=RareIPCount

https://technet24.ir

PercentField=PercentageRareValuesdevice_ip

The above query will generate an output like the following screenshot:

In the preceding screenshot, for the rare Splunk command, we have used data that
contains visitor information on an Apache-based web server. Using this command on the
device_ip field with a limit of 6 resulted in the top six rare IP addresses, along with
the count (RareIPCount) and the percentage (PercentageRareValues). Thus, this
command can be used to find rare values from the given dataset, along with the count
and percentage of their occurrence.

Predicting and trending
The following set of commands are used to predict the future values based on the
historic values and pre-existing data sets and to create trends for better visualization of
the data. Using the prediction technique, an error or issue that could arise in future can
be predicted and then preventive measures can be taken. The following set of commands
can be used to predict possible network outage, any device/server failures, and so on.

https://technet24.ir

The predict command
The Splunk predict command can predict the future values of time series data. Time
series is a set of values in the given dataset over time intervals. Examples of time series
data can be data generated by machines as per their daily usage. This can be stock
values of any script over the day, week, month, year, and so on. Basically, time series
data can be any data that has data points over the time interval. Let's take an example.
The Predict command can be used to predict the network condition of an LTE network
for the next week based on the data of the current month or the number of visitors the
website can probably get in the next week, based on the current dataset. Thus, this
command can be used to predict future performance, requirements, outages, and so on.

Take a look at the following query block for the syntax:

… | predict
 Fieldname (AS NewFieldName)
 Algorithm = LL / LLP / LLT / LLB / LLP5
 Future_timespan = Timespan
 Period = Period_value
 Correlate = Fieldname

Only the fieldname for which new values are to be predicted is the compulsory
parameter. The rest all are optional parameters. The parameter description of the
predict command is as follows:

Fieldname: The name of the field for which values are to be predicted. The AS
command followed by NewFieldName can be used to specify the custom name for
the predicted field.
Algorithm: This parameter accepts the algorithm to be used to compute the
predicted value. Depending on the dataset, the respective algorithm can be used.
According to the Splunk documentation, the predict command uses Kalman
Filter and its variant algorithms, namely LL, LLP, LLT, LLB, and LLP5:

Local Level (LB): Univariate model that does not consider trends and
seasonality while predicting.
Seasonal Local Level (LLP): Univariate model with seasonality where
periodicity is automatically computed.
Local Level Trend (LLT): Univariate model with trends but with no
seasonality.
Bivariate Local Level (LLB): Bivariate model with no trends and no
seasonality.

LLP5: Combination of LLP and LLT.
Future_timespan: This is a non-negative number (Timespan) that specifies
the length of prediction into the future.
Period: This parameter defined the seasonal period for time series dataset.
The value of this parameter is required only if the Algorithm parameter
value is set to LLP or LLP5.
Correlate: Name of the field (Fieldname) to correlate with in the case of
the LLB algorithm.

An example query for the predict query is shown as follows:

|inputcsvPrdiction.csv | eval _time=strptime(DateTime, "%d.%m.%Y
%H:%M:%S") | timechart span=10m count(Value) AS Value | predict Value
as PredictedValue algorithm=LL future_timespan=1

The preceding query should produce an output like the following screenshot:

The preceding screenshot shows the tabular (statistical) output of a search result on
Splunk web for the predict command. The following screenshot shows the same
prediction in the visualization format:

https://technet24.ir

In the preceding screenshot, we used the predict command to predict the next 1
(Future_timespan=1) value of the Value fieldname and the algorithm used is Local
Level (LL). We have used the strptime command to format the date and time (field
name—DateTime) into Splunk understandable time (field name—_time) format. The
predict line chart shows the prediction in a graphical format to understand and visualize
the predicted result in a better format. Thus, the predict command can be used to
predict the value of the factor specified. The predict command also predicts the lower
and upper range of values for the predicted field. This command is very useful in
predicting the demand of the product in future, given the historical data, the number of
visitors, KPI values, and so on. Thus, it can be used to plan and be ready for future
requirements in advance.

The trendline command
The trendline Splunk command is used to generate trends of the dataset for better
understanding and visualization of the data. This command can be used to generate
moving averages, which includes simple moving average, exponential moving average,
and weighted moving average.

The syntax for the trendline command is as follows:

… |trendline (TrendType Period "("Fieldname")" AS NewFieldName)
 TrendType = ema / wma / sma

The description of the parameters of the preceding query is as follows:

TrendType: The trendline Splunk command, at present, supports only three
types of trends, that is, Simple moving average (sma), exponential moving
average (ema), and weighted moving average (wma).

SMA and WMA are computed on a period over the sum of the most recent values.
WMA concentrates more on the recent values compared to the past values.

EMA is calculated using the following formula:

MA(t) = alpha * EMA(t-1) + (1 - alpha) * field(t)

where alpha = 2/ (period + 1) and field(t) is the current value of a field.
Period: The period over which the trend is to be computed. The value can range
from 2 to 10000.
Field: The name of the field of which the trend is to be calculated is specified in
this parameter. An optional AS clause can be used to specify the new field name
(NewFieldName) where the results will be written.

Take a look at the following example query:

|inputcsvdatanse.csv | eval _time=strptime (date, "%e-%b-%y") |
trendlinesma5(DAX) AS Trend_DAX

The output of the preceding query should look like the following:

https://technet24.ir

The preceding screenshot shows the statistical output of the trendline command on the
Splunk web console, whereas the following screenshot shows the same result in a
visualization format:

In this example, we used stock index test data. Using the trendline command, the
moving average of the DAX field is created as Trend_DAX. The trendline command

can calculate different moving averages, such as simple, exponential, and weighted. In
this example, we have calculated the simple moving average (sma) with period value as
5, and hence, in the example, you see sma5(DAX). In the visualization, the simple
moving average for DAX superimposed with original DAX values can be seen. Thus,
the trendline command can be used to calculate and visualize different moving
averages of the specified field and proper inference can be made out from the dataset.

https://technet24.ir

The x11 command
The Splunk command x11 is like the trendline command and is also used to create
trends for the given time series data. The difference is the method that is based on the
x11 algorithm to create the trend. The x11 command can be used to get the real trends of
the data by removing seasonal fluctuations in the data.

Take a look at the syntax for the x11 command:

… | x11
 Add() / Mult()
 Period
 Field_name AS New_Field_name

The parameter description for the x11 command is as follows:

Add()/Mult(): This parameter with default value mult() is used to specify
whether the computation is to be additive or multiplicative.
Period: This parameter can be used to specify the periodicity number of the data,
that is, the period of data relative to the count of data points.
Field_name: The name of the field for which the seasonal trend is to be calculated
using the x11 algorithm. This command can be followed by the AS command to
specify the name of the new field, which will be shown in the result with the
computed values of trends.

Take a look at the following example:

|inputcsvdatanse.csv | eval _time=strptime (date, "%e-%b-%y")| table
_time DAX |x11 DAX AS Trend_X11_DAX

The output generated should be like the one that follows:

The preceding screenshot shows the output of the x11 command in a tabular (statistical)
format, whereas the following screenshot shows the same result in the form of
visualization:

As explained earlier, the Splunk command x11 is used to compute the trends of the data
by removing seasonality. The data used to showcase this example is the same as for the
trendline command. The output result of both the trendline and x11 commands can
be compared as both are commands to compute the trends. The visual difference in the
graphs shows how the trends will look like when seasonality is removed while
computing the trends.

https://technet24.ir

Correlation
The following set of commands that belongs to the set of the Correlation category of
Splunk is used to generate insight from the given dataset by correlating various data
points from one or more data sources. In simple terms, correlation means a connection
or relationship between two or more things. The set of commands includes associate,
contingency, correlate, and so on.

The correlate command
The correlate Splunk command is used to calculate the correlation between different
fields of the events. In simpler terms, it means that this command returns an output that
shows what is the co-occurrence between different fields of the given dataset. Let's say
I have a dataset that has information about web server failures. Then, using the
correlate command, a user can find out whenever there is a failure what other field
values have also occurred most of the time. So, insight can be generated to show that
whenever X set of events occurs, Y also occurs, and hence, failures can be detected
beforehand and action can be taken.

Syntax for the correlate command is as follows:

… | correlate

The example query should looks like the following one:

index="web_server" | correlate

The screenshot that follows shows the output of the preceding query:

This command of Splunk does not require any parameters. The dataset used to showcase
this example is a test data, having visitor information on an Apache web server. The
correlate Splunk command resulted in a matrix that shows the correlation coefficient

https://technet24.ir

of all the fields in the given dataset. The correlation coefficient determines the relation
or dependency of the respective fields with each other.

The associate command
The associate Splunk command is used to identify the correlation between different
fields of the given dataset. In general, association in data mining refers to identifying the
probability of co-occurrence of items in a collection. The relationship between co-
occurring items are expressed as association rules. Similarly, this command identifies
the relationship between fields by calculating the change in entropy. According to the
Splunk documentation, entropy in this scenario represents whether knowing the value of
one field can help in predicting the value of other fields. Association can be explained
by the famous bread-butter example. In a supermarket, it is observed that most of the
time, when bread is purchased, butter is also purchased, and bread and butter have a
strong association.

The syntax for the associate command looks like following:

… | associate
 Associate-options
 Field-list

The parameter description of the associate command is as follows:

Associate-options: This parameter can be replaced by the values of supcnt,
supfreq, and improv. The output will depend on the use of the respective
parameters:

supcnt: This parameter, having the default value as 100, is used to specify
the minimum number of times the key-value pair should appear.
supfreq: This parameter specifies the minimum frequency of the key-value
pair as a fraction of the total number of events. The default value of this
parameter is 0.1.
improv: This parameter is basically a threshold or limit specifier for
minimum entropy improvement for the target key. The default limit is 0.5.

Field-list: The list of fields that is to be considered to analyze the association.

The output of this command will have various fields, namely Reference Key, Value,
Target key, Entropy, and Support.

Refer to the following example for better clarity:

index=_internal sourcetype=splunkd | associate

https://technet24.ir

The result of the associate command is quite long horizontally. Hence, the preceding
screenshot shows the first section of the result, whereas the following screenshot shows
the second section of the result on the Splunk Web console:

In the preceding example, the associate Splunk command is run on the Splunk internal
index (_internal), which logs various activities of the Splunk instance, the sourcetype
splunkd logs data that is required to troubleshoot Splunk. The associate command on
this data resulted in values in fields such as reference_key, reference_value,
target_key, Support, Entropy (Conditional and Unconditional), and
Description. As shown in the example, the description parameter explains that when
the avg_age has a value of 0.0, the entropy of ev decreases from 5.907 to 4.197.
Similarly, the associate command can be run on any data to get the associativity of
different fields and various parameters to understand the associativity between them.

The diff command
The diff Splunk command is used to compare two search results and give line-by-line
difference of the same. This command is useful in comparing the data of two similar
events and deriving an inference out of it. Let's say we have a failure case due to a
Denial of Service (DOS) attack on the web server. Using the diff command, the
results of the last few failure cases can be compared, and the difference between those
results can be outputted in the result so that such cases can be avoided in future.

The syntax for the diff command looks as follows:

… | diff
 position1=Position1_no
 position2=Position2_no
 attribute=Field_Name

The parameter description for the diff command is as follows:

Position1: This parameter is used to specify the Position1_no of the table of
the input search result which is to be compared to the value of Position2
Position2: This parameter is used to specify the Position2_no value of the table
that will be compared to Position1
Attribute: This parameter is used to specify the field_name, whose results are
to be compared with the specified position1 and position2.

Following is an example of the diff command:

index="web_server" | diff position1=19 position2=18

The preceding diff query should produce an output like that in the following
screenshot:

https://technet24.ir

The dataset used for this example is the test visitor information of the Apache web
server, which was used in earlier examples. The diff Splunk command is used to
compare the results of the specified position (in our example, the positions are 19 and
18). The results show that there was no difference between the results of position 18
and 19 for the _raw field as no value was passed to the attribute parameter. Thus,
this command can be used to find the difference between the results of two positions.

The contingency command
The contingency Splunk command is used to find support and confidence of the
association rule and build a matrix of co-occurrence of values of the given two fields of
the dataset. Basically, the contingency table is a matrix that displays the frequency
distribution of the variables that can be used to record and analyze the relation between
two or more categorical variables. The contingency table can be used to calculate
metrics of associations such as the phi coefficient.

Refer to the following query block for the syntax:

… | contingency
 contingency-options - maxopts / mincover / usetotal / totalstr
 field1
 field2

The description of the parameters of the preceding query is as follows:

contingency-options: The contingency option for this parameter can be any one
of the following options. All of them are optional:

maxopts: This parameter can be used to specify maxrows and maxcols, that
is, the maximum number of rows and columns to be visible in the result. If
maxrows=0 or maxcols=0, then all the rows and columns will be shown in
the result.
mincover: This parameter is used to specify the percentage of values per
column (mincolcover) or row (minrowcover) to be represented in the output
table.
usetotal: If this parameter is set to true, then it adds rows, columns, and
complete totals.
totalstr: The fieldname of the total rows and column.

Field1: The first field name to be analyzed
Field2: The second field name to be analyzed

Refer to the following example for better clarity:

index="web_server" | contingency useragent device_ip

The following screenshot is the output of the preceding query:

https://technet24.ir

The contingency Splunk command is used build a matrix of co-occurrence of the
values. The dataset is the same as the one used in the preceding command example.
Here, in this example, the contingency command on fields (useragent and
device_ip) resulted in the co-occurrence matrix of both the specified fields. For
example, from the first row, inference can be derived that all but the first and third users
(device_ip—125.17.14.100 and 131.178.233.243) have accessed the web server
from Blackberry9650. Similarly, except the first user (device_ip—125.17.14.100),
others have accessed the web server from BlackBerry8520 and so on. Thus, using
contingency, such useful hidden insights can be derived and used.

Machine learning
Machine learning is a branch of computer science that deals with pattern recognition to
develop artificial intelligence. The intelligence thus studies and generates algorithms
that can be used to make precise predictions on the given dataset. Machine learning can
be used and implemented to analyze public interest from social media data and make
pricing decisions using data-driven statistics for an e-commerce website. Thus, machine
learning can be very useful to track the given data and reach to a conclusion for business
decisions. Machine learning can be effectively implemented on data financial services,
media, retail, pharmaceuticals, telecom, security, and so on.

You already know the Splunk commands for predicting and trending, but now, you will
learn how machine learning can be effectively applied on the data using Splunk and
apps from the Splunk app store.

The process of machine learning is explained in the following diagram:

https://technet24.ir

The preceding flowchart can be explained and understood well using the following
example:

The Splunk machine learning command fit (modeling using training), apply (learning),
and Summary (prediction)) can be used to implement machine learning. The Splunk app
ML Toolkit needs to be installed to implement machine learning.

The Splunk ML Toolkit app provides the end user with the facility to create a model,
refine the model, apply to make a prediction, and detect anomalies for better and
efficient prediction. The toolkit app has various examples of machine learning
implemented using numerical and categorical values.

https://technet24.ir

Thus, using the Splunk app, artificial intelligence about the data can be developed and
crucial business decisions can be taken beforehand by predicting the condition based on
historical data.

Summary
In this chapter, you learned about various advanced Splunk commands that can be used
for reporting and visualizations. You also learned to detect anomalies, correlate data,
and predict and trend commands. This chapter also explained about the Machine
Learning Toolkit capabilities and how they can be used in implementing artificial
intelligence (AI) for efficient prediction, thus enabling users to make informed business
decisions well in advance. Next, you will learn about various visualizations available
in Splunk and where and how they can be used to make data visualization more useful.

https://technet24.ir

Chapter 6. Visualization
In the previous chapter, you learned various important commands that can be used in
Splunk over data. These Splunk commands provide data in a statistical format. Now, in
this chapter, you will learn the details of the basic visualizations that can be used in
Splunk to represent the data in an easy-to-understand format. You will learn data
representation in terms of visualization and along with that, we will also go through
how to tweak graphics as per the required format that is more understandable.

The following topics will be covered in this chapter:

Tables
Single value
Charts
Drilldown

Prerequisites – configuration settings
The Splunk command usually opens the Statistics tab by default when we run Splunk
search queries over the web console. The following are generic steps to be taken to
view the respective visualization on the Splunk Web dashboard. When we run a search
command on Splunk, the results are shown in the Statistics tab, as shown in the
following screenshot:

Once the output is available and a statistical command is used in the search query, when
we click on the Visualization tab, the default visualization will be visible, as shown in
the following screenshot. The top-left option, Format, can be used to format of the
visualization:

https://technet24.ir

The respective visualization can be chosen from the visualization picker (marked with a
rectangular box in the preceding screenshot), which is available at the top-left corner of
the Visualization tab. The following screenshot shows the default visualization
available in Splunk, and apart from the following visualization, custom and advanced
visualization can also be added, which we will cover in the next chapter:

Now, since we are aware of how to choose different types of visualization, as shown in
the preceding screenshot, we can start learning which visualization is used in which
scenario.

https://technet24.ir

The preceding visualization can be added to a dashboard panel so that we can access
XML (eXtensible Markup Language) to customize the visualization in a more
convenient and required format.

The following are the steps to add visualization as a dashboard panel:

1. Run the Splunk search query so that the result is available in the "Statistical" or
"Visualization" panel on the Splunk Web console.

2. From the top-right corner, navigate to Save As | Dashboard Panel. A window
similar to following one will pop up:

3. Fill in all the details, such as Title, Description, and Content, and then click on
Save.

4. The next screen will take you to a dashboard, where the search panel with the
output will already be available.

5. To customize the panel with the prebuilt options, from the top-right corner Edit

https://technet24.ir

option choose the Edit Panels option. Then, all the respective panels' Searching,
Formatting, and Visualization options can be configured.

6. To customize a single panel or complete dashboard with the features that are not
prebuilt in the option menu, we need to modify XML. XML can be changed by
navigating to Edit | Edit Source:

7. In the Source edit screen, for each row and for each panel in the dashboard, the
search query and formatting options' code will be available. In the section, a new
code can be added for the customization. Once the modification is done in the
code, click on Save to see the changes in the result.

In order to make changes and access values in XML, respective tokens need to be
defined and accessed from time to time. The following is the list of comprehensive
tokens that can be used in XML of the Splunk dashboard to set or access corresponding
values from the visualization:

$click.name$: This token will return the field name of the leftmost column of the
clicked row
$click.value$: This token will return the value of the leftmost column of the
clicked row
$click.name2$: This token will return the field name of the clicked row value
$click.value2$: This token will return the value of the clicked row
$row._time$: This token will return the value holder by _time field of the
clicked row

$row.fieldname$: This token will return the value of the respective field name of
the clicked row
$earliest$: This token can be used to get the earliest time specified for the
search query
$latest$: This token can be used to get the latest time specified for the search
query

The following screenshot illustrates a necessary example to understand the use of the
preceding tokens. The sharp-cornered boxes are values of the round-cornered boxes
(tokens):

The following are the respective values of the token when the fifth row, Purchase (as
marked in the preceding screenshot), is clicked as present in the Transaction field:

$click.name$: Date
$click.value$: 1/2/2016
$click.name2$: Transaction
$click.value2$: Purchase
$row._time$: 2016-01-02
$row.Location$: Shower
$row.Place$: Bathroom
$row.Hits$: 3
$row.Type$: PIR
$row.UserID$: Test121

https://technet24.ir

Tables
Most of the Splunk commands result in an output that is in a tabular format and
displayed in the Statistical tab on Splunk Web. Now, you will learn about all the feature
customizations and formatting that can be done on the tabular output.

https://technet24.ir

Tables – Data overlay
The important point to note here is that the Table output is available on the Statistical
tab and not on the Visualization tab. The tabular output is basically a simple table
displaying the output of a search query. The tabular output can be obtained by either
using statistical and charting functions, such as stats, charts, timecharts, or various other
reporting and trending commands.

The following is the list of formatting and customization options available directly from
the Splunk Web console in the Format option of the tabular output:

Wrap result: Whether the result should be wrapped can be enabled or disabled
from here.
Row numbers: This option can enable the row number in the result.
Drilldown: The tabular output can be enabled to drilldown either on a cell level or
row level from this option. If drilldown is not required, it can be disabled as well.
Data overlay: The heat map or data overlay can be enabled from the format option
of the tabular output.

Let's see how to create a tabular output and format options with the help of the
following example:

index=* | top sourcetype

The preceding search query will search all the indexes of Splunk and return the count
and percentage (top) on the basis of sourcetype.

The output of the preceding search query is as follows:

In the preceding example, we enabled row numbers, row drilldown, and low and high
data overlay. Similarly, depending on the requirement necessary, formatting and
customization options can be enabled and disabled.

https://technet24.ir

Tables – Sparkline
Now, since you've learned how to enable various formatting and customization options,
we will see how to show Sparkline in a table output. For Sparkline, we will make use
of the chart command, as shown in the following example query:

index=* | chart count sparkline by sourcetype

The output of the preceding search query will result in the count of all sourcetype in
all the indexes of Splunk. Sparkline along with the chart command is used here to
enable Sparkline in the given output. The output has Heat Map enabled from the
Format option, and hence the count column can be seen with Heat Map as shown in
the following screenshot:

This is the basic Sparkline; we can also create customized Sparklines by modifying
XML. The steps on how to access the XML code is already shown in the Prerequisites –
configuration settings section of this chapter. Now, you will learn how to modify the
code for customized visualizations.

Sparkline – Filling and changing color

In the preceding section, we looked at Sparkline. Now, we will see a variant of

Sparkline wherein we can change colors and fill colors in Sparkline. Let's see how to
do this with the help of an example.

The following code needs to be added in XML to change the fill in the Sparkline and to
change the color of the Sparkline:

<format type="sparkline" field="sparkline">
K á <option name="lineColor">#5379af</option>
 <option name="fillColor">#CCDDFF</option>
</format>

In the preceding code, field should be the name of the field holding the Sparkline. As
shown in the preceding example's screenshot, Sparkline is available under the field
name Sparkline. The linecolor and fillcolor option is provided with the HTML
format's color code to be applied on the Sparkline.

The preceding code needs to be added to the respective panel of the dashboard, which
can be identified using <title> or search query in case the dashboard has many panels.
The code needs to be added just before the end of </table>, as shown in the following
screenshot:

https://technet24.ir

The output of the preceding change in the code is as follows. The color has been
changed and Sparkline is filled with the given color. The following output can be
compared to the example in the earlier section of Sparkline and the difference can be
seen:

Sparkline – The max value indicator

In this section, we will have a look at a Sparkline that has a maximum value indicator.
This can help us easily spot the maximum value with the help of the maximum value
indicator using Sparkline.

The following code will add a max value indicator to Sparkline:

<format type="sparkline" field="sparkline">
<option name="lineColor">#5379af</option>
<option name="fillColor">#CCDDFF</option>

<!-- Max Value Indicator -->
<option name="maxSpotColor">#A2FFA2</option>
<option name="spotRadius">3</option>

</format>

The output of the preceding code is as follows:

Sparkline – A bar style

XML can be customized to change wave-styled Sparkline into bar-styled Sparkline
using the following code:

<format type="sparkline" field="sparkline">
 <option name="type">bar</option>
 <option name="barColor">#5379AF</option>
</format>

The output of the preceding code is as follows:

https://technet24.ir

Along with bar-style Sparkline, a color map can be used by adding the following code:

<option name="colorMap">
 <option name="2000:">#5379AF</option>
 <option name=":1999">#9ac23c</option>
</option

Tables – An icon set
The table element provides us with the functionality of showing icons on the basis of the
range of the values of the fields. Let's take an example to better understand the use of an
icon set in a tabular output. Suppose the output of a search query results in a few values,
and the user is interested in categorizing those values in a range where if the value is
between 0-100, then it can be tagged as good, if it is in the range of 100-200, then
moderate/average, and if it is above 200, then it is severe. Then, the rangemap
command can be used to categorize the values in the output in the required categories.
To make the categorization more visual, icons can be added, for example, the good ones
are marked with a green tick mark, the moderate ones with an orange triangle, and the
severe ones with a red circle. Similarly, depending on the need and categorization,
different icons can be used to visualize data in a more reader-friendly style.

Splunk provides users with the functionality of adding custom CSS (Cascading Style
Sheet) and JS (JavaScript) to add such customizations in the output result. Now, we
will see how we can get such customization in a table element.

The following is the search query used to explain how an icon set is added to a table
element:

index=* | chart count by sourcetype | rangemap field=count low=0-100
elevated=101-1000 default=severe

In the preceding search query, the rangemap command will categorize the specified
value (count) to the field parameter on the basis of conditions (low=0-100,
elevated=101-1000, and default as severe).

The output of the preceding search query will be as follows:

https://technet24.ir

Now, we will add custom CSS and JS so that instead of range values (elevated, low,
and severe), respective icons are shown in the table.

The CSS and JS files need to be added to the static folder for the respective apps' file
location, that is, $SPLUNK_HOME\etc\apps\<app_name>\appserver\static, where
app_name is the name of the app in which the panel/dashboard is created. In our
example, the panel is created in the search app's dashboard, so the path to create custom
CSS and JS files in our case will be
$SPLUNK_HOME\etc\apps\search\appserver\static.

The name of the JS and CSS files can be anything as per the user's needs. In our
example, the names of the JS file is icons.js and the CSS file is icons.css. The
names of the JS and CSS files need to be noted and remembered, as they are to be
referenced in the XML file. The JavaScript file defines what needs to be done on which
fields, and the CSS file holds formatting options such as color, font, size, and so on.

The code of the icons.js JavaScript file is as follows:

require ([
 'underscore',
 'jquery',
 'splunkjs/mvc',
 'splunkjs/mvc/tableview',
 'splunkjs/mvc/simplexml/ready!'
], function (_, $, mvc, TableView) {
 // Translations from rangemap results to CSS class

 var ICONS = {
 severe: 'alert-circle',
 elevated: 'alert',
 low: 'check-circle'
 };
 var RangeMapIconRenderer = TableView.BaseCellRenderer.extend({
 canRender: function(cell) {
 // Only use the cell renderer for the range field
 return cell.field === 'range';
 },
 render: function ($td, cell) {
 var icon = 'question';
 // Fetch the icon for the value
 if (ICONS.hasOwnProperty(cell.value)) {
 icon = ICONS[cell.value];
 }
 // Create the icon element and add it to the table cell
 $td.addClass('icon').html(_.template('<i class="icon-<%-icon%>
<%- range %>" title="<%- range %>"></i>', {
 icon: icon,
 range: cell.value
 }));
 }
});
mvc.Components.get('testtable').getVisualization(function(tableView){
 // Register custom cell renderer, the table will re-render
automatically
 tableView.addCellRenderer(new RangeMapIconRenderer());
 });
});

In the preceding JavaScript code, the important things to be noted are the sections that
are highlighted. These sections are explained in detail in the following bullets:

In the top section, icons are defined, that is, the conditions for which icon should
be shown in case of a respective category.
In the middle section, the field name on which the value is to be replaced by icons
is to be specified. In the preceding code, the field name is range.
In the last section of the code, we need to set the table ID on which this
visualization is to be applied. There can be many tables in a dashboard or in an
app, but we may require to apply this visualization in only one table, so we need to
specify the table ID. In our case, the table ID is testtable. This value is to be
noted as it is to be used in the later section.

The code of the icons.css CSS file is as follows:

https://technet24.ir

td.icon {
 text-align: center;
}
td.icon i {
 font-size: 25px;
}
td.icon .severe {
 color: red;
}
td.icon .elevated {
 color: orangered;
}
td.icon .low {
 color: #006400;
}

The preceding CSS file defines the color for each of the icons and alignments. Now,
since the JS and CSS files are in place, the following changes are required in the XML
of the dashboard holding the table in which the icons are to be displayed.

The name of the CSS and JS file is included in the <dashboard> tag of the XML file,
and the table in which the range values are to be replaced with an icon is set as the same
table ID that we have set in the preceding JS file. In our case, the table ID is
testtable. The following screenshot shows how the CSS and JS files are included
along with the table ID to map the icons in place of range values:

Once the preceding settings are done, click on Save and restart Splunk to make the
changes effective. Once Splunk is restarted, the range field will have icons in place of
values, as shown in the following screenshot:

Similarly, depending on the need, different levels of customization are possible in the
table element output. A row/cell of the table can be highlighted on the basis of field
values, data bars can be added in the table output, and so on.

https://technet24.ir

Single value
The Splunk single value visualization is used to represent information or the result of
the Splunk command, which is basically a single value that can be a
number/statistics/single information on which an inference can be made. Like a single
value, visualization can be used to represent a number of errors, number of visitors,
number of fraud detected, number of failures, last error occurred, top users, number of
invalid accounts, time of last failure, and so on.

Splunk 6.3 has enhanced single value visualization with various functional
customizations such as adding trend indicators, Sparkline, labels, and other aesthetic
customizations by adding custom CSS. You will now learn how to create single value
visualization on the Splunk Web console.

The following is the list of customizations and formatting that can be done on a single
value:

Single value: This is the basic one that is by default with no customization and
formatting. It will just display the number or text returned by the search query in the
Visualization tab, as shown in the following screenshot:

Single value (label): Using the Format option in the Visualization tab, there are
three types of labels that can be applied to describe a single value. As in the
following figure, Before Label (Today Avg of), After Label (Visitor), and
Under Label (Avg No. Visitors) are applied to describe that the single value is
depicting the average number of visitors. Similarly, the respective label can be
used to describe a single value in order to make it understandable to the readers:

Single value (Sparkline and Trend indicator): If the Splunk search command has
a timechart command, then Sparkline and Trend can be enabled from the Format
option. Sparkline and Trend can be formatted using the Color option and
conditional coloring can also be done on the basis of the value using the Format
option. The below image shows the single value with Sparkline and Trend
indication:

For example, the visitor information data from a test web server is used to showcase
how a single value can be used. The following search query on Splunk will return the
average number of visitors visiting the web server, and since the timechart command
is used, trend and Sparkline can also be enabled. Now, this information can be
displayed using a single value; you just need to choose it from the list of visualizations,
as shown at the start of the chapter.

Our search query is as follows:

https://technet24.ir

||inputcsv webserver.csv | eval _time=strptime (date, "%e-%b-%y")
|timechart avg(Visitors) span=7d

This query will produce the following output:

So, single value visualization can be used to depict required information along with
trend and Sparkline. Splunk 6.3 gives all the formatting and customization right from the
Splunk web console Format option itself. Conditional coloring, that is, the color of the
value will change depending on the range in which the value lies or on the basis of the
trend. The precision and thousand separators can be enabled and configured from the
Format option.

Charts
Splunk's inbuilt visualization has many types of inbuilt charts such as an area chart, a
line chart, bar chart, column chart, pie chart, scatter chart, bubble chart, and so on.
Inbuilt visualization can be used depending on the commands used and the type of data.
Depending on the data and commands, Splunk shows the recommended type of charts,
but users can choose the chart type according to their requirement and suitability to
depict information.

https://technet24.ir

Charts – Coloring
The general formatting options for charts are defining a legend and its positioning,
custom title for x and y axis, defining the interval, min values, and max values for the
charts which are present in the Format option. The chart's Format option doesn't
provide users with the option to change the color of the charts and their background.

We will now see how to use custom CSS and JS and how colors of charts and their
background can be customized.

Our search query is as follows:

index=* | chart count by sourcetype

The chart type used for the result of the preceding search query is a pie chart, and the
output is as follows:

Now, the XML file of the dashboard can be added with the following markup options to
make the necessary changes:

To change the background color of the chart, the following markup option is to be
added with the required color in the HTML format:

<option name="charting.backgroundColor">#D9EFF1</option>

To change the foreground color, use the following line of code:

<option name="charting.foregroundColor">#9A5E2C</option>

To change the font color (axis labels, legends), use the following line of code:

<option name="charting.fontColor">#9A2C2C</option>

To change the color to be used in the chart, the following syntax can be used to
specify the series of colors:

<option name="charting.seriesColors">
[0xF1F815,0xC2D1E0,0xF4F797,0xFEE000,
0xFECF00,0xC69D2D,0xED8107,0xED6A07,0xF25805,0xFF9360]</option>

The following will be the output after adding the preceding code. The important point to
note here is that the preceding formatting is applicable for all types of charts in the
visualization section:

https://technet24.ir

Chart overlay
Splunk provides an inbuilt functionality to define a field that can be used as an overlay
on charts. Chart overlays can be used to show bounds/limits in data using a line chart in
a bar chart. Using chart overlays, dual axis charts can be made in Splunk. Let's
understand this through an example. Our search query is as follows:

|inputcsv webserver.csv | eval _time=strptime (date, "%e-%b-%y") |
table _time Visitors LoginFailure LoginSuccess

The output of the preceding search query will be a simple table having fields as time,
Visitors, LoginFailure, and LoginSuccess with their respective values.

The following are the steps to enable chart overlay from the Visualizations tab of the
Splunk Web console:

1. On the top-right corner of the panel that has respective visualization in which
overlay is to be added, click on the Format option (the icon with a paint brush).

2. Navigate to the Chart Overlay section of the Option menu.
3. In the Overlay field, specify the field name that is required to be used as a line

(overlay) in the chart, and then, the view on the Axis option can be set on.

Now, in the following output, the Visitors field is used as chart overlay from the
Format options. Here, the website's visitor data is used and the respective bars show
LoginFailure and LoginSuccess, and the line chart over it shows the number of
visitors. So, in the same chart, on the basis of the number of visitors, the number of login
failures and success can be found out:

Bubble charts
According to Wikipedia, a bubble chart is a type of chart that is used to display three
dimensions of data in one single chart. In the Splunk Visualization list, a bubble chart is
not available, but using D3 extension, it can be implemented in the Splunk dashboard.

Bubble chart visualization allows us to plot the magnitude of specified fields as the size
of the bubble along with categorizing the fields using different colors for each field.

Let's understand how to implement a bubble chart in the Splunk dashboard with the help
of an example.

Our Splunk query is as follows:

 |inputcsv bubble | stats count by UserID Transaction

The output of the preceding search query in a statistical format will be as follows:

https://technet24.ir

The bubble chart of the preceding statistical output is as follows. Looking at the
following visualization, it can be clearly said that a user (user321) purchased six
products, added four products in the wish list, logged in five times, and then logged off.
Similarly, the bubble chart can be used to make visualizations to derive such insight
from the data:

The following are the customizations and scripts to be added to convert the preceding
tabular statistical output in bubble chart visualization. We will be using a D3 extension
to implement a bubble chart in the Splunk dashboard:

1. First, download Splunk App Custom Visualizations from the Splunk App store,
which has the important JS and CSS files required to implement bubble chart
visualization.

2. Then, copy the bubblechart directory from the downloaded app's components
folder to the respective app's static directory in which the bubble chart is to be
implemented.

t
For instance, in our example, all files from the
$SPLUNK_HOME\etc\apps\custom_vizs\appserver\static\components\bubblechar

directory are copied to the bubblechart directory of the search app located at
$SPLUNK_HOME\etc\apps\search\appserver\static\components\.

Now, once the preceding D3 JS and CSS files are in place and Splunk is restarted, we
can implement the bubble chart in the respective dashboard,

Creating an HTML element in a simple XML dashboard and
Referencing dashboard to use autodiscover.js:

<dashboard script="autodiscover.js">

The following is the code that implements bubble chart visualization in the dashboard,
and here, we have marked the important things that need to be changed as per the
requirements:

The important points to be modified in the preceding HTML content of the simple XML
are as follows:

The div id and managerid values should be referenced correctly to make sure
that the search and fields are properly mapped. This is very important, and in case

https://technet24.ir

of discrepancies in this ID, the result will not be loaded on the dashboard.
The search query should be replaced according to the required result in the bubble
chart.
The data-require parameter should be properly referenced to the path containing
bubblechart.js, bubblechart.css, and bower.json.
nameField, categoryField, and valueField should be properly referenced with
the field names of the output of the search query that we've already specified.

Drilldown
Splunk visualization provides a feature to drill down events by clicking on a cell or
row. This feature can be enabled from the Format option, and either cell drilldown,
row drilldown, or none can be selected from the menu options. The drilldown features
help users to navigate to the events and have a detailed analysis and inference of the
findings that are derived from the events. Instead of looking at the entire large dataset,
the drilldown feature takes the user to the filtered set of events for better insight.

Apart from the cell and row drilldown using custom settings, various other
customizations can be brought in the Splunk drilldown feature and more user-interactive
dashboards can be built. Now, you will learn how custom drilldowns can be
implemented in Splunk visualization. Custom drilldowns include dynamic drilldown,
contextual drilldown, URL field value drilldown, and single value drilldown.

https://technet24.ir

Dynamic drilldown
The dynamic drilldown feature in Splunk visualization can be used to control the content
filter and the drilldown destination by passing the required information via a click. The
dynamic drilldown feature can be implemented to pass an x-axis or y-axis clicked token
to a form or destination page and a row or column value/name to populate a form or
destination page.

Let's see how to implement the dynamic drilldown feature.

The x-axis or y-axis value as a token to a form

The following is our search query for the line chart visualization:

index=* | chart count by sourcetype

The output of the preceding search query for the line chart visualization is as follows:

In the preceding figure, if drilldown is enabled, clicking on any point on the line chart
will run a search command, showing the events relevant to the clicked data. Now, we
will customize that instead of running the search query to show events, and the value that
we've clicked on should be sent to a form:

<drilldown>
 <link>/app/search/test_form?form.textvalue=$click.value2$</link>
</drilldown>

Adding the preceding code in the XML file of the dashboard will navigate you to the
test_form dashboard of the search app and will pass the clicked value to the field

value that has the textvalue token of the test_form dashboard.

In the preceding example, when we clicked on the y-axis of the line chart, as shown in
the preceding figure, it passed the 2203 value to the textvalue input of the test_form
dashboard.

Similarly, if the visualization is a bar chart instead of a line chart, the same code can be
used to pass the x-axis value to the form.

Dynamic drilldown to pass a respective row's specific column value

The heading sounds confusing, but this can be explained with the help of the following
screenshot. Taking reference of the following example figure, when you click on
TestData, it will pass 943 as the value to the field of the navigating form or search
query as a token value. Similarly, for any row that we've clicked on, a corresponding
value of the count field is passed:

The following code can be added in the respective panel of the dashboard in which this
customization is required:

<drilldown>
 <link>/app/search/test_form?form.textvalue=$row.count$</link>
</drilldown>

In the preceding code, the corresponding value of the count field ($row.count$) will
be passed to the textvalue input token of the test_form dashboard. If the value of any
other field is to be passed, then in the preceding code instead of $row.count$, the
count can be replaced in the field name of the file whose value is to be passed or used
in a search query on drilldown.

https://technet24.ir

Dynamic drilldown to pass a fieldname of a clicked value

The following code will facilitate the use of the fieldname as a value that can be passed
as a parameter or can be used as a search query to filter results based on the fieldname
of the clicked row or column:

<drilldown>
 <link>/app/search/test_form?form.textvalue=$click.name2$</link>
</drilldown>

The preceding code can be modified with the following dynamic textvalue to get
desired results as explained in the following list:

click.name2 can be used to pass the fieldname of the clicked row or column
click.value2 can be used to pass the clicked value of the row or column
row.fieldname can be used to pass the value of the corresponding field name of
the clicked row or column

Contextual drilldown
Now, you will learn how to create an in-page contextual drilldown, that is, drilldown to
access contextual information without leaving the page. In this section, you will learn
how to pass the required value from a table/chart to another search query whose result
will be populated on the same page below the current search result.

Let's first understand with an example what is contextual drilldown, the search query for
which is as follows:

index=* |chart count by sourcetype

The output of the preceding search query will return a count of all sourcetype in all the
indexes of Splunk. Now, suppose the user wants a scenario where clicking on a
Sourcetype option shows the events of that respective sourcetype in the same page.
This can be done using contextual drilldown. In the following screenshot, the top panel
is the output of the preceding search query and the following panel is the result of
clicking on EmailFile and the following search query:

index=* sourcetype=$sourcetype$

The preceding code generates the following output:

https://technet24.ir

In the preceding example, the clicked value of the sourcetype field is passed as a
value to the second search query, which runs on the second panel of the preceding
screenshot. Let's see how we can customize a panel to implement contextual drilldown.

The following code needs to be added to the respective panel of the dashboard where
contextual drilldown is to be implemented.

First, enable drilldown in the respective panel by adding the following code. The
following code enables row drilldown. Then, it can be added in the XML file (the
source code of the corresponding panel anywhere after the </search> tag or before the
</table> tag):

<option name="drilldown">row</option>

The following code will get the value in the sourcetype token from the click event:

<drilldown>
 <set token="sourcetype">$row.sourcetype$</set>
</drilldown>

If the dashboard has any input field and the clicked event value is to be updated in the
input field, then the following code can be added using the form keyword along with the
ID of the input field. If the ID of the input field is sourcetype, then the token will be
form.sourcetype. The following is the example code:

<drilldown>
 <set token="form.sourcetype">$row.sourcetype$</set>
</drilldown>

Now, the following source code is to be added for the second panel, which is not
visible until we click on an event in the first panel:

The following are important sections and their use in the preceding code snippet:

<event>: The <event> tag describes that the result of search query will be shown
in the event format. This can be replaced with a table, chart, or any other type of
visualization.
depends: This parameter should be provided with the value of the token. The
depends parameter describes that the search query will run only when the token is
available. If the token value is not available, then the panel will not be visible,
since the token value will not be available and the search query will not result in
any output.
title: This is optional, but can be used to specify any static or dynamic title. In
our example code, we used $sourcetype$ as a title to have the value of the
clicked sourcetype dynamically on every click.
<searchTemplate>: This parameter is used to specify the search query whose
result will be shown in the output of the second panel when we click on a
respective event.

Thus, using the preceding set of code in XML, contextual drilldown can be
implemented.

https://technet24.ir

The URL field value drilldown
In this drilldown customization feature of Splunk Visualization, the field value having a
URL can be used as a drilldown link. We will now see how to take a URL field value
and configure drilldown to redirect users to that site.

Let's understand how to implement the URL field value drilldown using an example. Our
search query is as follows:

sourcetype=urldrilldown | table _time user referer link

The output of the search query is as follows:

Now, we will customize the link field so that the drilldown on any link navigates to the
respective URL that was clicked.

Create a new JavaScript file with the url_field.js name at
$SPLUNK_HOME\etc\apps\<app_name>\appserver\static. The content of the JS file
is as follows:

In the preceding JS file, for field name (link in our example) and the text (click to
Navigate URL), which the user wants to be visible on, visualization needs to be
modified and the rest of the code can be used as it is.

In the dashboard XML file, add a reference to the JS file, as follows:

<dashboard script="url_field.js ">

Also, add id to the table for a reference using the following code:

<table id="link">

The output after the preceding customization will be as follows; clicking on any value of
the link field will navigate you to the search with the actual URL link:

https://technet24.ir

Single value drilldown
There is no option by default for drilldown in single value visualization. You will now
learn how to modify the XML of the panel holding a single value to link the other pages
or run a search query to show events filtering the single value.

We will see how to add links for drilldown to the single value result, before the label,
after the label, and under the label using XML customization.

The following code needs to be added in the XML panel that holds the single value:

<option name="drilldown">all</option>

The preceding code enables drilldown when we click on a single value result from the
dashboard. Clicking on a single value navigates to the search screen with the search
query used to derive the single value. This drilldown can be useful when
comprehensive information or events are needed. Let's understand this with the help of
an example. If the search query results in a number of errors, then drilldown
customization can list down those errors.

The following code will be required to create a drilldown for Before Label, Under
Label, and After Label:

For Before Label, we need the following code:

<option name="linkFields">beforelabel</option>

For After Label, we need this code:

<option name="linkFields">afterlabel</option>

For Under Label, we need the following code:

<option name="linkFields">underlabel</option>
<option name="linkFields">result</option>

The following code can be used to see the result:

The following code will be required to specify any search query for linkFields
(beforelabel, afterlabel, and underlabel). The search query can be specified as
per the requirement and visualization/insights required:

<option name="linkSearch"> index=* | chart count by sourcetype
</option>

https://technet24.ir

Summary
In this chapter, we thoroughly covered basic visualization along with examples and the
code that is used to implement the respective visualization. Since you've learned the the
basic visualization, such as a table, chart, single value, and various drilldown
customizations, let's now proceed to the next chapter to learn advanced visualization so
that we are able to showcase data in a better format.

https://technet24.ir

Chapter 7. Advanced Visualization
You already learned how to create and customize basic visualizations in the previous
chapter. Now, in this chapter, we will go through advanced visualizations that can be
implemented in Splunk. You will learn how to implement advanced visualizations such
as Sunburst, custom decoration, calendar heatmap, and force directed graphs. Many of
these visualizations were introduced in the latest version of Splunk 6.3. These advanced
visualizations can even be used by a non-technical audience to generate useful insight
and derive business decisions.

In this chapter, we will cover the following topics:

Sunburst sequence
Geospatial visualization
Punchcard visualization
Calendar heatmap
Sankey diagram
Parallel coordinates
Force directed graph
Custom chart overlay
Custom decorations

Sunburst sequence
Splunk supports various advanced visualizations, and now, you will learn how sunburst
visualization can be implemented in Splunk dashboards and what type of data can be
best visualized in a sunburst sequence.

https://technet24.ir

What is a sunburst sequence?
A sunburst sequence chart is sometimes also known as a ring chart. A multilevel pie
chart is a chart that can be used to display a hierarchical type of data and its overall
distribution in a circular pie chart like visualization. It is a multi-circle chart in which
each ring represents a level of hierarchy with the innermost circle as the top level of
hierarchy. A sunburst chart having multiple levels depicts how inner and outer rings are
related, and a sunburst sequence without hierarchical data looks like a doughnut chart.
The sunburst sequence chart is one of the most effective visualizations to show how one
ring is distributed/broken into its contributing constituents.

Example
Let's see how we can implement a sunburst sequence in the Splunk dashboard. The data
used in this example has a manufacturer (mobile device manufacturer), OS (mobile
device OS), and an OS version, as shown in the following screenshot:

Basically, the data has a list of mobile OSes, their manufacturers, and their respective
OS versions. Now, we will create a sunburst sequence on this data. The sunburst
sequence will look like the following diagram:

https://technet24.ir

The innermost circle of the sunburst sequence shows the distribution of total mobile
OSes, and the next circle (outer circle) shows mobile manufacturers for respective
mobile OSes. As shown in the preceding screenshot, the innermost circle is Android.
When you hover the mouse over the outer circle, you can see that out of the total mobile
market, 14.3 percent is taken over by Motorola. Similarly, hovering respectively on the
inner and outer circles will show the market segment on the basis of mobile OSes (inner
circle) and on the basis of manufacturers (outer circle).

Some of the insights that can be derived from the above sunburst sequence are as
follows:

51.4 percent, 11.4 percent, and 37.1 percent of the total mobile market is by
Android, iOS, and Windows OS, respectively
Out of the total Android OS phones, Samsung constitutes only 5.71 percent

So, sunburst can be used for various kinds of data to get such useful insights. Let's now
learn how to create sunburst sequence visualization on the Splunk dashboard.

Implementation
We require two fields to create asunburst sequence: steps and count. Practically, field
names can be anything as per the defined user, but the content format should be as
required. The steps field should have various fields of data separated by "-" (without
quotes). In our example, the search query to create the steps and count fields is as
follows:

|inputcsv phonedata.csv |stats dc(Version) as count by Manufacturer,
OS| eval steps=OS+"-"+Manufacturer |table steps count | outputcsv
MobileData.csv

The preceding search query creates a steps field, which has the OS and manufacturer
separated by - and a distinct count on the basis of the version. The output of the
preceding search query will appear as shown in the following screenshot.

In the steps field, the first value will be the inner circle, then the next value after – will
be the second circle, and so on. Depending on the number of – available, the respective
number of circular rings depicting the data will be available in the Sunburst chart:

https://technet24.ir

The preceding search query outputs the result into a MobileData.csv CSV file, which
we will use in the search query of the Sunburst sequence. It is not necessary to output
the result into the CSV file and then use it in sunburst. This search query can be used in
the Sunburst itself, resulting in the same output:

1. First, download the sequences-sunburst or Custom Visualizations Splunk app
from the Splunk app store, which requires important JS and CSS files for Sunburst.
There is a slight variation in the JS and CSS files for either of the apps, but the
steps and procedure remain the same. We are using the sequences-sunburst app as
a reference in the following example.

Note

Sequences-sunburst on the Splunk app store is shown to be compatible with Splunk
6.0 and 6.1 only, whereas it works perfectly fine until version 6.3.3. If there is
some compatibility issue, then it is suggested that you use the Custom
Visualizations app.

2. Then, copy the components directory from the downloaded app's static folder to
the respective app's static directory in which the sunburst sequence is to be
implemented.

For instance, in our example, all files from the
$SPLUNK_HOME\etc\apps\sequences-

sunburst\appserver\static\sequences_sunburst directory are copied to the
components directory of the search app located at
$SPLUNK_HOME\etc\apps\search\appserver\static.

The dashboard in which sunburst is to be added is modified to include
autodiscover.js, which you have also done in various visualizations learned in
previous chapter:

<dashboard script="autodiscover.js">

3. The following code needs to be added in a panel of the dashboard where Sunburst
is required. For understanding and readability purposes, I have replaced andquot;
from the data-options tag:

4. In the code inside the screenshot, div id and managerid should be the same. The
data-require field in the section should be given a proper path of the
components folder discussed previously.

5. The search query with the proper fieldname should be provided in the pathField
and count parameters of the code in the preceding screenshot.

6. Once all the changes are done, the dashboard can be saved, and sunburst
visualization will be visible.

Thus, now, we know how we can implement sunburst sequence visualization on your
data on Splunk to generate insights from the data.

https://technet24.ir

Geospatial visualization
The Splunk visualization list has two types of visualizations to show geographical data
on maps. Maps visualization can be used from the visualization list to show data on the
geographical world map. In its version 6.3, Splunk introduced powerful choropleth
visualization to show more metrics and much more customized data mapping on maps
to get insight from the data belonging to the geospatial domain. Choropleth visualization
can be used to spot the pattern to sense the complete insight on the data.

Splunk used standard definition to describe the boundaries of colored polygons on
choropleth maps visualization. Splunk 6.3 has included countries' maps updated with the
latest boundaries and information and 50 states of the United States by default. That
doesn't mean that the visualization will be limited to only these two boundaries, but it
supports widely used the KMZ format of polygon definition of maps' boundaries and
data.

Splunk's choropleth visualization supports one of the greatest features: point in polygon
lookup. It allows us to map any longitude/latitude combination to any of the polygons in
the visualization. This feature, along with choropleth visualization, can also be used in
other charts such as bar chart, line chart, and many more.

Example
Let's now learn what all kind of insights and customization can be made on choropleth
visualization and how to implement it in the Splunk dashboard.

The geom Splunk command is used to add a geom fieldname to each event defining
geographical data for polygon geometry in the JSON format, which can be used to
create choropleth map visualizations.

Syntax

The syntax for chloropleth visualization is as follows:

…
 | geom
 Featurecollection
 FeatureIdField=Field_name

The description for the parameters discussed earlier is as follows:

Featurecollection: Splunk supports two feature collections out of the box:
geo_countries and geo_us_states. If any other geographical lookups are
required for the given data, then KMZ files for the respective locations can be
installed and used.
FeatureIdField: This parameter can be specified with the field_name of the
field containing the geographical parameter to be used to generate choropleth map
visualization.

Search query

The following search query will use the geo_countries feature collection with
featureIdField as country to create the geom field for all the events of data
containing the JSON format polygon geometry of the countries listed in the country
field:

| inputlookup geo_attr_countries | geom geo_countries
featureIdField=country

The output of the preceding search query will look like the following screenshot:

https://technet24.ir

Implementation
The choropleth visualization of the preceding search query will be as follows, showing
the countries of the world on the map. It uses various color combinations and the
legends describing the colors corresponding to the geographical location:

As you have already learned, Splunk 6.3 comes inbuilt with geographical information of
the United States (geo_us_states). The following search query will plot the data
specific to the geographic location of the United States. Similarly, other location KMZ
file can be installed, and depending on the requirement, required locations visualization
can be made available:

| inputlookup states_pop_density.csv | geom geo_us_states
featureIdField=state

The visualization of the preceding search query will look similar to the one shown in
the following image, with the states plotted on the United States (US) map. The
following screenshot displays 50 states of the United States (US) in the choropleth
visualization:

https://technet24.ir

The formatting option on the Splunk dashboard can be used to further customize the
choropleth visualization for features such as drilldown, color combination, minimum
and maximum zoom level, and so on.

One of the important customizations in terms of color that is available in Splunk is
Color Modes. Depending on the scenario and requirement, the following color modes
can be used to make the visualization more informative and useful:

Sequential: One color and its different shades are used in the map to display the
information. This type of color mode is used to show information such as sale of
product and traffic to a web portal. Basically, this color mode is beneficial in
scenarios where the data is in distribution of variables and can be defined in
ranges.
Categorical: This color mode uses different colors for different categories. All the
places whose data belongs to the same category will be in the same color. An
example of this kind of color mode in visualization can be used by banks/financial
institutions to show the transactions across different locations as safe (green),
moderate (orange), and unsafe (red) color.
Divergent: This color mode uses two colors and their different shades, converging
to a white neutral point. This kind of color mode can be used to show how much a
variable is below or above the neutral point.

https://technet24.ir

Punchcard visualization
Punchcard visualization is another advanced visualization. It can be used to show
insight from the data, and using those insights, informed business decisions can be made.
Punchcard charts are used to visualize data by hour/day/week at the same time. A
punchcard chart can be used to analyze the power consumption of a location over the
week, sales on an e-commerce portal by hour of the day, and so on.

Example
Let's see how punchcard visualization can be implemented on the Splunk dashboard.

Search query

Here is the search query to be run to get the output that will be required for punchcard
visualization:

| inputcsv punchcard.csv | eval _time=strptime (Date, "%m/%e/%Y") |
eval day=strftime (_time, "%a") | stats count by day, Transaction

The output of the preceding search query in the statistical form will be displayed as
shown in the following screenshot:

The preceding tabular data, when shown in punchcard visualization, will appear as
shown in the following diagram. The size of the circles is proportional to the count
(occurrence) of the respective transaction over the distribution of days of the week. The
different colors of the circles correspond to different transactions as listed on the right-
hand side of the punchcard card visualization in the following diagram:

https://technet24.ir

In the preceding punchcard visualization diagram, hovering the mouse on a circle will
display the count value for each of the events of the hovered transaction. This
functionality is coded in the punchcard.js file and can be customized per user
requirement.

Implementation
Here are the steps to be taken in the Splunk dashboard to create a punchcard
visualization similar to the previous diagram:

1. To implement punchcard visualization, JS and CSS files will be required, and they
can be obtained by downloading the Splunk 6.X dashboard examples Splunk app
from the Splunk app store.

2. Then, copy the punchcard directory from the downloaded app's static folder to
the respective app's static directory, where punchcard visualization is to be
implemented. Explained in the following are some scenarios:

For instance, in our example, all files from the $SPLUNK_HOME\etc\apps\
simple_xml_examples\appserver\static\components\punchcard

directory are copied to the punchcard directory of the search app located at
$SPLUNK_HOME\etc\apps\search\appserver\static\components.
The JS and CSS files from the preceding directory can be used as they are
without any modification. If the user wants any customization with respect to
color aesthetics (CSS) and functionality (JS), they can be modified.

3. The dashboard in which the punchcard visualization is to be shown is modified to
include autodiscover.js, similar to what we have done in Sunburst sequence
section in the previous section of this chapter. The dashboard script should look
like the following:

<dashboard script="autodiscover.js">

4. The preceding search query that we used to create statistical output needs to be
defined in the XML code of the dashboard with ID as follows:

5. The following HTML code needs to be added in the <panel> section of the XML
code of the dashboard to get the punchcard visualization. The id used in the
preceding search query should be the same in the managerid section of the
following code:

https://technet24.ir

6. Modify the respective fields highlighted in the preceding screenshot with the
required information and click on Save. Punchcard visualization is ready to be
visible on the dashboard of Splunk.

Calendar heatmap visualization
Calendar heatmap visualization is derived from traditional heat map visualization
where the data is plotted on Calendar. Calendar heatmap can be plotted in a way such
that, month can be used as a column, days as a row and data points being a data with
different colors or shades of color. Calendar heatmap can be a good visualization to
display time series data varying across time. According to Google's definition of
calendar heatmap visualization, it is used to show activity/transaction over a long
period of time, say months or years. It can be useful to display activity trends over time.

https://technet24.ir

Example
Let's now learn what information can be derived from Calendar heatmap visualization,
and then, we will look at the implementation of this visualization on the Splunk
dashboard.

The data used for this visualization is the test data from the web server. It has the time
and count of any failed transaction. The statistical data used to create calendar heatmap
is described in the subsections that follow.

Search query

The search query for calendar heatmap visualization is as follows:

|inputcsv Calender.csv | table _time Failed_Transaction

The output of the preceding search query is shown in the following screenshot:

Now, we will plot this data on calendar heatmap visualization to derive useful insight
from the data by just looking at it. The calendar heatmap for the preceding data is shown

as follows:

In the preceding calendar heatmap visualization, the failed transactions are plotted over
every hour range, and different shades of green color are used to plot the data on the
calendar map. The ranges and color legend is available in the lower-left corner of the
visualization. On hovering the mouse on the legend, you can see the range of the selected
color.

On hovering the mouse pointer over any of the boxes of the calendar heatmap, you can
see the number of failed transactions (678 as in the preceding screenshot) and the exact
time. Similarly, in the preceding visualization, different shades are seen. The darker
shades depict a greater number of failed transactions. So, by looking at this
visualization, defined business actions can be taken to avoid unnecessary issues. This
kind of visualization will be beneficial to plot the information of 1 month or year and
take corrective business decisions.

https://technet24.ir

Implementation
Now, let's learn how we can create a calendar heatmap visualization on the Splunk
dashboard. The following steps are required for calendar visualization implementation:

1. Similar to geospatial and punchcard visualization, the CalenderHeatMap directory
from the downloaded app's static folder is copied to the respective app's static
directory where calendar heatmap visualization is to be implemented. The JS
(calendarheatmap.js) and CSS (calendarheatmap.css) files from the
directory can be used without any modifications, unless any customization is
required in the visualization.

2. The dashboard in which calendar heatmap visualization is to be shown is modified
to include autodiscover.js:

<dashboard script="autodiscover.js">

3. The following is the sample code that needs to be added in the panel section of the
XML source of the dashboard where this visualization is required. The important
parameters that need to be changed as per the data and specific user requirement
are marked in the following screenshot:

4. In the preceding code, the search query, path of the JS and CSS files (data-
require), search ID, manager ID, and time domain need to be customized per user
needs. The preceding code will result in the calendar heatmap chart as shown in
the Example section of Calendar heatmap.

https://technet24.ir

The Sankey diagram
The Sankey diagram is a special type of visualization that is used to display flow among
systems; many-to-many mapping between groups or set of groups; or to visualize energy,
material, or cost transfers between processes. In the Sankey diagram, the width of the
arrow is directly proportional to the quantity of the flow. Things that are being
connected are called nodes and connections are called links. The Sankey diagram
visualization is quite widely used to derive quick insights from the dataset. Google uses
the Sankey diagram visualization to show the flow of traffic from one page to other
pages of a website.

The Sankey diagram can be useful to show information such as:

Flow of money (money earned and spent)
Flow of energy from source to destination
Product manufacturing and sale lifecycle

Example
Let's now learn what information and insights can be generated from the Sankey diagram
visualization over the data, and then, we will see how we can implement Sankey
diagram in the Splunk dashboard.

To create a Sankey diagram, it is required to have fields with fieldnames from, to, and
count. The following screenshot is a snapshot of test data that is used for the Sankey
diagram:

When the preceding data is plotted on the Sankey diagram visualization, it looks like the
following screenshot. You can see (with the highlighted markings) that a moderate
number of people navigated from the Home page to the Offers page of the e-commerce
portal and then moved to the Payment page. Similarly, it can be seen that quite a large
number of people navigated from the Home page to the Order list and so on. So,
looking at the following Sankey diagram, various inferences can be derived and then an
informed decision can be made:

https://technet24.ir

Implementation
Now, let's see how to implement the Sankey diagram visualization on our dataset on the
Splunk dashboard.

Follow the given steps to implement the Sankey diagram.

1. We will use the JS (sankey.js) and CSS (sakey.css) files from the Sankey
directory of the app's static folder. It is similar to what is already described in
the implementation section of previous visualizations. There is no need to
modify the JS and CSS files until and unless any specific look or functional
customization is needed other than what is already provided by default.

2. Similar to the previous visualization, autodiscover.js is added in the XML of
the dashboard:

<dashboard script="autodiscover.js">

3. The following code when added in the dashboard with the respective changes as
shown in the screenshot will result in a Sankey diagram, as shown in the example
section previously. The search query needs to be replaced with the query that
should result in an output having from, to, and count fields necessary to draw the
Sankey diagram. The data-require parameter should have a proper path of the
Sankey folder containing the JS and CSS files:

https://technet24.ir

4. The Sankey diagram created after following the previous steps allows us to move
the nodes to make the visualization clear and understandable in the case of many
nodes and links. On hovering the mouse, relevant information becomes visible, and
links connected via the respective nodes get highlighted to make it clearer.

5. Thus, the Sankey diagram visualization can be used in various scenarios to plot
data into a visualization describing the path or intermediate steps between the
system in the same way we saw in our example, the user behavior on e-commerce
shopping portal.

Parallel coordinates
Parallel coordinates visualization is a very powerful tool to understand a
multidimensional, multivariate numerical dataset. This visualization works best for
datasets with a moderate number of dimensions with around a few thousand records.
The parallel coordinates visualization is related to time series visualization. Rather, it
is applied on data whose axes do not correspond to points in time.

Parallel coordinates visualization is a very versatile and useful technique to find
structures in the given dataset. It can be used to quickly find patterns and the strength of
correlation in a mid-sized dataset.

https://technet24.ir

Example
Let's now see what data can be plotted with parallel coordinates visualization and the
insights derived from it. Then, we will look at implementing it on the Splunk dashboard.

Search query

The following search query is used for parallel coordinates visualization:

index=_internal sourcetype=splunkd component=Metrics group=pipeline |
dedup 2 name, processor | table name processor cpu_seconds executes
cummulative_hits

The preceding search query uses the internal index where Splunk logs its activity by
default, and the result of the search query is as follows:

The preceding statistical output can be termed as an informative type of output, as no
inference seems to be taken directly by looking at the output. Also, the preceding output
is just a subset of the complete result. To derive inference, let's now plot this on the
parallel coordinates visualization to understand the data better and in an informative
way.

Let's see how the parallel coordinates visualization for the preceding dataset looks. The
following image shows four fields (name, processor, cpu_seconds, and executes)
and their interrelation with each other using different colors/shade lines. Thus, by
looking at the following chart, a quick inference can be made that most/all of the

processors are taking less (the same) CPU_SECONDS to execute. Also, we can derive
inferences such as indexerpipe is having the highest number of executes (150+) and so
on.

Such a kind of inference, and that too very quickly, would have been very difficult if
there had been a large number of records to be analyzed in a statistical tabular output.
Thus, parallel coordinates can be handy and useful to derive inference and take quick
corrective decisions.

https://technet24.ir

Implementation
Now, since we have seen the dataset and the uses of parallel coordinates, let's see how
we can implement parallel coordinates on the Splunk dashboard with users' own
dataset.

The following are the steps to be taken for implementation of the parallel coordinates
visualization:

1. The parallel coordinates visualization also uses D3 extension similar to what we
have already seen in other visualizations such as the Sankey diagram, punchcard
visualization, calendar heatmap, and so on. Similarly, we will use the JS
(parallelcoords.js) file from the parallelcoords directory of the app's
static folder. The JS file needs to be copied to respective apps directly, similar
to what we have already done in previous D3 visualizations.

2. We can modify the XML of the dashboard to include autodiscover.js as
follows:

<dashboard script="autodiscover.js">

3. The following code is to be added in the XML source of the dashboard to make
parallel coordinates available on the dashboard. The search query and the relative
path needs to be modified per the requirement to make the visualization work in the
user dashboard. Since the dashboard may have more than one visualization, the
search id and managerid should be properly mapped:

https://technet24.ir

The force directed graph
The force directed graph is a visualization in which the nodes of a graph are positioned
in two or three dimensions by assigning the forces among the set of edges and set of
nodes based on their relative positions. There are various types of algorithms available
to implement force directed graphs.

As per Wiki, force directed graph has the following advantages due to which it is
widely used for visualization of various types of datasets:

Good quality results: For a mid-sized dataset, the force directed graph yields very
good results based on criteria such as uniform edge length, vertex distribution, and
symmetry
Flexibility: Force directed graph gets easily adapted and extended to fulfil
aesthetic requirements
Simplicity: It is very simple to implement, and important inference and insights can
be derived quickly for relatively larger datasets

Example
Now, since we are acquainted with the force directed graph, let's see an example of the
force directed graph. Then, later on, we can implement it on the Splunk dashboard.

The dataset is the same one that we used in the case of the Sankey diagram, which has
information about user navigation from one page of the e-commerce portal to the other,
along with the count of occurrence.

The subset of the dataset in a tabular format looks like the following screenshot:

The preceding tabular output when mapped to the force directed graph will look like the
following diagram:

https://technet24.ir

The preceding force directed graph helps a user derive the following inferences:

The Cart page has only inward navigation, that is, users from other pages are
navigating to the Cart page, but there is no outward navigation from the Cart page.
Looking at it, the probable issues can be checked as to why users are not
navigating from the Cart page and tackle it accordingly.
Users are navigating to the Order-list page from the Offer, Checkout, Payment,
and Home pages, which means that either user is trying to check the status of the
order already placed or it may also happen that user is not able to locate the order
in the order list. Similarly, such kinds of hidden insights can be quickly derived by
just looking at the visualization of the force directed graph. This can be used on
relatively large datasets, and hence, it is very useful.

Implementation
Now, let's have a look at how we can implement the force directed graph on the Splunk
dashboard.

The following are the steps to be taken in the Splunk dashboard to create a force
directed visualization similar to the previous example:

1. The force directed graph visualization uses a D3 extension similar to some of the
visualizations already explained. Similarly, we will use the JS file
(forcedirected.js) from the forcedirected directory of the app's static
folder. The JS file needs to be copied to respective apps directly, similar to what
we have already done in previous D3 visualizations.

2. We can modify the XML of the dashboard to include autodiscover.js as
follows:

<dashboard script="autodiscover.js">

3. The following HTML code needs to be added in the panel of the XML dashboard
where the visualization is required. Then, click on Save to get the visualization on
the dashboard panel:

As in all the D3 extension supported visualizations, the search query and the relative
path need to be modified as per the requirement to get the correct visualization on the

https://technet24.ir

Splunk dashboard. The previous code snippet results in the force directed graph
visualization, which is explained in the preceding Example subsection.

Custom chart overlay
You have already learned what chart overlay is and how to create it in a previous
chapter (Chapter 6, Visualization). Now, we will see how to create custom chart
overlay using a D3 extension. Basically, it is an advanced and more customized
visualization option of chart overlay.

https://technet24.ir

Example
Let's look at the tabular dataset that we will use to create custom chart overlay. Later,
you will learn how to implement it in the Splunk dashboard.

The following screenshot is the subset of the total dataset that we will use to visualize
custom chart overlay:

The preceding dataset that has login failure, login success, and number of visitors along
with time from a web server will look like the following screenshot when implemented
for D3 custom chart overlay. Hovering the mouse over the chart shows the required
relevant information. It also shows that behaviors can be customized from the
JavaScript code of custom chart overlay:

https://technet24.ir

Implementation
The following are the steps to be taken in the Splunk dashboard to create a custom chart
overlay visualization using D3 extension similar to one show in the preceding graph:

1. To implement custom chart overlay, a JS (Custom_Chart.js, d3chartview.js)
and CSS (custom_chart.css) file will be required, and they can be obtained
from the Splunk app, Splunk 6.X dashboard examples, which we already used in
our previous visualizations.

2. The required JS and CSS files are located at
$SPLUNK_HOME\etc\apps\simple_xml_examples\appserver\static\.

3. The JS and CSS files from the preceding directory can be used without any
modification. In the case of any customization, the respective JS file needs to be
modified.

4. The dashboard in which the chart overlay visualization is to be implemented is
modified as follows:

<dashboard script="custom_chart.js, autodiscover.js"
stylesheet="custom_chart.css">

5. The following code needs to be added in the XML of the dashboard to implement
custom chart overlay in Splunk:

6. The respective search query needs to be replaced with the required query, and the
type of chart can also be defined in the type parameter in the preceding code.

7. Click on Save, and the required custom chart overlay visualization will be
available in the panel of the Splunk dashboard.

https://technet24.ir

Custom decorations
You have learned most of the advanced visualizations that we can implement on the
Splunk dashboard along with examples. Now, in this section of the chapter, we will
look at how custom decoration can be done on Splunk single value visualization to make
it aesthetically pleasing and more informative in terms of using signs/symbols, and color
combinations.

Example
Let's look at a few examples of custom decorations that can be implemented on single
value visualization, which you have already learned in the previous chapter.

The preceding image shows the default Splunk icons that can be used in a single value
to depict specific information. These icons can be made dynamic, and depending on the
specified condition, the relevant icons will be shown. This example shows decorations
using tokens from search results, HTML panels, and some custom CSS. The icons are
displayed using the Splunk Icon font.

Let me explain how the preceding customized decorations can be useful. If the single
value is used to display information such as KPIs (Key Performance Indicators) of a
specific field, then depending on the value of the KPI, the respective icon should be
displayed.

For example, if the KPI value is between 0-100, that means it is performing well, and
the single value should show a green tick. If the value is between 100-200, that means it
is performing fine (neither good nor bad). Then, it should show an orange circle with an
exclamation mark in the single value visualization. If the range is above 500, then red-
cross icons should be visible.

The following image shows the custom decoration along with the single value:

What is the use of such custom decorations?

The most important use of this custom decoration is that it is very informative. The user
who is looking at the single value visualization need not remember the threshold of

https://technet24.ir

good, bad, or worst range of KPI values. The range of threshold is already coded, so
depending on the value, the respective decoration is shown along with the single value.

So, just by looking at the icon, informative or corrective actions can be taken instantly.
Thus, custom decoration can be very useful to show relevant important information
using custom icons.

Implementation
Now, since we are aware what custom decoration is and how it can be useful along
with single value visualization, let's see how we can implement such custom
decorations.

Let's first have a look at the CSS (custom_decorations.css) that needs to be used to
implement this visualization on the Splunk dashboard. Similar to all the above D3
visualizations, this CSS file is also available in the static folder of the app directory,
and it can be used from there.

The following steps need to be taken to implement custom decorations:

1. The XML should include the CSS (custom_decorations.css) by modifying it as
follows:

<dashboard stylesheet="custom_decorations.css">

2. The following code snippet will result in a custom decoration along with a single
value:

3. In the preceding code snippet, the search query has rangemap whose field
parameter is used to specify fieldname (value) on which rangemap is to be
checked. The value is 500 in the example, which belongs to the severe range (500-
599). Hence, the output will be a red cross.

4. In the preceding snippet, the class is custom-result-value. Hence, the output
has both the custom decoration and the value, that is, 500, as shown in the

https://technet24.ir

preceding screenshot.
5. The class can be set as follows when only custom decoration is required. The

value is not required to be displayed in the visualization:

<div class="custom-result-value icon-only $range1$"> </div>

6. On using the preceding class, the output will be as follows:

7. The definition of all the value used in rangemap (none, low, guarded, elevated,
high, severe, default) are defined in the CSS file, and it can be customized as
per need. The CSS uses the Splunk Icons font family to display custom decorations.

Similarly, by modifying the CSS and the previous code snippet, required custom
decorations can be implemented on the Splunk dashboard.

Summary
In this chapter, you studied the uses and implementation of various advanced types of
visualizations, along with examples. Now, we are aware of basic as well as advanced
visualizations.

In the next chapter, you will learn about Dashboard customization to enable the making
of advanced and customized dashboards on Splunk.

https://technet24.ir

Chapter 8. Dashboard Customization
We have already learned how to create analytics and visualization over the data on
Splunk; now, in this chapter, we will learn to create fully customized, dynamic, and
user-interactive dashboards. Splunk provides various customizations by default via
Splunk Web console, whereas there are various customizations which can be brought
into dashboards via some coding tweaks and using external plugins. In this chapter, we
will go through various dashboard customization techniques, which can be implemented
to make the most of the data on Splunk. We will learn to make more user-interactive,
user-friendly, and user-customizable dashboards in this chapter with examples.

The following are the topics which will be covered in this chapter and explained with
the help of examples and code snippets:

Dashboard controls
Multi-search management
Tokens
Null search swapper
Switcher

Dashboard controls
In this section, we will learn about various control options related to display, input, and
panel of the Splunk dashboard. We will learn the use of various dashboard controls,
with examples, and then we will also learn how to implement the respective controls on
Splunk.

https://technet24.ir

HTML dashboard
We are already aware how to create dashboards on Splunk. The Splunk dashboards are
by default in XML format, but Splunk supports the feature to convert the Simple XML
dashboard to an HTML dashboard. The features that are not available under Simple
XML can be implemented by converting the dashboard to HTML, which is based on the
SplunkJS component of Splunk Web framework.

The following are the steps to be followed to convert any simple XML dashboard to an
HTML dashboard:

1. On any XML dashboard which is to be converted or exported into an HTML
dashboard, click on the Edit button.

2. From the Edit menu, choose the Convert to HTML option.
3. While converting to HTML, two options are available: either to create a new

dashboard, which will be the HTML format of the current dashboard with a
specified name and description, or to replace the current dashboard with an HTML
version.

4. Choose the appropriate option and click on Convert dashboard.

The new HTML dashboard is ready to be used on converting a simple XML dashboard
into HTML; each of the visualization's layout, definition, and related search queries get
separated as follows:

The layout of Splunk dashboard is converted into Splunk's style, which indicates
placement and formatting of items on the page, very similar to Bootstrap's grid
system.
The definition of visualizations or statistical tables is converted into equivalent
JavaScript in the HTML dashboard. The converted code for each visualization
includes its properties and an auto-generated ID which can later be used to
reference the elements of visualization.
Any search query on an XML dashboard, whether specified for any visualization or
for form input, is extracted to be represented in JavaScript. The code for each
search includes its properties and an auto-generated ID.

The converted HTML dashboard can be used to implement a custom look and feel by
using customized CSS and also custom functionality by using JavaScript. The following
are a few high-level customizations, which can be done very efficiently in the HTML
dashboard of Splunk:

Change the layout by creating a highly customized layout of the dashboard panels.
Implementing customization on pre-existing visualizations on the panels of the
dashboard by using custom JavaScript.
Adding custom behavior on the dashboard panels and visualizations.

Thus, HTML controls and features can be used on the Splunk dashboard by converting
the Simple XML dashboard into HTML. Converting the dashboard into HTML helps to
remove the limitations of XML and hence customize the dashboard as per requirements.

https://technet24.ir

Display controls
Splunk provides customization options whereby the header, footer, and edit functionality
of the dashboard can be set as per the need. We will learn how we can enable/disable
various components of the dashboard as per the user requirement. The following is a
sample dashboard with all of its components:

The following are the components of a sample dashboard created in Splunk:

Splunk bar: This bar is useful for navigating applications, Settings and Activity
options, Messages and Notification, along with Splunk administration settings.
App bar: This bar provides a navigation menu to reach Search, Pivot, Reports,
Alerts, and the dashboard of the selected app in the Splunk Bar
Title bar: The title bar is used to display the name and a short description of
Splunk dashboard.
Edit bar: This bar is useful for editing various components of the Splunk
dashboard, like title, description, XML source code, permissions, PDF delivery,
and various other editing options.
Footer: The footer of Splunk dashboard provides navigation link to Support,
Documentation, and various Internet links of the Splunk portal.

When industry- and business-standard dashboards are created in Splunk, it may or may

not be necessary that all the above components are available for aesthetics, security, and
user perspective. Let's say the edit bar can be used to edit the search queries of the
dashboard but it may not be required by the user to edit the queries. Thus, for security,
the prospective edit bar should not be available for the user. Similarly, it may not be
required for the user to be able to navigate to the different apps of Splunk or to access
the Settings menu of the Splunk; then, Splunk bar should not be disabled, and so on.

So to consider this kind of requirement, Splunk provides options to control the various
components of the Splunk dashboard as per the user's requirements and needs. All the
above components can be enabled or disabled by simple tweaks in the XML source
code of the Splunk dashboard.

Example and implementation

Let us see how we can customize various display components of the Splunk dashboard
via XML source code modification.

The following are the parameters/attributes which can be used to customize respective
components of the Splunk dashboard in XML source code:

Splunk bar: To disable/hide the Splunk bar from the Splunk dashboard, use
hideSplunkBar = "true"

App bar: To disable/hide the App bar, use hideAppBar = "true"
Title bar: The hideTitle = "true" parameter needs to be set to hide the title
and description bar from the Splunk dashboard
Edit bar: hideEdit = "true" is used to remove the edit bar from the Splunk
dashboard
Footer: To disable the footer, we need to use hideFooter = "true" in the XML
source code of the Splunk dashboard
We can also use hideChrome = "true" to hide the Splunk Bar, App Bar, and
Footer, instead of disabling each one of them individually

Syntax

The following is the syntax for using the above parameters in XML source code:

https://technet24.ir

The preceding parameters/attributes can also be used in the form element of the
dashboard as the following syntax:

<form hideSplunkBar="true" hideAppBar="true" hideFooter="true"
hideTitle="true" hideEdit="true">

The preceding source code will hide Splunk Bar, App Bar, Footer, Title, and Edit Bar
of the Splunk dashboard. The following screenshot shows the result of the preceding
modification, namely the dashboard without any display components.

Looking at the following output image, it will be difficult to even judge that the result is
a Splunk dashboard. This display component is useful when the user is not interested in
having Splunk branding on the dashboard; also, this feature proves to be very useful
when integrating such dashboards in any third-party applications:

Splunk also provides features to use and modify display control components via the

http get param. This feature can be used to show a dashboard inside a dashboard, and
thus, hiding the display components gives the look and feel of a panel rather than a
dashboard inside a dashboard.

The iframe feature is used to show the panels of a dashboard inside another dashboard
by passing the URL of the other dashboard and passing the respective display
components as a parameter in the URL. The following code snippet is an example of a
dashboard inside a dashboard in the HTML tag of the XML source code:

Using the preceding source code and specifying the path of the dashboard in the src
parameter, along with displaying component parameters, can also be used to display a
dashboard inside a dashboard in Splunk, as per requirements.

https://technet24.ir

Form input controls
In this section of the chapter, we will learn about form input controls, which can be used
to customize the behavior of form inputs on the dashboard panel. Input controls can be
very useful in a scenario where there is more than one input control to control the
behavior as per requirements.

Example and implementation

Let us understand the use of form input controls, along with the steps and code snippets
to implement them on any Splunk dashboard.

The following are the form input controls that can be implemented on the Splunk
dashboard:

Autorun: This advanced form control customization can be configured to auto-
populate the input fields whenever the page loads. For example, in the dashboard,
there is a dropdown form input; if autorun is enabled, then on the page load itself,
the values of the dropdown will be populated. The XML code to enable autorun for
the form input field on the Splunk dashboard is as follows:

<fieldset autorun="True">

Submit button: The Splunk dashboard can have a Submit button, which when
clicked, will update panels with the updated value of the form input controls on the
screen. For example, let us suppose that we have more than one input control, so a
user selects the required value in all the input controls and then clicks on Submit to
get the panels with output as per the value selected from all the input controls of
the dashboard. The XML code snippet to enable/disable the Submit button on the
dashboard is as follows:

Enable: <fieldset submitButton="True">
Disable: <fieldset submitButton="False">

Search on change: This control helps to update the visualizations in the panel of
the dashboard as soon as they are changed. There is no need to enable the Submit
button in this case, as whenever the input control value is changed automatically,
all the panels associated with the form input will get updated. For example, let us
say we have a dropdown showing a list of error types and below that we have a
visualization showing the details of all error types. Now, if the user selects any one
specific error from the dropdown, the panel will get updated with the information
associated with the selected error type in the dropdown if Search on Change is

enabled. The XML source code to enable Search on Change is as follows:

<input searchWhenChanged="True">

The following is a sample code snippet with all the previously-explained form input
controls implemented. We can see from the following image that autorun is enabled and
Search on Change is also enabled, and hence the Submit button is set to false.

If Search on Change, is enabled, then the Submit button should be set to false, or else
it will conflict in processing and could result in the component not properly working:

https://technet24.ir

Panel controls
Splunk is the Google of log data and Splunk is used for log monitoring, security
analytics, and so on. In many or most log monitoring scenarios, Splunk keeps on getting
live data, streaming data every second. Splunk supports real-time data analytics and
visualizations, so now we will learn about the refresh controls of the Splunk dashboard.
Splunk provides options for enabling and disabling of auto-refresh and manual refresh
on panels on the Splunk dashboard.

Splunk provides the following controls in the context of refreshing panels in the
dashboard:

Enable/disable refresh time
Enable/disable manual refresh link
Enable auto-refresh

Example and implementation

Let us understand, with the help of examples and implementation, the uses and
differences among all the preceding refresh control options available in Splunk.

Enabling/disabling refresh time

Any visualization or statistical output on any panel of the Splunk dashboard by default
has refresh time enabled, namely the panel was last refreshed or the output shown on the
panel is older by how much time is shown by default. The following snapshot shows a
non-customized single value dashboard panel with Refresh time and a Manual
Refresh option:

The default refresh time can be disabled by modifying the XML source code of the

panel, and once that is disabled, the last refresh time will not be available, as shown in
the following image. The default (refresh time enabled) and the following (disabled)
image can be compared to see the difference. The placeholder where the last refresh
time was available in the preceding image is now empty:

The following code snippet shows an example of a single value in which the refresh
time of the panel is disabled:

Disabling the manual refresh link

The manual refresh link is by default enabled and can be seen in the preceding example
images. The manual refresh link can be disabled from the XML source code and the
output will appear as in the following image after disabling the Manual Refresh button.
As seen in the following screenshot, the refresh link is not visible, hence manual refresh
is disabled:

https://technet24.ir

Now let us have a look at the code snippet for the preceding bar chart example to
disable the manual refresh link:

Enabling auto refresh

We have seen how to enable/disable the manual refresh link and refresh time visibility
on the panel of the Splunk dashboard. Now we will see how we can create a panel
which auto refreshes itself after every specified interval of time. The following code
snippet refreshes the dashboard panel every specified interval (30 seconds). The
interval can be user-defined as per requirements to get real-time analytics on the
dashboard:

Thus, refresh controls can be used to customize the dashboard with restricting manual
searches, enabling auto refresh at given intervals, as required.

https://technet24.ir

Multi-search management
Multi-search management is used to manage multiple background searches to populate
the results of various panels of the dashboard. Multiple searches run in the background,
and the result of the search query is used to run post-process searches, which utilize the
result of the background search to evaluate their own result.

Let me explain what multi-search management is so that you may understand it better.
Suppose in the dashboard there are six panels and each panel takes 10 seconds for
processing the search results. So for six panels, the time will be 60 seconds. Now, if we
have a background search which gets all the data required by all six panels in 20
seconds, then using post-process searches instead of running a search on the whole data,
the result of the background search is used and the time is reduced to almost three to
four seconds per panel instead of 10 seconds per panel.

Thus, multi-search management can be used in a dashboard which has many panels to
increase the speed and efficiency of the dashboard.

Example
Let me explain the uses and advantages of multi-search management in Splunk. In the
following dashboard we have a background search that will result in a statistical table
with a count of all the types of errors which occurred on a web server. Now as shown
in the following image, the single values display the count of various types of errors.
The result of the background search, which has stats of all types of errors, is run only
once, and then the post-process search filters the required data for the respective search
panel and displays it.

In a situation where multi-search management is not used for cases like the following,
then for each panel there is a search executed on the target data, resulting in latency:

In a real-world scenario, it took close to 40-45 seconds to get the results populated in
all the panels of the preceding example when multi-search management was used,
whereas in case of a simple dashboard with multi-search the time was around two and a
half to three minutes and thus, multi-search management proves to be efficient in real
time than not using it.

To summarize, the following are the advantages of using multi-search management:

Performance optimization by executing a single search with multiple visualizations
on the same dashboard leverages
Populating the inputs from a single global search and post-process within each
input
Performing token-based searches within a post-process so that the need to execute
an expensive global search every time a new input is selected is avoided

https://technet24.ir

Implementation
Now, since we are aware of the advantages of multi-search management, let us see how
we can implement this on the Splunk dashboard.

The following are the key points to be remembered when implementing multi-search
management:

Background/global search can be initiated from anywhere on the page or even from
the panel
Background/global search whose result is to be later used to run a post-process
search must include an ID as follows (it is not at all necessary to use the same ID
global_search for multi-search management, as the ID can be anything the user
defined):

<search id="global_search">

Make the post-process search aware that it needs to process the result of the
background search by using the base parameter in the search, as follows:

<search base="global_search">

To use a saved search within a dashboard will require the use of the parameter
ref, as follows:

<search ref="mySavedSearch">

The syntax for time will change from earliestTime and latestTime to
earliest and latest, respectively

Now let's see some code snippets, which we can use to implement multisearch
management by modifying the XML source code of the dashboard:

1. We will first see the creation of a global search and assign an ID. The following
image shows a global search with the ID as globalSearch:

2. Use a global/background search in various other visualizations on the page. The

following image shows how to use global searches in visualizations:

3. Use the global/background search result as input to run another search (post-
process search). The following search will run on the a result of search with id as
globalSearch and compute its result:

4. If a saved search is to be made global, then the following line needs to be added to
assign an ID to a saved search:

<search id="globalSearch" ref="mySavedSearch"/>

5. The following is the syntax to assign a time range when using multi-search
management:

https://technet24.ir

This is the way we can use multi-search in our dashboard for optimizing page
performance and using Splunk efficiently.

Tokens
Tokens are nothing but variables, as in programming languages, which can be used to
run dynamic queries taken from input fields or clicked events. Token name works as a
reference to the information which captures value that is used to manage dashboard
behavior. The delimiter used for the token is having syntax as $token_name$.

The following are a few ways token values can be captured:

Tokens can be used to capture values from an input field
Define the token to specify actions, based on conditions based on the value of the
token
Tokens can be defined in a search string, using values based on previously defined
tokens
Splunk Enterprise pre-defined default tokens

The tokens can be used in various locations and use cases on the Splunk dashboard, as
described here:

Search events: The result of a search based on the token value can be changed
using search metadata tokens
Form inputs: Depending upon the selection of the input value, the results in the
visualization change
Drilldown tokens: Depending upon the value/field clicked on the visualization, the
respective tokens are passed and the result is obtained by the drilldown of
visualizations
Conditional display: Tokens are set and unset conditions for displaying the
panels/content on the dashboard

https://technet24.ir

Eval tokens
Tokens can be used to implement various functionalities on the Splunk dashboard.
Tokens can be used as a single value visualization title, as a different functionality in
case the search result is empty, or they hide/show panels on the basis of search result
values.

We will learn in detail about using tokens to hide/show panels on the basis of a search
result value in the next topic (Null search swapper) of this chapter.

The following are the tokens within the search event handler to access specific job
properties. These features have been newly introduced in Splunk 6.3 to access search
results:

$job.earliestTime$: Initial job start time
$job.latestTime$: Latest time recorded for the search job
$job.resultCount$: Number of results a search job returned
$job.runDuration$: Time, in seconds, for the search to complete
$job.messages$: List of error and/or debug messages generated by the search job

The tokens can be used to add custom logic to a dashboard with an eval token. The
dashboard's eval expression can be used to define a condition to match. Let us see an
example of how an eval token can be used to implement a customized and dynamic
dashboard.

Syntax of the eval token
The eval expression in the <condition> tag:

<condition match="[eval expression]">
. . . [conditional actions] . . .
</condition>

Token's value based on the result of the expression:

<eval token="token_name"> [eval expression] </eval>

Example

Let us go through an example of using eval tokens and understand their use. The
following image shows a visualization, at the top of which is a result of the search
query. The bottom section shows a time, which is nothing but the result of the time
required for execution of the search query of the visualization:

The time duration in the preceding search query is calculated on every run of the search
query of the bar chart visualization. It is obtained by using job.runDuration, which is
available as one of the default tokens from the Splunk Enterprise job properties of the
<progress> tag. Similarly, an eval token can be used in various scenarios to display
the required result even on a conditional basis on the Splunk dashboard.

Implementation

An eval token is very easy to implement. Let us see what needs to be modified in the
XML code to implement an eval token on the Splunk dashboard. The following diagram
shows the source code snippet, which implements the use of the eval token in the
dashboard:

https://technet24.ir

In the preceding image, the first segment is the search query, which results in the
visualization in the explained example. The <progress> tag is used to get various job
properties of the search event handler. In this section, the eval token named Duration is
used to get the value in the Duration token of the search run duration. The eval token
duration also has functions to convert the result into strings and numbers.

In the later section of the preceding code, a single value visualization is used to pass the
result of the duration variable whose result was assigned by the eval token once the
search is completed. Thus, the eval token can be used to customize the token as per
need and helps to make a user-interactive and customized dashboard on Splunk.

Custom tokens
We have already learned in detail about tokens and eval tokens; now let us learn about
custom tokens in which we will use JavaScript to set tokens in panel titles, HTML
content of a panel, and also for drilldown scenarios. The custom tokens can be used to
enrich the dashboard with important information relating to applications, users, and so
on.

Example

Let us understand the use of custom tokens with the help of an example, and then later,
we will look into implementing them on the Splunk dashboard. The following
screenshot of the Splunk dashboard shows the value of custom tokens, like the
username, app name, and view name. In this example, we have set custom tokens even
for the drilldown on the result of the search query. Similarly, depending upon the
requirement, any number of custom tokens can be defined and used:

https://technet24.ir

Implementation

Now since we are aware of the use of custom tokens, let us see how to create, define,
and use custom tokens on the Splunk dashboard.

The following code is the code snippet to get the app name and view name by using the
utils library provided by Splunk Enterprise. In this snippet, we have set the values of
the app name and view name obtained by the utils library to app and view tokens,
which we will be using in the panel to display the required information. The following
code snippet can be named as required; let's say we name it app_token.js:

Similar to the way we got the app name and View Name, we will now get username
from the SplunkConfig API to access various Splunk parameters, as follows. The
following code snippet is saved as user_token.js:

Note

The preceding two JavaScript files, app_token.js and user_token.js, in which we
have defined a custom token, need to be saved in the static folder of respective app
directory. In our example, we have saved the files in the static folder of the app
directory, that is: $SPLUNK_HOME\etc\apps\search\appserver\static.

Now the custom tokens are set and can be used in the XML source code of the
dashboard, like any other tokens. The important point here will be to include the
app_token.js and user_token.js in the dashboard panel by specifying it in the
XML, code as follows:

<dashboard script="app_token.js, user_token.js">

The following is the code snippet to get/use the custom tokens on the Splunk dashboard
panels. Thus, we can use custom tokens to get the required information on the
dashboard, using JavaScript:

https://technet24.ir

Apart from custom tokens, Splunk provides functionality to set multiple tokens within
form inputs to derive multiple searches for better, user-interactive, and informative
dashboards. The following are the use cases of multitoken setters:

It can be used to set tokens for both label and value, which can be used throughout
the dashboard and its panels
It can be used to create an empty/null option that includes a unique token
transformation
It can be used to unset other tokens from the page on selection of a given form input
A time range picker input can be created to set unique earliest and latest token
values
It can set multiple tokens based on search results and specified conditions

Null search swapper
We have already learned tokens and the use of eval tokens; now we will learn to use
conditional tokens to set and unset the search query of a panel depending upon the result
of the conditional tokens. Conditional tokens work similarly to an if loop used in
programming languages. In a null search swapper, we will set tokens from the search
manager to control behaviors on the page. Each search result outputs metadata around
the search, the job, the server, and even the results. This feature helps users to access
and set tokens from that metadata to be used throughout the page.

The null search swapper can be used to hide visualization if the result of a search query
is null/empty. This kind of customization can be very useful when building highly
dynamic dashboards for enterprises. For instance, the null search swapper can be used
to hide a specific panel if the search result outputs nothing. So, since now the output is
available instead of occupying space in the dashboard, showing no results to display,
that panel will be hidden:

A conditional operation includes functions like the following:

Modifying the search to run on the basis of a search query
Hiding or displaying the panel or content of the panel on the basis of a condition
Selecting a view to open based on a token value

The following are the tokens which can be used with a conditional operation with form
inputs. The elements containing the attributes depends and rejects use the <set> and
<unset> elements to set the token values that these attributes consume:

<change>: A container element for the conditions that you define
<condition>: Sets the condition based on the value of the input selection
<link>: A link can be specified to a destination based on a given condition
<set>: Sets the value for the given conditional token
<unset>: Unsets a token which was previously set

https://technet24.ir

Example
Let's understand what the use of the null search swapper is by using an example, and
then we will go through the implementation part of the null search swapper.

In our example, we have two radio options asking the user to choose either one. The
following are the options of the two radio buttons in the example used, along with the
description:

Sourcetype=splunkd: This search will run a search query (index=_internal
sourcetype=splunkd) and the result will be plotted in a bar chart
Sourcetype=null: This search will run a search query (index=_internal
sourcetype=null) and there will be no result returned; hence, the chart panel
will be hidden

The following is the sample output of the null search swapper example when the first
radio option is chosen:

The output of the null search swapper example dashboard when the second radio option
(sourcetype=null) is selected. Since the result of the search query is null/no events,
the panel will be hidden, with a message specified in the XML code. The following
image is the example output image:

https://technet24.ir

Implementation
Since we have seen, with the help of an example, the use of the null search swapper in
the Splunk dashboard, let us have a look at the implementation part of it. The following
are the changes required in the XML source code of the dashboard to implement the null
search swapper on Splunk.

This section of code is for the radio button menu. The important point to note here is the
token (radio_option), which we will be using in the later section for condition
evaluation. The following code snippet describes which search query will run on the
respective selection of a radio button:

The following code snippet uses a conditional tag to match the specific condition (the
count of the search result). If the value of the search result is equal to zero, then the
token (show_html) is set and otherwise, it is unset. The following code is written in the
<progress> tag, as the code job.resultCount is used to set/unset the token:

Once the conditional tag is assigned with a value and the respective code is defined as
shown, the preceding defined token is used to render a visualization action on the
dashboard. In the following code snippet, as already explained, rejects and depends
tokens are used to unset and set, respectively. If the condition matches an HTML

paragraph specified is shown on the dashboard and if it doesn't match, then the result
with the bar chart visualization will be visible:

Thus, null search swapper can be used to hide panels when the result of a search query
is null, that is, the result of the search query returns nothing. The null search swapper
code snippet can be modified as per need, and different conditions can be specified in
the <condition> tag to get the desired result on the dashboard.

https://technet24.ir

Switcher
The Splunk dashboard provides options to link various visualizations or statistical
output in a panel to be switched without navigating from the Dashboard page.
Technically speaking, links are used to perform a few sets of activities, like show/hide
panel, switch visualizations, and so on, without navigating to another dashboard or
screen on Splunk.

Link switcher
Data can be visualized in many forms, like tabular statistical output, or charts, graphs,
and many more. From each different visualization of the same data, different kinds of
insights can be derived. We have already learned in previous chapters about different
types of visualization and the respective insights available from each of these
visualizations. We will now use the link switcher, which is nothing but a link to toggle
the content of the dashboard. The link switcher can be used to change the visualization
type on the result of the same search query, or run different searches on each link, as
required.

Example and implementation

Let us understand the use of the link switcher in the dashboard along with the
implementation part of the link switcher on the Splunk dashboard. In our example, there
are three links (Table, Chart, and Map), which the user can click and choose to get the
selected visualization on the dashboard.

The link on the visualization dashboard looks as in the following image. In the
following example image, the Table link is selected and hence, it looks highlighted:

The following source code is need to create a link along with the condition definition of
each of the links. Let's say, for instance, when the condition value is set with Table by
clicking on the Table link, then Chart and Map are hidden by the unset parameter in
the <condition> tag. Similarly, for other links, respective visualization are unset and
the selected visualization is set:

https://technet24.ir

Now since we have defined the conditions for the respective links, let us have a look at
the source code snippet, which will be shown as a visualization on clicking respective
links. Let me explain one part of the following snippet with an example. When the Table
link is clicked, the showTable token is set and showChart and showMap are unset, as
shown in the preceding code snippet image. So by setting the showTable token, the
following search query gets executed and the resulting visualization is shown in the
panel of the dashboard. Since the <table> tag is used, the resulting output is a
statistical table; likewise, for chart <chart> and map <map> tags are used:

Note

In the following code snippet, showTable and showChart have the same search query,

and to make efficient use of it, we can use multi search management here.

The output of the preceding code snippet will be as follows, which shows the links and
the selected links visualization. In the output image, as we can see, the Chart link is
selected and hence, the visualization in the visible panel is showing the Chart output of
the preceding code snippet search query. So, if the Map link is selected in the
dashboard, then the chart visualization will be hidden and the map visualization will be
visible in the same panel of the dashboard, and so on for the other links as well:

https://technet24.ir

Button switcher
We have already learned about the link switcher, in which the dashboard panels are
switched to different visualizations by clicking on different links on the dashboard. Now
we will look into the button switcher, which is similar to the link switcher, but in this
case the value of the token is set/unset by clicking on buttons. The output of the example
will be the same as that of the link switcher, but the background processing and
implementation logic differs. The link switcher and button switcher look analogous in
terms of functionality on the dashboard, but functionality-wise, the uses of the link
switcher and button switcher are different.

In the case of the link switcher, the visualization is changed in the same panel of the
dashboard, whereas in the button switcher, we will add another panel, keeping the pre-
existing panel also in the dashboard. For example, let's say we have a panel which
shows the visualization of the data, and if the user is interested in having a look at
statistical tabular output along with the visualization, a button switcher can be added.

Example and implementation

Let us understand what the button switcher actually is and how it differs from the link
switcher with the help of an example. We will also have a look at the implementation of
the button switcher on Splunk dashboard, along with an example.

The following panel of the Splunk dashboard has a button, which we will use as a
switcher:

https://technet24.ir

When the button (Show Details) is clicked, the current panel resizes itself in half,
accommodating another panel with a defined visualization. The output, when clicked,
shows details which look as shown here:

As seen from the preceding image, on clicking Show Details, the panel resizes itself
and a new panel with a visualization and a Hide Details button is available. On clicking
the Hide Details button, the panel hides itself and restores the Show Details panel to its
original size. Thus, the button switcher can be used to create such customized
dashboards where the information that is optional is kept hidden, and can be viewed by
clicking a button.

Now, to summarize the difference between the link switcher and button switcher, The
link switcher shows different visualizations in the same panel, whereas in the button
switcher, a new panel with visualization is accommodated by resizing the current panel
and thus can be useful to hold many panels in a single visualization efficiently.

The data attributes on clickable HTML elements (such as links or buttons) allow users
to set or unset tokens for the dashboard. The following are the available data
attributes, along with the syntax:

The data-set-token, along with the data-value token, is used to assign/set a
particular value:

To unset the value of the token, the data-unset-token is used:

Set or unset multiple tokens data-token-json by using a JSON object. Assigning
a token value to null unsets the token:

Let us now have a look at the XML code to use the button switcher on the dashboard.
The following image is the search query, which runs on the panel of the dashboard. The
important point to note down here is the search ID (Search_Query), which we will be
using in the later section.

Now we will see the code snippet to create a button which also sets data-set-
token="show_details", which we will use to show the new panel with visualization:

https://technet24.ir

The following image shows the code snippet, which depends on the show_details
token. This panel will only be visible whenever the show_details token is set, and that
will be done by clicking the Show Details button, as explained in the preceding code
snippet:

The preceding code snippet runs when the show_details token is set with the search
query defined in the Search_Query token, and results in a statistical table. The
code snippet also has an HTML code to create a button (Hide Details), which unsets the
token show_details and thus, the panel gets hidden on a click of this button.

Thus, the button switcher can be used to customize the dashboard to show a panel with a

click, and then the panel can be hidden on another button click when required. This kind
of customization helps in building industry-quality dashboards.

https://technet24.ir

Summary
In this chapter we have learned various dashboard customization techniques to make the
dashboard feature-rich, easy to use, informative, and highly interactive. The techniques
learned in this chapter should be used when creating quality dashboards to make the
most out of Splunk dashboard.

In the next chapter we will learn advanced dashboard customization techniques to make
more interactive, highly dynamic, and feature-rich dashboards as per user requirements.

r Chapte 9. Advanced Dashboard
Customization
You learned various dashboard customization techniques in the previous chapter. Now,
you will learn some of the advanced dashboard customization techniques that will help
you develop highly dynamic, customizable, and useful dashboards over data on Splunk.
The dynamic and customized dashboard delivers valuable analytics and visualization.

We will cover the following topics along with examples and implementation procedures
in this chapter:

Layout customization
Image overlay
Custom alert action
Custom look and feel

https://technet24.ir

Layout customization
The Splunk dashboard has the option of dragging and dropping panels from controls.
Splunk automatically resizes the panel equally as per the number of panels in a row.
Now, you will learn to customize the dashboard panel's width and group more than one
visualization in a single panel.

Panel width
Let's first understand the need for customizing panel width explicitly when Splunk
automatically resizes the panel by itself with the help of an example.

Example

In the following figure, there are three panels in a single row. Panel 1 has Statistical
Table, Panel 2 has Line Chart, and Panel 3 has Single Value. Splunk's smart
dashboard capability automatically resizes each panel of equal sizes in a row. In the
following example, it can be seen that Panel 3 has very less information to display,
whereas Panel 2 requires more space to display information properly and efficiently:

Hence, in order to make the dashboard display the required information efficiently, such
as the panel that has more information is given more space and the panel that requires
less space is given lesser space, automatic panel resizing can be modified and user-
configured width can be applied on the panel.

Implementation

Let's see how to implement custom panel width on a Splunk dashboard.

The following is the code snippet (JavaScript) on which the panel size can be manually
specified as per our need:

https://technet24.ir

The preceding code snippet customizes the first row of the dashboard. The first panel's
(denoted by panelCells[0]) width is set to 20%, the second panel's is set to 60%, and
so on. The preceding code is saved as width_layout.js and is stored at
$SPLUNK_HOME$\etc\apps\App_name\appserver\static.

The dashboard in which the preceding customization is to be obtained is directed to use
the width_layout.js file in the XML code, as follows:

<dashboard script="width_layout.js" >

The result of the preceding code snippet is shown in the following screenshot. Using
this code, highly customized dashboards can be made as per the required panel width:

Grouping
A Splunk dashboard can be customized to group visualizations of similar types in a
single panel of the dashboard either in the same row or column. Grouping similar
visualization in a single panel makes the dashboard cleaner, readable, and
understandable.

Let's understand the use of grouping with the help of an example.

Say, the dashboard has four single value visualizations (total number of errors, errors of
type A, errors of type B, and errors of type C) and three charts. Now, instead of having
each visualization as an individual panel, if we group the single-value visualization into
a single panel, then it will be easier for the reader to understand the dashboard and
derive insights from it. Similarly, in case of charts, if they are grouped, lesser space
will be required. Thus, the dashboard will be cleaner and more useful with grouped
visualization.

Example

Let's understand with the help of examples what is grouping of visualizations in a
Splunk dashboard.

Single-value grouping

In the following single value visualization, the left panel has three grouped single value
visualization, whereas on the right, three individual single value visualizations are
shown. Both grouped and nongrouped visualizations are shown together to compare the
advantages of grouped visualizations.

When there are many panels and different kinds of visualization on a dashboard,
grouping similar or functionally similar visualizations together facilitates better
readability. Moving/relocating them as a group auto adjusts itself either horizontally or
vertically depending on the available space.

Also, from the following visualization examples, it can be clearly seen that grouping
visualization also helps in saving space, which can be taken by other visualizations of
the dashboard. Thus, grouping visualization makes it easy to fit it in the dashboard, more
readable, and compact.

The following figure is an example of single value grouping:

https://technet24.ir

Visualization grouping

The following figure is an example of multiple visualization grouping compared to the
same visualization when nongrouped. This figure clearly describes that when the
visualizations are grouped, they adjust themselves in order to save space, whereas when
they are left ungrouped, a lot of space is wasted:

Implementation

Grouping of visualization is very simple and straightforward. Let's see how we can
create a dashboard with grouped visualizations. The dashboard XML code needs to be
modified to group the respective visualization.

The following code shows a sample of two nongrouped visualizations of the Splunk
dashboard:

The preceding code has two visualizations in the same row, which are as follows:

Visualization 1: This is the XML code for a table, as shown in the first panel
Visualization 2: This is a chart shown in the second panel of the dashboard

The following are the inferences (important points) derived from the following code
snippet:

The visualizations described between <row> and </row> will be available in the
same row of the Splunk dashboard.
Both the visualizations (<table> and <chart>) are described between the
<panel> and </panel> tags

Now, let's see what is the change in the preceding XML source code of the dashboard
required to group the visualization:

https://technet24.ir

So, to group any number of visualizations' single value, charts, and statistical tables,
they need to be kept between the <panel> and </panel> tag. As seen from the
preceding grouped visualization code snippet, both the visualizations are defined under
one single <panel> tag. Similarly, any number of visualizations can be grouped based
on the similarity of the information they deliver or on the basis of similarity of the
visualization type.

Panel toggle
Splunk dashboards can have any number of panels. The more the number of panels, the
more scrolling is required to view. Hence, Splunk's panel toggle feature can be used to
minimize the panel for which the information is not required. Similarly, the dashboard
can have any number of panel toggles implemented to access the respective panels,
whenever required.

Example

Let's understand what a panel toggle is and how it can be helpful in making a customized
and dynamic dashboard with the help of this example:

In the preceding dashboard, there are three panel toggles. Two panels (Panel 1 and
Panel 3) are in the collapsed mode, whereas Panel 2 is in the expanded mode. Here,
the three panels have the number of visualizations as follows:

Panel 1 has two visualizations
Panel 2 has one visualization
Panel 3 has three visualizations

So, a total of six visualizations can be accessible on the dashboard without scrolling,
just by toggling whichever visualization is needed as per requirement. The panel toggle
feature can be helpful when some of the analytics and visualization is not required all

https://technet24.ir

the time, so it can be hidden and it can be accessed whenever needed by the toggle
expand button.

Implementation

Let's see how we can implement a panel toggle on a Splunk dashboard. To implement a
panel toggle, we will inject the HTML code in the XML code.

The panel toggle can be implemented using CSS and JS. CSS is required here to define
the position of the button and its aesthetics on the dashboard panel, and JS is required to
implement the collapse and expand functionality in the panel.

The CSS and JS file need to be stored in a folder (PanelToggle) at
$SPLUNK_HOME\etc\app\App_name\appserver\static.

The following figure shows the code snippet of the paneltoggle.css file:

In the preceding code snippet, there are references of the collapse button
(collapse.png) and the expand button (expand.png). The respective buttons' images
should be made available as required in the same folder.

Now, since the CSS file is ready, we will look at JavaScript for the expand and
collapse script. The following code snippet is for the same. Let's suppose that the JS

file's name is paneltoggle.js.

The following code snippet of JS is for expanding the panel functionality:

In the preceding code expand event is used to expand the panel, and similarly, 'click
.collapse' : function(), which is identical to the preceding code, needs to be
defined to collapse the expanded panel in the paneltoggle.js file.

The following figure shows the render function that handles the functionality of
collapsing and expanding the panel on the dashboard and formatting elements as well:

https://technet24.ir

We now have JS to handle the expanding and collapsing of the panel and CSS to show
the corresponding buttons on the panel. Now, we will see what changes are required to
be implemented on the dashboard on which the panel toggle functionality is to be
implemented:

1. First of all, the dashboard should be pointed to use the autodiscover.js script
using the following code:

<dashboard script="autodiscover.js">

2. The following is a sample code snippet that has two visualizations with toggle
support. The code within the <HTML> & </HTML> tag is used to toggle the panel
obtained from the paneltoggle.js file. There are two simple charts that will
appear when the panel is expanded. These visualizations are mapped with an ID
(panel1 and panel2). The HTML code also has a title parameter that can be
used to describe the visualizations held in the panel. The data-require parameter
should be given the correct relative path of the folder, where the CSS and JS files
are located inside the app folder:

Similarly, taking reference of the preceding code, any number of visualizations can be
hidden in a panel and can be expanded with the panel toggle feature.

Note that the complete code snippet with a sample implementation can be obtained by
downloading the custom_simplexml_extensions app from the Splunk app store.

https://technet24.ir

Image overlay
Splunk provides a very interesting functionality for overlaying single values over
images. This feature can help to build dynamic dashboards explaining the workflow
process with real numbers and show some easy-to-understand visualization with icons
and images on the dashboard. Image overlay is very easy to implement and sometimes
can be very useful in building impressive dashboards with icons and images.

Example

Let's understand what image overlay is and how it can help in creating a useful
dashboard with the help of an example. The following screenshot shows an example of
image overlay dashboard visualization:

In the preceding customization, there is an image and three single value visualizations to
show analytical results from the data on Splunk. The preceding dashboard can be useful
to find the number of interactions available in the underlying data with respect to the
corresponding social networks.

What is the use of image overlay?

As show in the preceding example image, single value visualizations are enriched with
corresponding icon/images to make the dashboard more informative and useful. The

information (likes, tweets, and followers) can be monitored in real time as they are
search query results. It makes the dashboard fancier and informative by adding image
visualization.

Where can image overlay be used?

Image overlay can be used along with single values in many places. Let's enlist a few
places where image overlay could be used on Splunk:

It can be used in security dashboards such as credit card fraud detection
dashboards. The corresponding threat/attack images along with single values can
be used. So, whenever any threat is detected, the single value corresponding to the
detected threat will be updated.
This customization can be used to display images along with single value analytics
of the number of transactions done via different payment instruments. Images of
Visa, credit cards, wallets, and cash on delivery can be added along with a single
value. So, looking at the dashboard panel, we can easily visualize the analytics of
the payment method used on the portal. The following is an example usage of
image overlay:

Image overlay can also be used to show the workflow with corresponding values
for each workflow step.

Now, since you have understood the use of image overlay on the Splunk dashboard
along with the use case, let's see how to implement image overlay on the Splunk

https://technet24.ir

dashboard.

Implementation

Image overlay can be implemented on the Splunk dashboard using custom CSS and JS,
as we did in the previously explained customizations. The following are the steps to
implement image overlay on the Splunk dashboard:

1. First we would require an image template that is to be shown in image overlay
visualization. A sample of an image template is shown in the following image.
Let's say the following template image shown is named social.png:

2. Place the template image (social.png) in
$SPLUNK_HOME$\etc\apps\App_name\appserver\static.

3. Create a CSS file (say, social_image.css) in the preceding folder, and put the
following code snippet to embed the image (social.png) in the required panel of
the dashboard:

4. The image style is loaded in CSS, and now we will see the code snippet that
defines the location where the single value visualization will be displayed on the
image overlay:

In the preceding code snippet, the position (left and top) for each single value
visualization is very important. This position can be determined in any image
editing tool, such as MS Paint, by hovering the mouse to find relative pixel values.
Also, depending on the number of single value visualizations, the corresponding
number of CSS elements needs to be defined. As in our example, there are three
single values, and hence, three elements are shown in the preceding code snippet.

5. Now that the pre-setup for image overlay is ready, we will see what customization
is required in the XML code of the dashboard where the image overlay is to be
implemented.

First, modify the XML code to include the corresponding CSS file, as follows:

<dashboard stylesheet="social_image.css">

Then, let's see the code snippet to display the single value visualization below the
Facebook icon of the image overlay. Similarly, for other single values,
corresponding code snippets need to be defined in the XML code of the dashboard:

https://technet24.ir

The id parameter defined in the <search> tag and set in the token should match the
corresponding CSS ID. In the <query> tag, the search query resulting in the output
required to be displayed in the single value should be defined. Also, the variable
whose value is to be displayed on the panel should be mentioned, as in our
example, count is mentioned as $result.count$. The value of the variable
defined in set token will be displayed below the image as a single value.

These are the steps to implement the image overlay functionality on the Splunk
dashboard as per the requirement.

Note that any change in the JS and CSS file's image may not be reflected immediately
and may require a restart in Splunk to reflect the changes on the Splunk dashboard.

Custom look and feel
In this section, you will learn how to use custom CSS and JS to customize the look and
feel of Splunk dashboards. In the previous topics and chapter, we used CSS and JS to
customize the functionality of the dashboard. In this section, we will modify the look
and feel (aesthetics) of the Splunk dashboard.

The Splunk dashboard has its predefined stylesheets, which are automatically applied
on any new dashboards created in Splunk. You will now learn how to override the
default stylesheet behavior with your own custom CSS file.

https://technet24.ir

Example and implementation
The following steps are required to use custom CSS file on any dashboard XML page:

1. Create a CSS file (say, layout.css) at
$SPLUNK_HOME$\etc\apps\app_name\appserver\static.

2. Go to the Splunk Web Console | Dashboard | Edit Source (for which the custom
layout is to be applied).

3. Direct the dashboard to use custom CSS file by modifying the XML code as
follows:

<dashboard stylesheet="layout.css">

If the dashboard has a form tag, then modify it as follows:

<form stylesheet="layout.css">

4. Now, whenever the dashboard is loaded apart from the default style, it will also
load the style as defined in the custom (layout.css) stylesheet.

5. Since layout.css does not have a definition of any custom modification, the
dashboard loads as it is. Now, we will see how to customize different elements of
the dashboard using this custom stylesheet:

Changing the color of the panel background: Add the following code in
layout.css and replace the color as per your requirement, and there, you
have the panel color background of your choice:

.dashboard-panel,.dashboard-cell {
 background: #D52121 !important;
}

The preceding code snippet will change the dashboard panel background to
red (D52121). The !important value is required to override Splunk's
default style with the one we specified. The following screenshot shows a
panel that has no results to display and is customized by the preceding CSS
code:

Change the color of Title, Header, and Description of the panel, as follows:

.dashboard-row {
 color: #4D0303;
}
.panel-head h3,.dashboard-header h2, p.description {
 color: #745B5B;
}

Depending on what element of the dashboard is to be customized, the respective
CSS element is modified in this custom CSS.

The important issue that arises here is how to know which stylesheet is applied and to
which segment of the dashboard so as to be able to modify any segment of the
dashboard. Let's understand this with the help of an example figure:

https://technet24.ir

The preceding example figure is a sample dashboard highlighting the different elements
of it. All the elements seen on the dashboard can be formatted as per our requirement,
that is, color, font, size, and so on.

So, to change any specific element as required, how can we identify what CSS needs to
be added in the preceding custom layout.css file? The browser's debugging
functionality is generally accessible by pressing the F12 button.

Let me explain how to identify the corresponding CSS file and modify it as per the
requirement. The debugging console is available by pressing the F12 button in most of
the browsers, such as Mozilla Firefox, Google Chrome, and Internet Explorer.

Suppose we are interested in changing the aesthetics of the title of the dashboard. When
the dashboard is open in the browser, press F12, and the debugging console similar to
the one in the following screenshot will appear.

Note that the following example figure is explained using the Mozilla Firefox browser.
The debugging console looks pretty much the same for other browsers as well:

The lower part of the browser, which shows the HTML code and CSS, is part of the
browser's debugging console. We are interested in changing the aesthetics of the title, as
highlighted in the preceding figure. The following are the steps to implement it:

Right-click on the part of the element that is to be modified, and click on Inspect
Element. In our example, the element on which we right-click is Title, as
highlighted in the preceding figure.
The HTML and CSS code of the inspected element will be available in the
debugging console.
The respective styles already applied on the element will be visible, and the CSS
element tag used to modify the properties can be found in the CSS segment of the
debugging console. The following figure shows the CSS debugging console:

https://technet24.ir

So, .dashboard-header h2 is the style applied on the title of the dashboard, and
we can modify it by overriding the preceding default properties in our custom CSS
file as follows:

The preceding example figures show that font-size and font-weight are
modified and two new styles, color and font-style, have been added to
customize the title as per our requirement.

Note that the existing styles that are modified have !important, whereas the ones
that are newly added are missing this postfix. The reason is that in CSS,
!important is used to override wherever added. So, this postfix is added to only
those that have a pre-existing style, and new styles need not have this postfix.

In many cases, the modified custom CSS code is not applied on the dashboard until
the Splunk server is restarted and browser cache is cleared.

The result of the preceding custom modification in layout.css will be similar to
the one shown in the following figure. The color value is changed to red from the
default black color. The size is increased from 24px to 44px. The font weight
value is increased to 300 and the font-style value is set to italic. The
following is the output of these changes:

Similarly, depending on the requirement, any of the elements of the Splunk dashboard
can be modified as per the requirement using custom CSS.

https://technet24.ir

The custom alert action
The Splunk dashboard can be configured to implement custom alerting actions. Splunk
can be integrated with other enterprise applications to automate the workflow and thus
increase efficiency.

What is alerting?
Splunk is a big data tool with lots of data streaming in every second from numerous
different sources, and there can be multiple dashboards and use case scenarios
implemented on Splunk. It would be difficult to keep monitoring all the dashboards for
any issue when it arises in real time. Hence, whenever any specific condition is met, an
alert can be sent in the form of an e-mail, SMS, or chat notification informing the admin
that the defined condition has been found on the data.

Thus, the feature of alerting in Splunk helps to avoid monitoring of the dashboard live
and 24 x 7 for issues and thus reduces manpower. Since the process is automated, there
will not be a single instance when the specific issue is caused and not reported. Thus,
the alerting feature increases the efficiency of data monitoring in real time.

https://technet24.ir

Alerting
The alerting feature can be useful in various business domains, such as security,
compliance, fraud, IT operations, IOT, M2M, business analytics, and so on. The alerting
system can be integrated with the issue tracking and ticketing system, messaging, e-mails
and chatting applications, running custom scripts to switch on/off devices, managing and
monitoring IOT devices, and so on. Thus, the alerting feature of Splunk, when integrated
with the enterprise application's real-time alerting and workflow, helps us obtain
automation.

The following are some of the alert action examples that can be easily integrated with
Splunk:

Issue/incident tracking/ticketing: Most widely used incident ticketing systems
such as Jira and ServiceNow can be directly integrated with Splunk to automate
the creation of tickets from Splunk itself.
Security, compliance, and fraud: Security and networking devices, such as
firewalls and gateways, can be informed to take the necessary action. The fraud
and compliance team can be informed to take the necessary action in case of any
fraud detected by Splunk.
Alert notification: Whenever any specified condition is met in Splunk, various
alert notifications can be sent either via e-mails, SMSes, or via instant messaging
clients, such as Slack and HipChat.
IT monitoring: Incident notifications can be sent to various IT incident monitoring
tools, such as BigPanda, xMatters, and so on, directly from Splunk whenever an
issue arises.
IOT/M2M actions: IOT/M2M devices can be switched off/on and alarm
generation or any custom action by the device can be configured via scripts.
Custom actions can also be performed using webhook (sending HTTP POST
actions to URLs).
Custom actions: Custom scripts or integration with any enterprise applications
can help the alerting feature of Splunk to trigger any custom actions as per the
requirement.

Splunk already had an alerting feature in the previous versions, which were capable of
sending e-mail notifications whenever the specified condition was met. In Splunk 6.3
Enterprise, the custom alert action feature has been introduced, which makes Splunk
alerts trigger an automate workflow in enterprise applications.

The following are some of the features of the custom alert action introduced in Splunk
6.3:

Various third-party applications/add-ons directly integrate with enterprise
applications
UI-based configuration of settings and administration options can be set directly
from the Splunk Web console
Various enterprise-applications-based extensions can be developed and distributed
to Splunk users for integration with Splunk
Enterprise application add-ons/extensions are already available for the famous,
most widely used alerting, incident management tools and thus can be directly
integrated and used

https://technet24.ir

The features
Splunk supports the following custom alert framework to use and manage custom alert
actions:

Custom alert actions will be made available as add-ons or extensions that can be
directly used by configuring on Splunk.
Configurations can either be done by a UI from the Splunk Web console or via the
respective conf files. Features such as access control and add-on management can
also be enabled for user configuration.
We can explicitly invoke scripts (Python scripts and bash scripts) and can even
pass information via tokens to the scripts.
The configuration framework supports encrypting confidential information with the
access method to read/write from the alert script.
Splunk provides lots of enterprise application support for custom alert actions,
such as BigPanda, ServiceNow, xMatters, HipChat, Slack, Hue Bulbs, Alert
Manager, Insteon Home Automation Control, Jira, Yammer, and so on.
The inbuilt plugins can be configured from the Splunk Web console by navigating
to Settings | Alert Actions.

The Alert Actions page will be visible with a list of installed alert actions along
with the option to install add-ons/extensions from the Splunk app store. The
following figure shows the Alert Actions page of the Splunk Web console:

The Custom Alert page accessed via the Splunk Web console can be used to
configure and manage alert actions that are already installed or new alert actions
can be installed from the Splunk app store. The alert action panel also provides
access to usage statistics and log events.

Implementation
Let's see how to create and use a custom alert action on the Splunk Web console.
Follow these steps to do so:

1. Write the search query on whose output the custom Alert action is to be defined
on the Splunk search. Click on the Save As button and then on Alert:

2. The Save As Alert screen pops up, similar to what is shown in the following
figure, where various information needs to be configured. The first segment of
Save As Alert is Settings, as shown in the following figure:

https://technet24.ir

The title and description of the alert can be specified as per the user to
identify the alert
The access control option describes whether the alert is private or shared in
an app and can be configured from here
The alert schedule describes whether a schedule is to be run every day, every
hour, every month, or in real time, and can be configured from this section

3. The next section is Trigger Conditions. Here, when the preceding alert runs and
the output is generated, then the condition can be specified in the trigger condition
to do custom alert actions:

The alert condition can be configured by choosing one of the inbuilt options or a
custom option can be selected where a user can specify the condition. Once this
condition is satisfied, the configured custom alert action will be invoked.

There is also an option to throttle the trigger, which means that if a trigger
condition is met, then for the specified time, the alert trigger will be suppressed to
avoid duplicate triggers. The throttle condition can be enabled/disabled as per the
requirement from the preceding settings.

4. Since we have configured the alert search, the trigger condition will configure the
custom alert action. The alert action is the action that will be performed when the
alert triggered condition is met. The last section of Save As Alert is Trigger
Actions:

When we click on the Add Actions button from the Trigger Actions section,
another pop up appears listing all the custom alert action add-ons/plugins installed
in the Splunk instance:

5. The list of custom alert actions is available when we click on Add Actions, and
then the user can choose one or more than one alert actions from the list. Each alert
action selected can be configured from the same screen, and click on Save to
create a custom alert action. The following screenshot shows three alert actions
configured for an alert. Similarly, as per the required custom alert, actions can be
chosen and configured:

https://technet24.ir

Example
Let's understand the use of the custom alert action with the help of a real-world
example. Let's suppose that we have data from various payment gateways for credit
cards on Splunk. Every second, millions of transactions take place from various
sources, such as e-commerce portals, mobile devices, ATM/PoS transactions, and the
log information from these sources is made available on Splunk.

Taking advantage of Splunk's custom alert action, the following are some of the use
cases that can be implemented on the said data:

Fraud detection: Fraud detection can be configured either on the machine-learning
logic or correlation or outlier detection. Once the fraud detection search is ready, a
custom alert can be defined whenever any such condition is met. The alert can be
used to send an instant SMS or e-mail to the respective people. Run a custom
script to inform the payment gateway in order to abort the transaction, and so on.
Thus, the necessary action can be taken as required to avoid any loss to the
business.
Automatic incident tracking: Whenever the transaction fails due to any reason,
such as an incorrect password, failure due to any hardware, network failure, and
so on, the automatic incident will be logged in the incident tracking system to
automate the fixing of the concerned issue.

Similarly, depending on the requirement and use case, a custom alert action can be
defined, and the automation of workflow is achieved.

Summary
In this chapter, we saw various advanced dashboard customization techniques, which
can be used on the Splunk dashboard. The customization methods learned in this chapter
can be applied to build useful, highly functional, and dynamic dashboards on Splunk.
Now, we will see how various tweaks and techniques can be used on Splunk to utilize
its features efficiently. You will learn about a few features and tweaks of Splunk that can
help us make quality analytics and visualizations.

https://technet24.ir

Chapter 10. Tweaking Splunk
We have already learned some important features of Splunk, creating analytics and
visualizations, along with various dashboard customization techniques. Now we will
learn about various ways we can tweak Splunk so that we can get the most out of it and
that to efficiently. In this chapter we will learn various management and customization
techniques for using Splunk in the best possible way.

In this chapter, we will cover the following topics in detail, along with example and
uses.

Index replication
Indexer auto-discovery
Sourcetype manager
Field extractor
Search history
Event pattern detection
Data acceleration
Splunk buckets
Search optimizations
Splunk health

Index replication
Splunk supports a distributed environment. Now, when it is said that Splunk supports a
distributed environment, what does this actually mean? What is the use of Splunk being
deployed in a distributed environment?

Splunk can be deployed in a standalone environment and in a distributed environment as
well. Let us understand what a standalone environment, a distributed environment, and
index replication are.

https://technet24.ir

Standalone environment
In a standalone environment, various components of Splunk, like the indexer or search
head are available on a single machine, which handles everything from on-boarding
data on Splunk, indexing the data, analytics and visualization, reporting, and so on.
Generally, standalone is used for development and testing purposes; it is not at all
recommended for deployment scenarios.

Distributed environment
In a distributed environment, various components of Splunk (the indexer, search head,
and others) are deployed in clusters. Deploying in a clustered environment helps to
produce multiple copies of the same data for high availability and reduces the chances
of data loss in case of hardware failures and disaster recovery.

Splunk is a big data log monitoring and analytics tool, which is the reason why Splunk
should be deployed in a distributed environment. It helps in achieving real-time
analytics on a Splunk distributed environment. So let us have a look at some of the
terminologies of distributed components, which we will be using to understand a
distributed deployment of Splunk:

Clusters: Clusters are groups of Splunk indexers configured to replicate each
other's data so as to have multiple redundant copies of all the data.
Master node: Master node, also known as the cluster master, has the
responsibility of managing the cluster. It is recommended to have one master node
for one cluster. In Splunk architecture, the master node is shown using the
following symbol:

Peer nodes: Peer nodes are sets of indexers where the actual data gets indexed
and is stored. There can be several indexers depending upon the replication factor
to store multiple copies of all the data. The following image depicts the symbol for
the peer node:

https://technet24.ir

Replication factor: This factor determines the number of copies of data that
should be available in a cluster and thus, the replication factor can be said to be
the fundamental level of a cluster's failure tolerance. The following image shows
replication, with each box representing an individual replicated peer node of a
cluster:

Search heads: Search heads are responsible for managing and coordinating
searching over peer nodes on the basis of the search factor. A search head is shown
in the architecture of Splunk using the following depiction:

Search factor: The search factor defines the number of searchable copies of data
that should be available in a cluster. This factor can be used to understand the
capability of a cluster to be able to recover its searching capability after any peer
node's failure.

https://technet24.ir

Replication
Now let us understand how searching actually happens in a distributed environment of
Splunk, and some important scenarios.

Searching

The following image describes a single cluster of a Splunk distributed environment with
the replication factor as three. As seen in the image, there are three peer nodes:

There are three types of communication in the preceding distributed cluster image.

Messages: The cluster master communicates a list of peer nodes/cluster peers to
the search head. The search head is always communicated with the list of peer
nodes for searching.
Search data: The search head distributes search queries to a peer node / cluster
peer for search processing and then consolidates the result.
Replication data: The peer node communicates with other peer nodes / cluster
peers to keep all the nodes with an updated copy of all the data among each other.

Failures

How Splunk's distributed environment manages itself in case of failures to avoid
performance issues and data loss is as follows:

Peer node / cluster peer fails: Let us suppose we have a cluster similar to the one
in the preceding example image. If any of the peer nodes fail or go down, the
following is the mechanism performed by the various components of a Splunk
distributed environment:

1. The cluster master, which always keeps track of peer nodes detects the peer is
down. It instructs another working node to act as a primary peer node.

2. The cluster master now instructs the search head to use the redundant peer
node for replication so as to meet the replication factor defined. Hence, a
peer node, which is just kept for future use, is used and a full data replication
starts on the new disk.

Cluster master fails: If the cluster master, which gives commands to the search
head itself goes down, then the following is the working flow of the cluster:

1. The search head continues to run its normal functioning as per the list of
search peer nodes last updated by the cluster manager.

2. The newly arrived data may or may not have enough replicated copies, as the
cluster master is not available to maintain compliance of the replication
factor.

3. Once the cluster master is back, it updates the search head and also starts
replication for any unreplicated copies (if applicable) since its failure.

Note

Splunk does not charge separate license fees for replication; that means you can
have replication enabled using your Splunk Enterprise license itself, where data
duplication (sending data from one Splunk index to another index) is chargeable.

The Splunk Web console provides information regarding where the distributed
environment can be found. In the Splunk Web console, click on Settings | Distributed
Management Console. Using the distributed management console, various important
information an be attained, like the number of available peer nodes, indexers for the
given cluster, and from those, how many are searchable and how many are down. This
section also gives information about the indexing rate, the amount of disk and license
used, the number of searches and their types, and the system health status.

Thus, index replication should be used actively, using distributed Splunk deployment so
as to avoid data loss in case of failures and for business continuity of real-time analytics

https://technet24.ir

and visualizations.

Indexer auto-discovery
Splunk 6.3 introduced a very usable and important feature for distributed environments.
This feature simplifies forwarder management, which automatically detects new peer
nodes in a cluster, and thus, load balancing is handled by itself.

https://technet24.ir

Example
Let us understand the use of indexer auto-discovery using the following cluster example
image. The following image shows forwarders sending data to peer nodes. The peer
node list and other relevant messages are being communicated from the cluster master to
the forwarders:

The following are the uses/advantages of indexer auto-discovery:

There is no need for configuration on forwarders specifying the number of peer
nodes in the given cluster. The forwarder is automatically informed with the
updated list of peer nodes by the master. Thus, when a peer node fails or new peer
nodes are added in a cluster, there is no configuration requirement on forwarders.
There is no need to know the number of peer nodes when adding or removing a
forwarder. Indexer auto-discovery needs to be enabled for a newly added
forwarder and the cluster master takes care of the rest.
The cluster master will be able to know the total disk space on each peer node,
which can help to maintain load balancing. This information is communicated to
forwarders and then the forwarders adjust the data sent to each of the peer nodes
according to the disk space.

Implementation
Now let us have a look at how to enable and configure indexer auto-discovery in Splunk
Enterprise:

1. The peer nodes are to be configured to receive and index data from forwarders:
1. This can be enabled from the Splunk Web console | Settings | Data |

Forwarding and Receiving. In the Settings page, under section Receive
Data, a new port number to receive data from forwarders can be configured.

2. Receiving can also be enabled by configuring the receiving port in the
inputs.conf file.

2. Enabling indexer auto-discovery on the cluster master node can be done by
configuring the server.conf configuration file on the master node.

The following is a sample configuration to enable indexer auto-discovery on the
master cluster:

[indexer_discovery]
pass4SymmKey = "Security_key"
polling_rate = Number_btw_1_10
indexerWeightByDiskCapacity = true/false

The parameters used in the preceding snippet are discussed in the list that follows:
Security_key: It is a string which will be used to authenticate the cluster
master and forwarders to enable secure communication.
polling_rate: It is the rate at which the forwarder polls the cluster master
for the list of peer nodes. It can be defined as any integer value between 1 and
10.
indexerWeightByDiskCapacity: If set to true, the cluster master fetches
the disk capacity of all the peer nodes and communicates it to the forwarders
for weighted load balancing.

3. Now, since the indexer auto-discovery is configured in the cluster master,
forwarders are to be configured for index auto-discovery. The following is a
sample configuration which needs to be configured in the outputs.conf file of
every forwarder in the cluster to enable auto-discovery:

[indexer_discovery: Name_Index_Discovery]
pass4SymmKey = "Security_key"
master_uri = Master_Node_URI_with_Port

[tcpout: Group_Name]

https://technet24.ir

indexerDiscovery = Name_Index_Discovery
useACK=true

The parameters used in the preceding snippet are discussed in the list that follows:
A unique string (Name_Index_Discovery) which we will be using in
indexerDiscovery of tcpout to identify the cluster master. This is useful in
case more than one cluster has indexer auto-discovery enabled.
Security_key is the same as that which is configured in the cluster master
for authentication.
Master_Node_URI_with_Port is the URI along with the management port of
the cluster master from which the list of peer nodes is to be fetched.
Group_Name is a unique name to define index discovery and acknowledge
options. Any string can be defined as Group_Name, as per the user.
useACK=true is an optional parameter; if defined and set to true, it enables
indexer acknowledgement.

Thus, indexer auto-discovery should be enabled in a distributed environment of Splunk
Enterprise so as to avoid reconfiguration and management of forwarders whenever there
is any change in clusters or forwarders.

Sourcetype manager
Sourcetype manager is another very useful provision added in Splunk 6.3, which can be
used to manage the sourcetype for on-boarding the data on Splunk. It can be used to
manage (create, modify, and delete) sourcetype configurations independent of getting
data in and searching within the sourcetype picker. We have already learned in the
Chapter 2, Developing Application on Splunk about how to assign and configure
sourcetype while uploading the data on Splunk.

Sourcetype manager enlists all the sourcetype configured in the Splunk instance along
with the inbuilt default sourcetypes. The sourcetype manager can be accessed by
navigating in the Splunk Web console to Settings | Data | Sourcetype.

Now let us learn what can be done from the sourcetype manager:

Create a sourcetype: In previous versions of Splunk when sourcetype manager
was not present to create a sourcetype, first we needed to add data to Splunk or
else the inputs.conf file needed to be configured manually.

Using the sourcetype manager, a new sourcetype can be created by clicking the
New Sourcetype button on the top right of the page. This option helps to create a
new sourcetype, along with configuration settings, as shown in the following
image:

https://technet24.ir

When creating a sourcetype, the following options can be configured:
The name and description of the sourcetype.
The app to which the sourcetype is to be associated by selecting the app name
from the dropdown list.
The category can be chosen depending upon the source of the data so that pre-
configured settings automatically get applied to the current sourcetype.
Indexed extraction for extraction of fields can be chosen in the respective
format if the data is any of the predefined formats like CSV, PSV, TSV, JSON,
or W3C.
Apart from choosing the pre-default options to apply pre-configured settings,
manual settings can also be configured for event breaking, timestamping, and
other advanced configurations, which will applied while uploading data on
Splunk.

Modifying sourcetype: Modifying various configurations can be done from the
Sourcetype Manager page itself. Apart from the in-built sourcetype, the
destination app can be changed along with category, event breaks, time stamping,
and so on.

Note

Any change in sourcetype indexing parameters will not get applied on pre-existing
data mapped for the given sourcetype. Only new data will get parsed in the
modified format.

Deleting sourcetype: In previous versions of Splunk, for deleting a sourcetype,
there was no direct interface from the web console. It was done by running Splunk
CLI commands. Now in Splunk 6.3, sourcetype can be deleted from the
Sourcetype Manager page by clicking on the appropriate Delete button. Deleting
the sourcetype could have adverse effects on the data associated with the
sourcetype and also if any new data is associated with the sourcetype. Hence,
deleting the sourcetype should done carefully.

Note

Only sourcetypes which are created by a user can be deleted, the pre-existing
default sourcetype available in Splunk cannot be deleted from the Sourcetype
Manager page.

https://technet24.ir

Field extractor
In Splunk, for any kind of analytics and visualizations, fields play a very important role.
Splunk automatically tries to extract and make them available for use for known and
properly configured data sources. Since there are a wide variety of sources for data,
there could be many fields which do not get automatically extracted. Splunk also
provides the Splunk command rex, which can be used to extract the fields, but this
command requires a good understanding of regular expressions to efficiently extract
fields from the data. So Splunk provides a very easy to use field extractor to extract
fields using an interactive field extractor tool via the Splunk Web interface.

Accessing field extractor
Let us learn to access the field extractor to extract fields from the data, which in turn can
be used to create analytics and visualizations in Splunk.

The field extractor can be accessed via the following options:

Splunk Web Console | Settings | Fields | Field Extractions | Open Field
Extractor.
Using direct URL, by navigating to http://localhost:8000/en-
US/app/launcher/field_extractor

Where localhost and 8000 are to be replaced with, respectively, the IP address
and web port of the user's Splunk instance.
This option to access the field extractor is one the most useful and recommended
ways of accessing the field extractor. It can be accessed from the result window of
events when a search query is run on the web console.

The preceding image shows an example to extract the field extractor tool, which
can be accessed by taking the following steps:

https://technet24.ir

1. Open a Splunk search page via the web console.
2. Query the data which has the value to be extracted as a field.
3. Click on the downward pointing arrow option of the respective event to

expand the event options.
4. Click on the Event Actions button on the expanded window.
5. Then click on the Extract Fields option to extract the field from the selected

data.

Using field extractor
Now, since we are aware of accessing the field extractor tool, let us see how to extract
the fields using this tool. We will learn field extraction using the easiest and most
recommended option, which is the third option explained in the Accessing field
extractor section.

On clicking Extract fields via the third option, the following interactive screen
appears. Even if the first and second options are chosen to access the field extractor,
after selecting sourcetype, a screen similar to the following is shown:

The preceding image has the following components:

Navigation panel: The panel to proceed further and backtrack if required during
the whole process of field extraction.
Data: A subset of data of the selected sourcetype is shown, giving a choice of
which option to choose (Regular Expression or Delimiters) for further field
extraction.

https://technet24.ir

Regular Expression: If the field which is to be extracted from the data is
based on regular expression, then this option is selected, that is, field
extraction using regular expression.
Delimiters: If the field which is to be extracted is from a structured file like
CSV or TSV, then this option is selected.

Example
Let us have a look at field extraction using an example via the Splunk Web console.
First we will learn field extraction using the first option as in the preceding image, that
is, field extraction using regular expression, and then using the second option, or using
delimiters.

Regular expression

Let us have a look at field extraction using regular expression. When regular expression
is selected, then a screen similar to the following appears where we can extract the
required fields:

1. In the Select Fields where the data is shown, a set or subset of data can be selected
to extract as a field. Let us say if the user wants to extract the IP address, then
select the IP address and specify a name as required to get extracted. The
following image describes the same:

https://technet24.ir

2. Click on Add Extraction and it will create a field as per the specified name and
preview the value from the selected sourcetype, and verify and correct it if there is
any discrepancy in extracting the value.

3. The following image shows the preview of the extracted field
(Recievers_IPAddress):

The Preview window has the option to select and deselect events to review any
event which is wrongly extracted or any event which has a similar regular
expression but is not extracted. Various options exist, like previewing matches and
non-matches of fields from the data. The event selection sample can also be

selected from the Preview window.
4. Once the required events are properly extracted, then click on Next to validate and

save the newly extracted field.
5. The preceding procedure to extract the fields can be done for any number of

datasets, and the required information can be extracted in the form of fields. Now
let's suppose the user is interested in the IP address of only mails which were
received in the inbox. Since the sourcetype will include all the data of the mail
box, it will contain the IP address of various sent and received e-mails. So if any
other conditions are to be specified while extracting the field, then it can be done
here.

The following image shows how we can extract only the IP address of e-mails
which are received in the mailbox:

On selecting the Received option as shown in the preceding image, there are two
options available. One is to extract similar data patterns in a field and another one
is the Require option. It is used to instruct the field extractor tool to extract only
those IP addresses (regular expression) where a received value is available. Thus,
now the Recievers_IPAddress field will contain only those IP addresses where
Received is available in the data.

Similarly, this tool can be used to extract fields based on requirements and can be used
to build analytics and visualizations in Splunk.

https://technet24.ir

Delimiter

When the delimiter is chosen while extracting the fields then a screen similar to the
following appears:

From the preceding screen, the respective delimiter option, when selected,
automatically extracts all the data into fields; as per requirements, the field can be
renamed and used. In the preceding example image, it is clearly seen that the data is
comma-separated, and hence we will use a comma delimiter to properly extract the
fields.

The following image shows the field extraction when the comma delimiter is selected
for the preceding example:

Thus, fields can be extracted on the basis of regular expression as well as on the basis
of delimiter, as illustrated with the preceding example. Once fields are extracted, click
on Next and then Save to make the extracted fields available for analytics and
visualization. Permission to save extracted fields for any single app or for all the apps
can be configured before saving right from the field extractor tool itself.

https://technet24.ir

Search history
Search history is another useful feature introduced in Splunk 6.3 which can be used to
view and interact with history of the search command. This feature can be used to get
the complete list of search queries executed on Splunk over time.

The search history feature can be accessed via the Splunk Web console by clicking on
"Search & Reporting" App | Search. It takes the user to the search summary
dashboard with the option to run search queries.

The following image shows the search summary dashboard from where the search
history can be accessed:

The Search History option enables the following information on the screen:

The exhaustive list of search queries run on the Splunk instance along with the
time of the last run
The Action option to directly copy the respective search query in the Search bar
so as to run the search query right away
The Filter option to choose the list of queries shown on the basis of time defined in
the time range picker or some specific word/string which can be configured in the
text box

The following is a sample example screen of search history depicting all the preceding
information:

https://technet24.ir

Event pattern detection
Event pattern detection is a feature in Splunk which helps in increasing the speed of
analytics by automatically grouping similar events to discover meaningful insight in the
given machine data. It helps users to quickly discover relationship, patterns, and
anomalies in the given data, to build meaningful analytics on top of it.

In simpler terms, event pattern detection not only helps to find out the common patterns
in the data but also highlights those events which are rare and could be anomalies. The
event pattern detection feature of Splunk can be helpful in the following ways:

Auto discover meaningful patterns in the given dataset
Search data without the need to know what to search for
Detection of anomalies, rare events, and so on

The following image shows a sample of data events when queried on Splunk. The
sample data has mostly numbers in it, and if not much domain information is available
about the data it would be difficult to get insight from it:

Now we will see how event pattern detection helps in getting quick insights from the
preceding data. The following image shows the output of the Patterns tab for the
preceding data:

https://technet24.ir

The Patterns tab output shows that the total data shows three different patterns, and
those are listed in the output. Looking at the preceding output image, it is clear that the
data has information about three different species. There is a slider tool available,
which when moved to the Larger side tries to return a greater number of patterns, and
when moved toward the Smaller end returns a smaller number of events.

Basically, sliding toward the Larger side shows those results as well which have a low
percentage of common patterns, which could be of no use, and similarly, sliding
towards the Smaller side will return only those event patterns which have a very high
percentage of common patterns. Thus the slider can be adjusted and the best suitable for
the respective data can be defined.

Note

Event pattern detection works well when the number of events is higher; thus, the
warning message is shown in the preceding image.

Clicking on any identified pattern will display the detailed information about the
pattern. The following image is a sample output of detailed pattern information:

In the preceding example output, the first pattern (highlighted) is selected and
information regarding the selected pattern is shown on the right-hand side. The
information includes the following:

The number of estimated events which fit the criteria of selected patterns from the
whole dataset
The search query, which returns the selected pattern output
The keyword used in the search query

The detailed panel also has the option to do the following actions:

View the events on which this pattern is shown.
Create an alert so that when such a pattern is detected in future, it is notified.
Save the entered search query as an event type for future classification and while
using analytics over data having a similar pattern.

Thus, event pattern detection can be used to derive meaningful insights from the data
quickly and automatically.

https://technet24.ir

Data acceleration
Splunk is a big data tool and hence, it is obvious that the reports and dashboards created
on Splunk will have large datasets/events. So data acceleration is very much necessary
to get real-time analytics and visualizations.

https://technet24.ir

Need for data acceleration
Let's understand the need for data acceleration in reports and dashboards with the help
of the following image. The following image is an example screenshot of a dashboard
with many panels and thus, many searches. When there are many searches running
concurrently in a report/dashboard then it takes time to show the analytics or
visualization on the dashboard. Thus for real-time analytics, data acceleration will be
required:

Splunk is a very powerful big data tool, so why does it takes time to populate the results
on the dashboard/report? The reason behind why some searches complete quickly and
some take too much time can be explained with the help of the following facts:

Splunk is very fast at finding a keyword or set of keywords from millions of
events.

For example, searching error=404 among millions of events.
Splunk is not fast at searches having calculations on millions of events.

For example, calculation of any mathematical formula, count, mean, median, and so
on, on millions of events.

Hence, which kinds of searches should be included in the reports/dashboard can be
decided by taking into account the preceding facts to get real-time analytics.

Data model acceleration
Let us understand how we can implement data model acceleration (also known as
persistent data model acceleration) so as to speed up the data processing and data
searching to give real-time analytics. Data model acceleration is an inbuilt tool in
Splunk which adds a second layer to the data to increase the speed of a Splunk search
on large datasets with millions of events in real time. Data model acceleration does not
remove any functionality from Splunk basic searches but creates a schema of pre-
defined fields:

The preceding image is a snapshot of Splunk's inbuilt data model of the Audit index.
The data model helps to create instant pivot charts as well as helping acceleration
reports to get faster results. The data model is hierarchical in that at each hierarchy
level, fields are extracted and kept ready for use for the next level in the hierarchy and
so on.

Generally, in normal scenarios, the fields are extracted from the raw data during the
search time, but when data model acceleration is enabled, the field extraction process

https://technet24.ir

happens during index time. So, search performance is optimized, as the fields are
already extracted and available during searching, but this adds overhead during
indexing and thus higher indexer utilization happens when data model acceleration is
enabled. The extracted data model fields are stored in the High Performance Analytics
Store (HPAS), available on indexers as .tsidx files.

The data model can also be accelerated as shown in the following image. The option to
accelerate the data model as shown in the following image can be accessed from the
Splunk Web console by navigating to Data Model | Edit | Edit Acceleration:

The following are the few limitations of data model acceleration:

Only data model event hierarchy is accelerated
Once the acceleration is enabled on the data model, it cannot be edited

Data model acceleration has been available in older versions of Splunk as well. In
Splunk 6.3, which features an additional technique, parallelization, already learned
earlier, helps in running two concurrent search jobs instead of one. Thus, more efficient
and faster accelerations are possible as compared to older versions of Splunk. The data
acceleration is due to the use of exclusive HPAS during the pivot and while using the
tstat command.

Let us see how to check the status of data model acceleration from the Splunk Web
console.

Navigate from the Splunk Web console to Settings | Data Models. The following image
shows the sample of data model acceleration status:

The data model's definition is stored in the respective model's folder or respective app
directory $SPLUNK_HOME\etc\apps\appname\default\data\models in JSON format
(modelname.json). The definition of the data model (JSON file) is stored on the search

https://technet24.ir

head.

Apart from persistent data model acceleration, which we have just studied, Splunk also
has the capability to run ad hoc data model acceleration. The following is the scenario
when Splunk automatically implements ad hoc data model acceleration:

It is automatically applied to the Pivot UI.
The acceleration happens at the search head, similar to persistent data
acceleration.
The summaries created for acceleration are deleted once the Pivot editor is closed.

Splunk buckets
The Splunk Enterprise stores its index's data into buckets organized by age. Basically, it
is a directory containing events of a specific period. There can be several buckets at the
same time in the various stages of the bucket life cycle.

A bucket moves from one stage to another depending upon its age, size, and so on, as
per the defined conditions. The Splunk bucket stages are Hot, Warm, Cold, Frozen,
and Thawed. Splunk buckets play a very important role in the performance of search
results and hence they should be properly configured as per the requirements.

The following image shows the life cycle of Splunk buckets:

Let us understand the Splunk bucket life cycle, taking the above image as a reference.
The Indexes.conf file can be modified to configure the aging and the conditions to
move from one stage to another:

Hot bucket: Whenever any new data gets indexed on Splunk Enterprise, it is
stored in a hot bucket. There can be more than one hot bucket for each index. The

https://technet24.ir

data in the hot bucket supports both read and write. This is the only stage of the
bucket life cycle where it supports write operations as well. Until and unless
some specific conditions are configured, the data in the hot bucket cannot be
backed up.
Warm bucket: Whenever the hot bucket is full, it gets converted into warm bucket
and a new hot bucket gets created. Unlike hot bucket, the data in the warm bucket
only supports read and can be backed up. In terms of search performance, hot and
warm Buckets are the same, with no effect on search performance. Hot and warm
buckets are stored at $SPLUNK_HOME/var/lib/splunk/defaultdb/db/*
Cold bucket: Once the warm bucket is full or the count of the warm bucket
exceeds the configured number, the warm bucket is moved to the cold bucket. The
storage type used for the cold bucket can be relatively cheaper as compared to that
of the hot/warm bucket. The hot/warm bucket requires very high IOPS as compared
to the data in the cold bucket and hence, relatively cheaper storage can be used for
the cold bucket. Similar to the warm bucket, it supports both read and backup
capability. The cold bucket is stored at
$SPLUNK_HOME/var/lib/splunk/defaultdb/colddb/*

Frozen bucket: On reaching the age limit or crossing the storage limit of the cold
bucket, the cold bucket is converted into the frozen bucket. Frozen data does not
support read operations and cannot be searched on either. Splunk, by default,
deletes the frozen bucket but it can be configured to move to an archive as well.
Archived data can later move to the thawed state.

Search optimizations
We have already learned data acceleration and the bucket life cycle in the preceding
section. Let us now see how we can make the best use of search queries for better and
more efficient results. Splunk search queries can be optimized depending upon the
requirements and conditions. Generally, the search queries which need to be optimized
are those which are used most frequently. Let us learn a few tricks to optimize the
search for faster results.

https://technet24.ir

Time range
We have already learned about Splunk buckets, which organize events based on time.
The shorter the time span, the less buckets will be accessed to get the information of the
search result. It has always been a common practice to use All time in the time range
picker for any search, irrespective of whether the result is required for all of the
duration or some limited duration.

So one of the best search optimization methods is to use the time range picker to specify
the time domain on which the search should run to get the result. Since the time limit
will be specified, only limited buckets will be accessed, irrespective of all the buckets
and thus, faster and more optimized results will be obtained.

Search modes
Splunk has three search modes: verbose, fast, and smart. These modes are discussed
as follows:

The verbose mode is the slowest and most exploratory option, which returns as
much events information as possible.
The smart mode, depending upon the search command used in the search query,
sometimes behaves like the fast mode and sometimes like the verbose mode.
In the fast mode, field discovery is switched off and it is the fastest of all the
modes. Dashboards and reports use the fast mode by default.

If the searches are done in the fast mode, the search results can be obtained three to five
times faster than in the verbose mode.

https://technet24.ir

Scope of searching
In Splunk, to access data we have index, source, and sourcetype. Index helps in locating
the disk from which the data will be read. Source and sourcetype should be used to
specify exactly where to look for data. Specifying the scope can result in up to 10 times
faster results than not using the scope.

Let me explain the use of the scope and how can it accelerate the result of a search
query using an example:

In the preceding example image, we have one index (Index A), three sources (Location
A, Location B, and Location C) and two sourcetypes (Usage Logs and Error Logs):

Now let us suppose if the result is required for only the usage logs of all the
sources (locations), then the search query should be as follows:

Index= "indexA" sourcetype= "usage_logs"

If usage_logs of only Location A are required, then the source should be as
follows:

Index= "indexA" source= "locationA" sourcetype= "usage_logs"

Similarly, only the data should be searched for which the result is required and hence,
since the amount of unnecessary data searching is removed by using scope (index,
source, and sourcetype) the search will be efficient and faster.

Search terms
When specifying the scope of searching using index, source, and sourcetype, the
following precautions should be taken to accelerate the search results:

Avoid using the following search:

Index= "abc" foo | search bar

Instead, the preceding search query should be Index= "abc" foo bar.
Avoid using NOT as far as possible:

Index= "abc" sourcetype= "errorlogs" NOT error=404

The preceding search query should be reformatted for faster processing as:

Index= "abc" sourcetype= "errorlogs" AND (error=400 OR error=401
OR error=403)

Combine multiple instances of rename and rex together:

… | rename A as "I am A" | rename B as "I am B"

The preceding search query has two instances of rename; those two should be
combined as shown in the following. It should be noted that rename should always
be added at the end:

… | rename A as "I am A", B as "I am B"

Fields should be used before stats, for table command preferably, as shown in
the following:

Index= "webserverlogs" | stats count by error | search error=404

The preceding search query should be replaced by the following query for faster
processing:

Index= "webserverlogs" error=404 | stats count by error

Subsearches (append) should be avoided for faster processing. The following
example shows how an append can be avoided. Subsearches should strictly not be
used for real-time searches:

Index= "locationA" | eval variable=locA | append [search index=
"locationB" | eval variable=locB]

https://technet24.ir

The preceding search query can be replaced by the following for faster and more
efficient performance:

Index= "locationA" OR index= "locationB" | eval variable=case
(index== "locationA", "locA", index== "locationB", "locB")

Use rename instead of eval wherever possible. Using rename instead of eval
doesn't make any difference in results, but it has been observed that rename is
faster than eval sometimes:

… | eval abc= "This is test statement"

The preceding eval statement can also be written as follows:

… | rename abc as "This is test statement"

Thus by making efficient use of Splunk search queries, it can be optimized for accurate
and faster results.

Splunk health
It is very important to keep track of Splunk's health status. Splunk Enterprise keeps
logging various important information which can be helpful in the various stages of
Splunk usage. Splunk's log and Splunk Enterprise can be used together to keep track of
Splunk's health and various other important measures related to Splunk Enterprise. The
Splunk logs can be useful in troubleshooting, system maintenance and tuning, and so on.

The following activities can be tracked by using Splunk's inbuilt logging mechanism:

Resource utilization and Splunk license usage
Data indexing, searching, analytics-related information, warnings, and errors
User activities and application usage information
Splunk component performance-related information

Splunk logging ranges from a wide variety of sources like audit log, kvstore log, conf
log, crash log, license log, splunkd log, and many more.

https://technet24.ir

splunkd log
Of all the sources for Splunk logs, one of the most important and useful logs is
splunkd.log. This log file has information of data input/output, errors, warnings,
debugging messages, and so on. splunkd also contains log messages generated by
scripted/modular inputs. splunkd (Splunk daemon) is the service which runs the Splunk
server and hence the name of the log file.

The splunkd.log file can be found at $SPLUNK_HOME$\var\log\Splunk. The
maximum size of a single splunkd.log file is 25MB and only the five most recent files
are retained in the file system. The log messages of the splunkd.log file can also be
accessed by the Splunk Web console via index=_internal. The Splunk Web console
can also be used to access the log messages of remote forwarders and indexers from the
search head in a distributed environment.

The logging of the splunkd.log file can be configured to the required log level as per
the requirement by modifying the log.cfg file located as $SPLUNK_HOME$\etc.

Search log
The search log can be found on the indexer and search head, which keeps logs related to
search queries run on Splunk. The search.log file can be found at
$SPLUNK_HOME$\var\run\splunk\dispatch\search_id. The search.log file is
generated as per the searches and hence each search will have its own log file.

This log file contains complete information regarding the respective search, along with
errors and warnings. Similar to splunkd.log configuration, search.log can also be
configured by modifying changes in log-searchprocess.cfg located at
$SPLUNK_HOME$\etc.

Apart from splunkd.log and search.log, there are various other important log files,
like scheduler.log, which can be used to debug scheduling related issues, and Splunk
utility logs, which keep track of license usage database validations.

Splunk logs provide operational information about performance, warnings, and errors.
The recent log files can be accessed through the file system, whereas the historical file
can be accessed from the Splunk Web console via a Splunk CLI query. Thus, Splunk can
be very useful in various scenarios of usage, development, and deployment of Splunk
Enterprise.

https://technet24.ir

Summary
In this chapter we have read about various features of Splunk which can be used to
utilize Splunk for better, more efficient, and faster analytics. We have learned various
tools like sourcetype manager, field extractor, event pattern detection, and so on. We
also had a look at data acceleration, efficient search queries, and various other
important tweaks of Splunk Enterprise. In the next chapter we will learn about
enterprise integration of Splunk with various other analytics and visualization tools.

Chapter 11. Enterprise Integration with
Splunk
We now have enough understanding of how to use Splunk for analytics and
visualization. In this chapter, we will go through how Splunk can be integrated with any
present/legacy proprietary applications in detail along with examples. Splunk provides
an Software Development Kit (SDK) on almost all programming languages, such as
.NET, Java, Python, and so on. The SDK can be used to integrate with applications to
get better, efficient, and faster (real-time) results in the applications. You will also learn
how Splunk can be integrated with other tools such as R for analytics and Tableau for
visualization.

The following are the topics that will be covered in this chapter:

The Splunk SDK
Installing the Splunk SDK
The Splunk SDK for Python
Splunk with R for analytics
Splunk with Tableau for visualization

https://technet24.ir

The Splunk SDK
An SDK plays a very important role in integrating the power of Splunk's real-time
analytics and visualization in legacy/proprietary applications. Industries and
organizations use some or the other tool to generate analytics and visualization.
However, legacy/propriety tools may not be scalable to handle big data and provide
real-time analytics, and hence Splunk comes to the rescue. It may not be possible to
replace the current tools used in the workflow, and hence, the Splunk SDK can be used
to integrate with the current tool to utilize the power of Splunk.

The Splunk SDK is available in almost all the programming languages, such as C#,
Java, PHP, Ruby, Python, and JavaScript.

The following are the scenarios where the Splunk SDK can be useful:

It can be integrated with current workflow tools seamlessly to utilize the power of
Splunk's big data analytics and visualization in real time.
An SDK can help in logging data in the Splunk server directly from the application;
that is, rather than storing the logs in a text file and then uploading data logs on
Splunk, the logs can be directly sent on the Splunk server using an SDK.
It can be integrated with other analytics and big data tools, such as R, Tableau, and
so on.

Let's understand the use of the Splunk SDK with the help of an example. Let's assume
that we have a banking tool that is used in ABC Bank to do all kinds of transactions,
internal process management, inventory and asset management, and so on. The tool logs
all the transactions in a database and is used for various purposes, such as fraud
detection, fraudulent transactions, cash inflow and outflow, analytics, and various other
insights required by the bank. The database logging mechanism can handle a few
thousand to a few lac transactions in a day, but due to advancements in technology, the
number of transactions and workflow has increased to millions of transactions per
minute. If the bank continues to use the pre-existing legacy tool, then it would take hours
to a few days to generate insight. Let's say that there was a fraudulent transaction, but
what is the use of finding that when the loss is already done. Here, the Splunk SDK
comes to our rescue, using which informed business decisions can be taken in real time.
In these scenarios, the logs can be directly sent to Splunk using the Splunk SDK, and the
generated analytics and visualization can be shown in the pre-existing application. Also,
Splunk's capability of alerting, custom alert action, can be used to take critical business
decisions automatically.

https://technet24.ir

Installing the Splunk SDK
We already know that the Splunk SDK is available for most of the popular programming
languages, but we will concentrate on the Splunk SDK for Python on a Windows OS in
detail in this chapter.

The Splunk SDK is available for download from the Splunk website
(http://dev.splunk.com/sdks) and the Splunk SDK for Python can be directly
downloaded from http://dev.splunk.com/goto/sdk-python.

The SDK is for Python, and hence, Python should be already installed to use the Splunk
SDK for Python. According to Splunk documentation, the Splunk SDK supports Python
2.6 or higher but does not support Python 3.

The Python SDK can be installed in Windows using Python's Setuptools or by
downloading the Python SDK from the preceding link manually. The Python SDK can be
installed from the Command Prompt as follows:

1. Download Setuptools from the Python website
(https://pypi.python.org/pypi/setuptools) and in Command Prompt, navigate to the
Setuptools folder and type Python easy_install.py install.

Once the installation is complete, the next step is to run the following command in
order to install the Splunk SDK:

easy_install.py splunk-sdk

The Splunk SDK for Python is installed and ready to use in Windows.
2. The second way of installing the Splunk SDK for Python is by downloading the

SDK from Splunk's website. Then, navigate to the directory where the downloaded
SDK is located via Command Prompt and run the following command:

Python setup.py install

It has been observed that while installing the SDK via this method, the dependency
is automatically downloaded from the Internet. If for some reason, it couldn't be
downloaded, the user needs to manually install the dependency by downloading it
from the Python website.

The Splunk SDK can be installed via any of the preceding method, preferably the first

http://dev.splunk.com/sdks
http://dev.splunk.com/goto/sdk-python
https://pypi.python.org/pypi/setuptools

method as it is easy and straightforward. Once the installation is done, the Splunk SDK
for Python is available for use in Python.

Similarly, the Splunk SDK for the required platform can be downloaded and installed to
integrate it with an enterprise tool.

https://technet24.ir

The Splunk SDK for Python
We understood the use of an SDK and also saw the installation part of the Splunk SDK
for Python. Now, we will see how the SDK can be used to integrate the power of
Splunk's analytics and visualization.

Importing the Splunk API in Python
The following import statement will make the Splunk API available for use in Python:

import splunklib.client as client
import splunklib.results as results

The preceding two import statements make the API exposed using the Splunk SDK that
is to be used in the Python code for integration.

https://technet24.ir

Connecting and authenticating the Splunk server
The following image in the code snippet connects and also authenticates the Splunk
server. The login details can be passed as a parameter when running the Python code or
can be hardcoded in the code itself and can be saved in a .splunkrc file:

Once the authentication is successful, the Splunk APIs can be used to send data on
Splunk, enlist or run saved searches, run a search query on Splunk, upload files, create
and delete indexes, and so on.

Splunk APIs
The following screenshots show the same code snippet that is used for various Splunk
APIs and to perform various operations from the Python code itself.

Creating and deleting an index

The following code snippet can create and delete an index on Splunk via Python. In the
following code, there are two functions (CreateIndex and CleanIndex) that can be
used to create and delete a specified index as a parameter:

Creating input

The following snippet can be used to create a TCP input to accept the data coming on
that port and upload it on Splunk that is mapped to a specified index and sourcetype.
Information such as the port number, index mapped to this TCP input, and the respective
sourcetype needs to be passed as a parameter while the function is called. Also, since
the connection created is a tcp connection, it is hardcoded, but if a UDP connection is
required, then tcp needs to be replaced with udp in the following code:

https://technet24.ir

Uploading files

The following code snippet can be used to upload files on Splunk by providing the
INDEX and PATH of the file while calling the function:

Saved searches

The following code snippet helps in creating a Saved Search from Python:

Splunk searches

The Splunk SDK is a great tool that supports modes for the search operation depending
on the complexity of the operation. Following are the modes of search supported by
Splunk via an SDK:

Normal mode: In this mode, the search runs on Splunk and the code is returned
with a search ID, with which it can poll for completion. Once the search is
complete, the results can be displayed.
Blocking mode: This mode is a synchronous call, and the code is blocked until the
result is available and returned to the code.
One-shot search mode: This is also a synchronous call, but it keeps on sending
data, as in when it is available unlike that of blocking when the complete result is
available and only then the results are sent.

The following code snippet can be used to run searches on the Splunk dashboard and
return the results in the required format:

This is how the Splunk SDK can be used to perform various activities to leverage the
power of Splunk in the legacy/proprietary applications.

https://technet24.ir

Splunk with R for analytics
We now have enough knowledge of Splunk's features and analytical capabilities; let's
look at R and its capabilities. R is a statistically and graphically supported
programming language for data analysis and data mining. R has extensive library
support for statistical computing (linear/nonlinear modeling, clustering, classification,
time series analysis, graphical plotting, predicting, forecasting, data mining, and so on).

Splunk, being a big data tool, can be integrated with R to leverage its advanced
analytical capabilities for real-time insights. The Splunk app store had an app called R
Project, but it is no longer available on the app store. The R Project app for Splunk can
now be downloaded from GitHub (https://github.com/rfsp/r/).

The app can be installed on a Splunk instance like any other app downloaded from the
Splunk app store. This app on Splunk exposes a new search command—r, which
allows us to pass data from Splunk to the R-Engine for calculation and then pass results
back to Splunk for further computation or visualization.

This R Project app makes seamless integration to run custom R scripts rights from the
Splunk search console. This integration leverages real-time data analysis, data mining,
and other statistical algorithm/packages of R to be directly used from Splunk. The
following diagram shows how R Engine interacts with Splunk, which can be used by
different stakeholders:

https://github.com/rfsp/r/
https://technet24.ir

When an R command is executed on Splunk search, the data from the Splunk pipeline is
saved as a .csv file. This CSV file is taken as input in R and runs the scripts to create
another .csv file, which is nothing but the result of the script. The resulting CSV file is
loaded in Splunk, which is used to create visualization or generate insights from the
processed data.

The setup
The following are the steps to be followed to integrate the R app with Splunk:

1. Download and install the R app for Splunk from the GitHub link provided in the
preceding section.

2. The R tool also needs to be installed, and it can be downloaded from
https://cran.r-project.org/bin/windows/base. There is no compatibility issue with
any version of R. The example and illustration in this chapter can be completed
using the 3.1.0 version of R.

3. Once the R tool is installed, its installation directory path is required to be
configured in the Splunk R app. Generally, the default path is Program Files\R
folder in the drive where Windows OS is installed. The path in our example is
C:\Program Files\R\R-3.1.0\bin.

Note that the setup procedure is explained taking a Windows system as a reference,
and the respective folder/path needs to be configured for the Linux/MAC OS.

4. Now, in Splunk Web console, navigate to Apps | R Project | Setup. A page similar
to the following screenshot will be visible. Key in the path of the R tool
installation and click on Save. This is the one-time configuration required to set
the path of the R tool in the Splunk app for R.

https://cran.r-project.org/bin/windows/base
https://technet24.ir

5. Now, once the path is configured, sections such as Examples, Scripts, and
Packages of the app will be accessible to us.

6. Packages can be installed by navigating to the Packages menu. There are two
ways of installing packages from the R Project app on Splunk. The packages can
either be manually downloaded from the CRAN repository or can be specified in the
textbox. Depending on the option selected, the specified packages will get installed
and be available for use in R scripts.

https://technet24.ir

Using R with Splunk
Once we have set up the R app, we can use the r command for computation or to run
custom R scripts from the Splunk search itself. The Splunk app for R comes with
various examples to explicate the usage of R-Engine from Splunk via the R Project app.
The examples can be accessed from the Splunk Web console by navigating to R Project
App | Examples. Following are the steps for running custom R scripts with Splunk:

1. Run a search command that takes input from Splunk:

index=_internal |r "output=colnames(input)"

The preceding search command passes the result of index=_internal to R-
Engine with the help of the input variable.

2. Run the R function on Splunk:

| r "
 gm_mean = function(x, na.rm=TRUE){
 exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x))
 }
 data <- data.matrix(input);
 output <- apply(data, 2, gm_mean)
 "

R-Engine by Splunk can be accessed using the R command in Splunk. Splunk's R Project
app provides an interface to upload custom scripts that can be used along with the R
commands. The script can be uploaded by navigating in the Splunk Web console to R
Project App | Scripts. This web page of Splunk provides users with an interface to
upload the script.

The uploaded script can be used along with the R commands to pass the value from the
Splunk pipeline to the R script as input parameters, and then the result from R-Engine
can be shown on Splunk to create visualizations and generate insight.

Although the Splunk Machine Learning engine is evolving day by day and now has the
computation capability of complex algorithms, the R Project can be used to integrate any
pre-existing scripts/algorithms right away with Splunk. This helps in achieving
enterprise integration of pre-existing tools, scripts, or technology with Splunk.

Splunk with Tableau for visualization
In the preceding section, we saw how to use R along with Splunk to generate useful
insight from the data using R libraries from Splunk itself. In this section, we will see
how to use the processing power of Splunk and the visualization power of Tableau for
interactive visualization.

Tableau is a very advanced, interactive, business-intelligent software. It helps in
deriving instantaneous insights by data transformation into interactive visualizations. It
has an easy-to-use drag and drop feature that helps in making highly useful dashboards
in minutes. Splunk already has a pivot feature and ample visualization, but Tableau can
be used to answer many unknown questions from the data.

With Splunk being a big data tool and Tableau being an excellent interactive
visualization tool, their integration can be very useful to derive insight and take
informed business decisions on time.

https://technet24.ir

The setup
There are various variants of Tableau, and a suitable version of Tableau can be
downloaded from its website (http://www.tableau.com/products), and this needs to be
installed so that we are able to integrate it with Splunk.

Splunk's integration with Tableau requires the Splunk ODBC driver, which can be
downloaded from the Splunk app store (https://splunkbase.splunk.com/app/1606).
Proper care is to be taken while installing the ODBC driver, and depending on the
Tableau version (32 bit/64 bit), a corresponding ODBC version needs to be installed.

Let's understand how the data from Splunk can be fetched in Tableau using the ODBC
drivers to create interactive dashboards. The following screenshot shows the complete
procedure of accessing data:

Tableau accesses data from Splunk via saved searches. Saved searches are search
queries that are saved in Splunk Enterprise. Basically, saved searches are stored by the
Splunk admin on the instructions given by business analysts. Now, an analyst can use
Tableau and connect to Splunk using the Splunk ODBC drivers. The ODBC driver fetch
all the saved searches from Splunk Enterprise in Tableau for the corresponding login.
The saved searches then help to fetch the respective data from Splunk Enterprise, which
can be used to create visualizations in Tableau.

http://www.tableau.com/products
https://splunkbase.splunk.com/app/1606

Using Tableau with Splunk
The following is the procedure to connect Splunk from Tableau (in this example,
Tableau 9.3 is used):

1. Navigate to Tableau | Connect | To a server | More Servers… | Splunk. A page
similar to the following will appear. Fill in the corresponding details, for fields
like Server, Username, and Password of Splunk to connect to it.

2. On successful authentication, Tableau will be able to communicate with the Splunk
Server and fetch all the saved searches available for the login credentials used.
The following screenshot shows saved searches fetched from the Splunk Server:

https://technet24.ir

3. Select the Saved Search from the list on which analytics are to be done using
Tableau. Once the Saved Search is selected, Tableau provides an option for the
connection type, that is, Live or Exact.

4. The Live connection can be selected when the data in Splunk is updated every
moment and the visualization to be created on Tableau should have real-time data.

5. The Exact connection is selected to fetch only the data that is available for the
given saved search at that time. In this case, any change in data on Splunk will not
be reflected on Tableau.

6. After the connection type is selected, click on the Update Now/Update
Automatically button to fetch data from Splunk for visualization.

Once the preceding procedure is complete, Tableau can be used to create interactive
visualization over the data fetched from Splunk. Thus, Tableau can be integrated with
Splunk to use the power of visualization of Tableau for advanced analytics and better
visualization.

https://technet24.ir

Summary
In this chapter, you learned about the Splunk SDK, its setup procedure, uses, and
enterprise integration of Splunk using Python. We also had a look at how Splunk can be
used to integrate with R for analytics and Tableau for visualization. In the next chapter,
we will look at the features introduced in the latest version of Splunk 6.4 along with
examples and their uses.

k Chapter 12. What Next? Splun 6.4
We already covered various aspects of Splunk 6.3 in the previous chapters in detail. We
saw the implementation of various analytics and visualization along with the features of
Splunk 6.3. Splunk recently launched an updated version: Splunk 6.4. In this chapter, we
will glimpse at all the new features that have been added in Splunk 6.4 to enable better
analytics and visualization. Along with the features, we will also see what all changes
have been made in Splunk to make it more scalable, functional, and useful to the users.
Splunk 6.4, the latest version of Splunk Enterprise comes packed with new features and
customizations. The following are the key features that have been added/improved in
Splunk 6.4:

Storage optimization
Machine learning
Management and admin
Indexer and search head enhancement
Visualizations
Multi-search management
Enhanced alert actions

https://technet24.ir

Storage optimization
Splunk 6.4 introduced the new tsidx Retention Policy feature, which allows users to
reduce the storage requirements of data available in the cold bucket. The tsidx files are
stored under indexers and are responsible for efficient searching in Splunk. Basically,
the space taken by historical data available in the cold bucket can be reduced by
approximately 50 percent by removing the tsidx indexing information. This can help in
saving a lot of money every year that is spent on the storage of old/historical data. This
policy can be modified by navigating in the Splunk web interface to Settings | Indexes
in Splunk 6.4.

Machine learning
Splunk 6.4 has enhanced the Machine Learning Toolkit and Showcase app, which we
already studied with an example in Chapter 5, Advanced Data Analytics. Splunk 6.4
comes with six new machine learning algorithms along with support to hundreds of
algorithms of Python's data science library. Apart from this enhancement, the machine
learning app has added the Guided ML feature that guides users step by step to build,
test, and deploy machine learning models.

Splunk 6.4 has enhanced the predict command with features like these:

A new algorithm for bivariate time series has been introduced, taking covariance
between the individual time series into account for better and efficient prediction
The predict command can be used to predict results for multiple time series at the
same time and can also fill in missing data in the given time series

https://technet24.ir

Management and admin
Splunk 6.4 comes with an enhanced distributed management console, which supports
new topology views, search head clustering views, index and storage utilization, and
performance views. It also has added support to grant restricted access to admins so
that they can manage specific parts of Splunk deployments.

The following are some of the new features added in Splunk 6.4 under the distributed
management console:

The HTTP Event Collector: The management console enlists the entire HTTP
Event Collector input classified on the basis of the authorization token. This
feature enables the admin to understand and get insight of the data coming in via the
HTTP collector input method.
Search statistics: The console lists the heaviest/long running searches classified
on the basis of users. This feature can be used to find out those searches that are
causing overhead on Splunk servers.
I/O statistics: The I/O utilization of bandwidth for Splunk instances is shown to
take necessary actions whenever required. Along with this distributed console, it
also provides options for threshold control. It can be used to control the
CPU/memory, indexing rate, concurrency, and so on, and maintain the health of
Splunk's distributed environment.

Indexer and search head enhancement
Splunk when deployed in a clustered and distributed environment is now introduced
with various enhancements in Splunk 6.4 for higher efficiency and fault tolerance.

The following are the enhancements introduced in Splunk 6.4:

The index now supports replication of data model and report acceleration
summaries. Until Splunk 6.3, if the index failed, the data model and report
acceleration summaries were required to be regenerated. In Splunk 6.4, depending
on the replication factor, the data model and report acceleration will also be
replicated to survive failures.
In case of overheads or nonperformance of any indexer, the index can be
quarantined. This feature restricts any new searches using this indexer, whereas
any running searches will continue till the index search gets completed.
The search head now supports replication of the search peer. This feature enables
us to add any nonclustered indexers to a search head cluster. Search head
enhancement in Splunk 6.4 also includes support for replication of a user, role, and
password.

https://technet24.ir

Visualizations
Splunk 6.4 has added support of 12 new advanced visualizations directly in the
Visualization panel. Some of the new visualizations in Splunk 6.4 were possible in the
earlier version of Splunk, that is, Splunk 6.3 using the D3 extension plugin along with
the use of customized JS and CSS. Splunk 6.4 adds capability to create any new
visualization that can be installed as a plugin directly and share it with other fellow
Splunk users.

The following is the list of visualizations introduced in Splunk 6.4 that can be selected
and used from the Visualization tab of the Splunk dashboard. When it is said that Splunk
6.4 supports inbuilt visualizations, this means that these visualizations can be directly
downloaded from the app store, and the visualizations gets added in the Visualization
tab.

The following is the list of visualizations that we have covered in this book in various
chapters of visualization using custom CSS and JS. In Splunk 6.4, these visualization
apps can be directly downloaded from the Splunk app store and can be used from the
Visualization tab of the Splunk dashboard. At the time of writing this book, not all the
12 visualizations apps are available on the Splunk app store, but they are expected to be
there soon. The link for the apps is available on the app store.

The method used in Splunk 6.3 to implement these visualizations will still run in Splunk
6.4; it is just that instead of dealing with custom CSS and JS, it is now available as a
ready-to-use app from the app store. The following is a list of these applications:

Sankey diagram
Punchcard visualization
Calendar heatmap
Parallel coordinates

The following are the visualizations that are newly introduced in Splunk, which can be
installed as an extension and can be directly used from the Visualization tab from the
Splunk dashboard.

Timeline: The timeline chart is used to visualize data points over time. It depicts
the value of a given parameter over time. This kind of visualization can be used to
monitor network activities, climatic changes, and so on.
Status indicator: The status indicator is a variant of single-value visualization.
This visualization shows an icon and value together. Depending on the value, icon,
color, and so on, it can be customized in this visualization.
Horizon charts: The horizon chart is a suggested visualization that is used to
compare data over time among many items within a category. It combines position
and color to compare patterns of elements in a category over time. It can be used to
compare indexes and scripts of share market, and so on.
Treemap: Treemap is a widely used visualization that shows hierarchical data
using rectangles and colors. It can be used to show hard disk space usage analytics,
export/import of products, electoral data over different countries and states, and so
on.
Bullet graph: The bullet graph is a variant of bar chart visualization. It is very
useful in showing the value of the variable along with its target value. It also
shows whether the current value is good, bad, or satisfactory. Basically, it is a
three-in-one bar chart that shows important information of three types of the factor
in just one visualization. Let's say, the bullet graph can be used to show the sales
along with the target for the given month. It also shows a scale of whether what has

https://technet24.ir

been achieved is good, bad, or satisfactory.
Location tracker: Basically this graph visualization can be used to show
information on maps. A device such an, automobile can be located on the map as
per its reported coordinates.

Multi-search management
We have already seen how the post process was used to enhance the dashboard results
based on a global search. Splunk 6.4 has enhanced multi-search management by adding
a recursive search post process. Let's understand this enhancement with the help of an
example:

Until Splunk 6.3, multi-search management's post process search was based on a global
search, that is, a global search is defined and then based on the result of the global
search, other post process searches were defined. In the newly enhanced recursive
search post process, we can use a search as a base search, which itself is derived from
another search. As in the preceding figure, Search 4 is based on the post process of
Search 2, where Search 2 itself is based on a post process of a global search.

We have already studied the post process search in this book; now, let's see how to
implement the recursive search post process on Splunk 6.4. The following code snippet
explains how the recursive post process can be implemented on the Splunk dashboard
for optimized and fast processing of dashboard results:

https://technet24.ir

Using the enhanced multi-search management feature of Splunk 6.4, now the dashboards
can be further optimized for enhanced performance.

Enhanced alert actions
We already covered custom alert actions in detail in Chapter 9, Advanced Dashboard
Customization. In this section, you will learn what new features have been introduced in
the Splunk 6.4 release.

Splunk 6.4 has a new feature to choose from the action list of alert actions, that is, it
sends log events to the Splunk receiver endpoint. In the following figure, the option
marked in the rectangular box is the newly added feature in Splunk 6.4 under alert
actions.

This option helps users to redirect the alert log data to Splunk again under the specified
sourcetype or index. The alert that used to either trigger e-mails, webhook, or any other
defined custom action can also be sent on Splunk for analysis in future. This feature can
be helpful for auditing alert scenarios.

https://technet24.ir

Let's understand the use of this Log Event feature in a custom alert. Suppose we have
an alert defined to detect fraudulent transactions. Whenever such a transaction is
detected, there is a support ticket lodged in JIRA and a custom script runs, which
instructs the payment gateway to trigger another layer of authentication. Now, the alert
data can be sent on Splunk under different sourcetypes, which can be used to determine
and derive various insights relevant to the fraudulent transaction. This would enable us
to restrict such activity in the future.

Thus, the Log Event option can be used in various scenarios as per the requirement
under the custom alert action.

Summary
In this chapter, we had a look at the features and customizations introduced in the latest
version of Splunk 6.4. We saw how these features and customizations can be put to use
for better use of Splunk's capabilities. In this book, we saw how and where Splunk can
be used to make sense out of machine-generated log data and how we can create
analytics and visualizations in Splunk. You also learned how to customize dashboards,
tweak Splunk, and how to integrate Splunk with analytics and visualization tools.

https://technet24.ir

Index
A

Adaptive Security Appliance (ASA) firewall / IT operations and network security
addtotals command / The addtotals command
annotate action / The anomalousvalue command
anomalies

detection / Anomalies
anomalies command

using / The anomalies command
anomalies detection

about / Anomalies
anomalies command, using / The anomalies command
anomalousvalue command, using / The anomalousvalue command
cluster command, using / The cluster command
kmeans command, using / The kmeans command
outlier command, using / The outlier command
rare command, using / The rare command

anomalousvalue command
using / The anomalousvalue command

appendcols command
about / The appendcols command

append command
about / The append command

appendpipe command
about / The appendpipe command

app key-value store
about / The app key-value store
system requirements / System requirements
uses / Uses of the key-value store
components / Components of the key-value store
collections, managing via REST / Managing key-value store collections via
REST
examples / Examples
replication / Replication of the key-value store

architecture, Splunk
about / Splunk's architecture

pipeline / Splunk's architecture
processors / Splunk's architecture
parallelization, need for / The need for parallelization
index parallelization / Index parallelization

associate command
using / The associate command

https://technet24.ir

B
button switcher

about / Button switcher
example / Example and implementation
implementation / Example and implementation

C
calendar heatmap visualization

about / Calendar heatmap visualization
example / Example
Search query / Search query
implementation / Implementation

Call Detail Records (CDR) logs / IT operations and network security
charts

about / Charts
coloring options / Charts – Coloring
overlay / Chart overlay
bubble charts / Bubble charts

choropleth visualization / Geospatial visualization
clean command

about / The clean command
cluster command

using / The cluster command
clusters / Distributed environment
color modes

about / Implementation
sequential / Implementation
categorical / Implementation
divergent / Implementation

comma-separated values (CSV) / Structured data
comma delimiter / Delimiter
contextual drilldown / Contextual drilldown
contingency command

using / The contingency command
continuous scheduling / Intelligent job scheduling
correlate command

using / The correlate command
correlation coefficient / The correlate command
correlation commands

about / Correlation
correlate command / The correlate command
associate command / The associate command
diff command / The diff command

https://technet24.ir

contingency command / The contingency command
crawl command

about / The crawl command
file parameter / The crawl command
Network_Path parameter / The crawl command
options parameter / The crawl command

CSS (Cascading Style Sheet) / Tables – An icon set
custom alert action

about / The custom alert action
alerting feature / What is alerting?, Alerting
custom alert framework / The features
implementation / Implementation
example / Example

custom alert action examples
issue/incident tracking/ticketing / Alerting
security / Alerting
compliance / Alerting
fraud / Alerting
alert notification / Alerting
IT monitoring / Alerting
IOT/M2M actions / Alerting
custom actions / Alerting

custom chart overlay
about / Custom chart overlay
example / Example
implementation / Implementation

custom CSS and JS
used, for customizing Splunk / Custom look and feel
using, example / Example and implementation
implementation / Example and implementation

custom decorations
about / Custom decorations
example / Example
uses / What is the use of such custom decorations?
implementation / Implementation

customizations and formatting options, single value
single value / Single value
single value (label) / Single value

single value (Sparkline and trend indicator) / Single value
custom tokens

about / Custom tokens
example / Example
implementation / Implementation

Custom Visualizations app / Implementation

https://technet24.ir

D
dashboard components

Splunk bar / Display controls
App bar / Display controls
Title bar / Display controls
Edit bar / Display controls
Footer / Display controls

dashboard controls
about / Dashboard controls
HTML dashboard / HTML dashboard
display controls / Display controls
form input controls / Form input controls
panel controls / Panel controls

data
adding, to Splunk / Adding data to Splunk – new interfaces
about / Data and indexes

data, accessing
about / Accessing data
index command / The index command
eventcount command / The eventcount command
datamodel command / The datamodel command
dbinspect command / The dbinspect command
crawl command / The crawl command

data, managing
about / Managing data
input command / The input command
delete command / The delete command
clean command / The clean command
summary indexing / Summary indexing

data acceleration
about / Data acceleration
need for / Need for data acceleration

data input methods
about / Data input methods
files and directories / Files and directories
network sources / Network sources
windows data / Windows data

data input process
improving / Improving the data input process

data integrity control
about / Data integrity control

data model acceleration
about / Data model acceleration

datamodel command
about / The datamodel command
data_model_name parameter / The datamodel command
object_name parameter / The datamodel command
Search parameter / The datamodel command

data processing
about / Data processing
event configuration / Event configuration
timestamp configuration / Timestamp configuration
host configuration / Host configuration

data sources
about / Data sources
structured data / Structured data
web and cloud services / Web and cloud services
IT operations and network security / IT operations and network security
databases / Databases
application and operating system data / Application and operating system data

DAX field / The trendline command
dbinspect command

about / The dbinspect command
index parameter / The dbinspect command
span parameter / The dbinspect command

delete command
about / The delete command

Denial of Service (DOS) / The diff command
diff command

using / The diff command
display controls

about / Display controls
example and implementation / Example and implementation
syntax / Syntax

distributed environment

https://technet24.ir

about / Distributed environment
drilldown

contextual drilldown / Contextual drilldown
URL field value drilldown / The URL field value drilldown
single value drilldown / Single value drilldown

drilldown features
about / Drilldown
dynamic drilldown / Dynamic drilldown

dynamic drilldown
about / Dynamic drilldown
x-axis or y-axis value, setting as token to form / The x-axis or y-axis value as
a token to a form
used, for passing row's specific column value / Dynamic drilldown to pass a
respective row's specific column value
used, for field name of clicked value / Dynamic drilldown to pass a fieldname
of a clicked value

E
eval command

about / The eval command
eval tokens

about / Eval tokens
syntax / Syntax of the eval token
example / Example
implementation / Implementation

event configuration, data processing
event line breaking / Event line breaking

event configuration, data processing
character encoding / Character encoding

eventcount command
about / The eventcount command
index parameter / The eventcount command
summarize parameter / The eventcount command
report_size parameter / The eventcount command
list_vix parameter / The eventcount command

event pattern detection
about / Event pattern detection

event segmentation
managing / Managing event segmentation

event segmentation, types
inner segmentation / Managing event segmentation
outer segmentation / Managing event segmentation
full segmentation / Managing event segmentation
index-time segmentation / Managing event segmentation
search-time segmentation / Managing event segmentation

EXtensible Markup Language (XML) / Structured data

https://technet24.ir

F
failures

about / Failures
field extraction

example / Example
regular expression / Regular expression
delimiter / Delimiter

field extractor
about / Field extractor
accessing / Accessing field extractor
using / Using field extractor

fields
about / Fields
eval command / The eval command
xmlkv command / The xmlkv command
spath command / The spath command
makemv command / The makemv command
fillnull command / The fillnull command
replace command / The replace command

fields command
about / The fields command

filldown command
about / The filldown command

fillnull command
about / The fillnull command

force directed graph
about / The force directed graph
example / Example
implementation / Implementation

force directed graph, advantages
good quality results / The force directed graph
flexibility / The force directed graph
simplicity / The force directed graph

formatting and customization options, Splunk web console
wrap result / Tables – Data overlay
row numbers / Tables – Data overlay
drilldown / Tables – Data overlay

data overlay / Tables – Data overlay
form input controls

about / Form input controls
example and implementation / Example and implementation
Autorun / Example and implementation
submit button / Example and implementation
Search on change / Example and implementation

https://technet24.ir

G
geographical information

adding / Geography and location
adding, with iplocation command / The iplocation command
adding, with geostats command / The geostats command

geospatial visualization
about / Geospatial visualization
example / Example
syntax / Syntax
search query / Search query
implementation / Implementation
countries of the world / Implementation

geostats command
used, for adding geographical information / The geostats command

GitHub
reference link / Splunk with R for analytics

H
head / tail command

about / The head / tail command
n parameter / The head / tail command
Expression parameter / The head / tail command

High Performance Analytics Store (HPAS) / Data model acceleration
host configuration, data processing

about / Host configuration
static host value, configuring / Configuring a static host value – files and
directories
dynamic host value, configuring / Configuring a dynamic host value – files
and directories
host value, configuring / Configuring a host value – events

HTTP Event Collector (EC)
about / Adding data to Splunk – new interfaces, HTTP Event Collector
and configuration / HTTP Event Collector and configuration
configuring, via Splunk Web / Configuration via Splunk Web
verifying / Configuration via Splunk Web
Event Collector token, managing / Managing the Event Collector token
JSON API format / The JSON API format

HTTPS
enabling, for Splunk Web / Enabling HTTPS for Splunk Web
enabling, for Splunk forwarder / Enabling HTTPS for the Splunk forwarder

https://technet24.ir

I
icon set

using / Tables – An icon set
Identity Provider (IdP) provider / Authentication using SAML
image overlay

about / Image overlay
example / Example
uses / What is the use of image overlay?
using, locations / Where can image overlay be used?
implementation / Implementation

index command
about / The index command

indexer auto-discovery
about / Indexer auto-discovery
example / Example
implementing / Implementation
sourcetype manager / Sourcetype manager

indexes
about / Data and indexes

index parallelization
about / Index parallelization

index replication
about / Index replication, Replication
standalone environment / Standalone environment
distributed environment / Distributed environment
searching / Searching
failures / Failures

Input/output Operations Per Second (IOPS) / Index parallelization
input command

about / The input command
inputcsv command

about / The inputcsv command
dispatch parameter / The inputcsv command
append parameter / The inputcsv command
events parameter / The inputcsv command
filename parameter / The inputcsv command

installation

Splunk SDK / Installing the Splunk SDK
Inter-quartile range (IQR) / The outlier command
IP addresses / The rare command
iplocation command

used, for adding geographical information / The iplocation command

https://technet24.ir

J
JavaScript Object Notation (JSON) / Structured data
job scheduling

about / Intelligent job scheduling
join command

about / The join command
JS (JavaScript) / Tables – An icon set
JSON API format

about / The JSON API format
authentication / Authentication
metadata / Metadata
event data / Event data

K
kmeans command

using / The kmeans command
KPI (Key Performance Indicators) / Example

https://technet24.ir

L
layout customization

about / Layout customization
panel width / Panel width
example / Example
grouping / Grouping
panel toggle / Panel toggle
image overlay / Image overlay

Lightweight Directory Access Protocol (LDAP) / Splunk Enterprise Security
linker switcher

about / Link switcher
example and implementation / Example and implementation

links / The Sankey diagram
localize command

about / The localize command
Local Level (LL) / The predict command
localop command

about / The localop command
Log4j-based logging / Application and operating system data
Log Event feature / Enhanced alert actions

M
machine learning

about / Machine learning
process / Machine learning

makecontinuous command / The makecontinuous command
makemv command

about / The makemv command
delim parameter / The makemv command
tokenizer parameter / The makemv command
setsv parameter / The makemv command

maps visualization / Geospatial visualization
master node / Distributed environment
ML toolkit / Machine learning
moving average (ema) / The trendline command
moving averages

using / The trendline command
multi search management

about / Multi-search management
example / Example
implementation / Implementation

https://technet24.ir

N
nodes / The Sankey diagram
null search swapper

about / Null search swapper
example / Example
implementation / Implementation
reject and depends token / Implementation
unset and set token / Implementation

O
outlier command

using / The outlier command
outlier detection / Anomalies
outputcsv command

about / The outputcsv command
append parameter / The outputcsv command
create_empty parameter / The outputcsv command
dispatch parameter / The outputcsv command
singlefile parameter / The outputcsv command
filename parameter / The outputcsv command

https://technet24.ir

P
panel controls

examples and implementation / Example and implementation
refresh time, enabling/disabling / Enabling/disabling refresh time
manual refresh link, disabling / Disabling the manual refresh link
auto refresh, enabling / Enabling auto refresh

panel toggle
about / Panel toggle
example / Example
implementation / Implementation

panel width
customizing / Panel width
example / Example
implementation / Implementation

parallel coordinates
about / Parallel coordinates
example / Example
search query / Search query
implementation / Implementation

parallelization
need for / The need for parallelization
index parallelization / Index parallelization
search parallelization / Search parallelization
pipeline parallelization / Pipeline parallelization

peer node / Distributed environment
persistent data model acceleration

delimiter / Data model acceleration
pipe-separated values (PSV) / Structured data
pipeline / Splunk's architecture
pipeline parallelization

about / Pipeline parallelization
point in polygon lookup / Geospatial visualization
predict command

using / The predict command
prediction technique

using / Predicting and trending
predict command, using / The predict command

Prelert Anomaly Detective App for Splunk / Anomalies
processors / Splunk's architecture
punchcard visualization

about / Punchcard visualization
example / Example
search query / Search query
implementation / Implementation

Python
Setuptools, download link / Installing the Splunk SDK

https://technet24.ir

R
rare command

using / The rare command
real-time scheduling / Intelligent job scheduling
recursive search post process / Multi-search management
reltime command

about / The reltime command
replace command

about / The replace command
replication factor / Distributed environment
reporting commands

about / Reports
makecontinuous command / The makecontinuous command
addtotals command / The addtotals command
xyseries command / The xyseries command

results
about / Results
fields command / The fields command
searchtxn command / The searchtxn command
head / tail command / The head / tail command
inputcsv command / The inputcsv command
outputcsv command / The outputcsv command

R tool
download link / The setup

S
SAML

used, for authentication / Authentication using SAML
Sankey diagram

about / The Sankey diagram
uses / The Sankey diagram
example / Example, Parallel coordinates
implementation / Implementation

scheduling
real-time scheduling / Intelligent job scheduling
continuous scheduling / Intelligent job scheduling

search
about / Search
command / The search command
sendmail command / The sendmail command
localop command / The localop command

search command
about / The search command
keywords parameter / The search command
wildcards parameter / The search command
key_value_pairs / fields parameter / The search command
phrases parameter / The search command
operators parameter / The search command
logical_expression parameter / The search command
regular_expression parameter / The search command
time_specifiers parameter / The search command

search factor / Distributed environment
search heads / Distributed environment
search history

about / Search history
search log / Search log
Search on Change / Example and implementation
search optimizations

about / Search optimizations
time range / Time range
search modes / Search modes
searching, scope / Scope of searching

https://technet24.ir

search, terms / Search terms
search parallelization

about / Search parallelization
pipeline parallelization / Pipeline parallelization
search scheduler / The search scheduler

searchtxn command
about / The searchtxn command

Secure Socket Layer (SSL) / Splunk Enterprise Security
Security Assertion Markup Language (SAML) / Splunk Enterprise Security
sendmail command

about / The sendmail command
email_id(s) parameter / The sendmail command
subject parameter / The sendmail command
format parameter / The sendmail command
inline parameter / The sendmail command
sendpdf parameter / The sendmail command
server parameter / The sendmail command

sequences-sunburst / Implementation
Setuptools / Installing the Splunk SDK
simple moving average (sma) / The trendline command
Single Sign-On (SSO) / Authentication using SAML
single value drilldown / Single value drilldown
single value visualization

about / Single value
sourcetype manager

about / Sourcetype manager
creating / Sourcetype manager
modifying / Sourcetype manager
deleting / Sourcetype manager

Sparklines
about / Tables – Sparkline
color, filing / Sparkline – Filling and changing color
color, changing / Sparkline – Filling and changing color
max value indicator / Sparkline – The max value indicator
bar style / Sparkline – A bar style

spath command
about / The spath command
input parameter / The spath command

output parameter / The spath command
path parameter / The spath command

Splunk
using, with R for analytics / Splunk with R for analytics
integrating, with R app / The setup
R, using with / Using R with Splunk
using with Tableau for visualization / Splunk with Tableau for visualization

Splunk 6.4
storage optimization / Storage optimization
machine learning / Machine learning
predict command, features / Machine learning
management / Management and admin
admin / Management and admin
HTTP Event Collector / Management and admin
search statistics / Management and admin
I/O statistics / Management and admin
Indexer / Indexer and search head enhancement
search head enhancement / Indexer and search head enhancement
visualization / Visualizations
multi-search management / Multi-search management
enhanced alert actions / Enhanced alert actions
Send log events to Splunk receiver endpoint / Enhanced alert actions

Splunk add-on
packaging / Packaging the application
installing, via Splunk Web / Installing a Splunk app via Splunk Web
manual installation / Installing the Splunk app manually
developing / Developing a Splunk add-on
building / Building an add-on
technology add-on, installing / Installing a technology add-on

Splunk add-ons
examples / What is a technology add-on?
managing / Managing Splunk apps and add-ons
settings / Managing Splunk apps and add-ons

Splunk APIs
about / Splunk APIs
index, creating / Creating and deleting an index
index, deleting / Creating and deleting an index
input, creating / Creating input

https://technet24.ir

files, uploading / Uploading files
saved searches / Saved searches
Splunk searches / Splunk searches

Splunk app
about / What is a Splunk app?
developing / Developing a Splunk app
on-boarding data / Developing a Splunk app
analytics / Developing a Splunk app
visualization / Developing a Splunk app
creating / Creating the Splunk application and technology add-on
managing / Managing Splunk apps and add-ons

Splunk apps, app store
about / Splunk apps from the app store
Splunk add-on for Oracle database / Splunk apps from the app store
history analysis, browsing / Splunk apps from the app store
Splunk add-on for Microsoft Azure / Splunk apps from the app store
Splunk app for web analytics / Splunk apps from the app store

Splunk app store
download link / The setup

Splunk buckets
about / Splunk buckets
hot bucket / Splunk buckets
warm bucket / Splunk buckets
cold bucket / Splunk buckets
frozen bucket / Splunk buckets

splunkd / Splunk's architecture
splunkd log / splunkd log
Splunk Enterprise Security (SES)

about / Splunk Enterprise Security
HTTPS, enabling for Splunk Web / Enabling HTTPS for Splunk Web
HTTPS, enabling for Splunk forwarder / Enabling HTTPS for the Splunk
forwarder
password, securing with Splunk / Securing a password with Splunk
access control list / The access control list

Splunk Health
about / Splunk health
splunkd log / splunkd log
search log / Search log

Splunk Icon font / Example
Splunk Machine Learning / Using R with Splunk
Splunk SDK

about / The Splunk SDK
uses, scenarios / The Splunk SDK
installing / Installing the Splunk SDK
reference link / Installing the Splunk SDK
download link / Installing the Splunk SDK
for Python, download link / Installing the Splunk SDK
download link, for Python / Installing the Splunk SDK
for Python / The Splunk SDK for Python

Splunk SDK, for Python
about / The Splunk SDK for Python
Splunk API, importing in Python / Importing the Splunk API in Python
Splunk server, connecting / Connecting and authenticating the Splunk server
Splunk server, authenticating / Connecting and authenticating the Splunk
server
Splunk APIs / Splunk APIs

Splunk searches, modes
normal mode / Splunk searches
blocking mode / Splunk searches
one-shot search mode / Splunk searches

subsearch
about / Subsearch
append command / The append command
appendcols command / The appendcols command
appendpipe command / The appendpipe command
join command / The join command

summary indexing
about / Summary indexing
index_name parameter / Summary indexing
File_name parameter / Summary indexing
Host_name parameter / Summary indexing
Source_name parameter / Summary indexing
Sourcetype_name parameter / Summary indexing

summary parallelization
about / Summary parallelization

sunburst sequence

https://technet24.ir

about / Sunburst sequence, What is a sunburst sequence?
example / Example
implementation / Implementation

switcher
about / Switcher
link switcher / Link switcher
button switcher / Button switcher

T
Tableau

setup / The setup
download link / The setup
using, with Splunk / Using Tableau with Splunk

tabular output
data overlay / Tables – Data overlay
Sparklines / Tables – Sparkline
icon set / Tables – An icon set

technology add-on
about / Splunk apps and technology add-ons, What is a technology add-on?
creating / Creating the Splunk application and technology add-on

time
about / Time
reltime command / The reltime command
localize command / The localize command

Time Series Index (TSIDX) files / Splunk's architecture
tokens

about / Tokens
capturing, ways / Tokens
use cases / Tokens
eval tokens / Eval tokens
custom tokens / Custom tokens

transform action / The outlier command
trending technique

trendline command, using / The trendline command
x11 command, using / The x11 command

trendline command
using / The trendline command

tsidx Retention Policy feature / Storage optimization

https://technet24.ir

U
URL field value drilldown / The URL field value drilldown
use cases, custom alert action

fraud detection / Example
automatic incident tracking / Example

use cases, tokens
search events / Tokens
form inputs / Tokens
drilldown tokens / Tokens
conditional display / Tokens

V
visualization

configuration settings / Prerequisites – configuration settings
visualization grouping

about / Grouping
example / Example
single-value grouping / Single-value grouping
visualization grouping / Visualization grouping
implementation / Implementation

Visualizations tab, Splunk 6.4
timeline, reference link / Visualizations
status indicator, reference link / Visualizations
horizon charts, reference link / Visualizations
treemap, reference link / Visualizations
bullet graph reference link / Visualizations
location tracker, reference link / Visualizations

https://technet24.ir

W
weighted moving average (wma) / The trendline command

X
x11 command

using / The x11 command
xmlkv command

about / The xmlkv command
xyseries command / The xyseries command

https://technet24.ir

	Advanced Splunk
	Credits
	About the Author
	Acknowledgements
	About the Reviewer
	www.PacktPub.com
	eBooks, discount offers, and more
	Why subscribe?
	Instant updates on new Packt books
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. What's New in Splunk 6.3?
	Splunk's architecture
	The need for parallelization
	Index parallelization
	Search parallelization
	Pipeline parallelization
	The search scheduler
	Summary parallelization
	Data integrity control
	Intelligent job scheduling
	The app key-value store
	System requirements
	Uses of the key-value store
	Components of the key-value store
	Managing key-value store collections via REST
	Examples
	Replication of the key-value store
	Splunk Enterprise Security
	Enabling HTTPS for Splunk Web
	Enabling HTTPS for the Splunk forwarder
	Securing a password with Splunk
	The access control list
	Authentication using SAML
	Summary
	2. Developing an Application on Splunk
	Splunk apps and technology add-ons
	What is a Splunk app?
	What is a technology add-on?
	Developing a Splunk app
	Creating the Splunk application and technology add-on
	Packaging the application
	Installing a Splunk app via Splunk Web
	Installing the Splunk app manually
	Developing a Splunk add-on
	Building an add-on
	Installing a technology add-on
	Managing Splunk apps and add-ons
	Splunk apps from the app store
	Summary
	3. On-boarding Data in Splunk
	Deep diving into various input methods and sources
	Data sources
	Structured data
	Web and cloud services
	IT operations and network security
	Databases
	Application and operating system data
	Data input methods
	Files and directories
	Network sources
	Windows data
	Adding data to Splunk – new interfaces
	HTTP Event Collector and configuration
	HTTP Event Collector
	Configuration via Splunk Web
	Managing the Event Collector token
	The JSON API format
	Authentication
	Metadata
	Event data
	Data processing
	Event configuration
	Character encoding
	Event line breaking
	Timestamp configuration
	Host configuration
	Configuring a static host value – files and directories
	Configuring a dynamic host value – files and directories
	Configuring a host value – events
	Managing event segmentation
	Improving the data input process
	Summary
	4. Data Analytics
	Data and indexes
	Accessing data
	The index command
	The eventcount command
	The datamodel command
	The dbinspect command
	The crawl command
	Managing data
	The input command
	The delete command
	The clean command
	Summary indexing
	Search
	The search command
	The sendmail command
	The localop command
	Subsearch
	The append command
	The appendcols command
	The appendpipe command
	The join command
	Time
	The reltime command
	The localize command
	Fields
	The eval command
	The xmlkv command
	The spath command
	The makemv command
	The fillnull command
	The filldown command
	The replace command
	Results
	The fields command
	The searchtxn command
	The head / tail command
	The inputcsv command
	The outputcsv command
	Summary
	5. Advanced Data Analytics
	Reports
	The makecontinuous command
	The addtotals command
	The xyseries command
	Geography and location
	The iplocation command
	The geostats command
	Anomalies
	The anomalies command
	The anomalousvalue command
	The cluster command
	The kmeans command
	The outlier command
	The rare command
	Predicting and trending
	The predict command
	The trendline command
	The x11 command
	Correlation
	The correlate command
	The associate command
	The diff command
	The contingency command
	Machine learning
	Summary
	6. Visualization
	Prerequisites – configuration settings
	Tables
	Tables – Data overlay
	Tables – Sparkline
	Sparkline – Filling and changing color
	Sparkline – The max value indicator
	Sparkline – A bar style
	Tables – An icon set
	Single value
	Charts
	Charts – Coloring
	Chart overlay
	Bubble charts
	Drilldown
	Dynamic drilldown
	The x-axis or y-axis value as a token to a form
	Dynamic drilldown to pass a respective row's specific column value
	Dynamic drilldown to pass a fieldname of a clicked value
	Contextual drilldown
	The URL field value drilldown
	Single value drilldown
	Summary
	7. Advanced Visualization
	Sunburst sequence
	What is a sunburst sequence?
	Example
	Implementation
	Geospatial visualization
	Example
	Syntax
	Search query
	Implementation
	Punchcard visualization
	Example
	Search query
	Implementation
	Calendar heatmap visualization
	Example
	Search query
	Implementation
	The Sankey diagram
	Example
	Implementation
	Parallel coordinates
	Example
	Search query
	Implementation
	The force directed graph
	Example
	Implementation
	Custom chart overlay
	Example
	Implementation
	Custom decorations
	Example
	What is the use of such custom decorations?
	Implementation
	Summary
	8. Dashboard Customization
	Dashboard controls
	HTML dashboard
	Display controls
	Example and implementation
	Syntax
	Form input controls
	Example and implementation
	Panel controls
	Example and implementation
	Enabling/disabling refresh time
	Disabling the manual refresh link
	Enabling auto refresh
	Multi-search management
	Example
	Implementation
	Tokens
	Eval tokens
	Syntax of the eval token
	Example
	Implementation
	Custom tokens
	Example
	Implementation
	Null search swapper
	Example
	Implementation
	Switcher
	Link switcher
	Example and implementation
	Button switcher
	Example and implementation
	Summary
	9. Advanced Dashboard Customization
	Layout customization
	Panel width
	Example
	Implementation
	Grouping
	Example
	Single-value grouping
	Visualization grouping
	Implementation
	Panel toggle
	Example
	Implementation
	Image overlay
	Example
	What is the use of image overlay?
	Where can image overlay be used?
	Implementation
	Custom look and feel
	Example and implementation
	The custom alert action
	What is alerting?
	Alerting
	The features
	Implementation
	Example
	Summary
	10. Tweaking Splunk
	Index replication
	Standalone environment
	Distributed environment
	Replication
	Searching
	Failures
	Indexer auto-discovery
	Example
	Implementation
	Sourcetype manager
	Field extractor
	Accessing field extractor
	Using field extractor
	Example
	Regular expression
	Delimiter
	Search history
	Event pattern detection
	Data acceleration
	Need for data acceleration
	Data model acceleration
	Splunk buckets
	Search optimizations
	Time range
	Search modes
	Scope of searching
	Search terms
	Splunk health
	splunkd log
	Search log
	Summary
	11. Enterprise Integration with Splunk
	The Splunk SDK
	Installing the Splunk SDK
	The Splunk SDK for Python
	Importing the Splunk API in Python
	Connecting and authenticating the Splunk server
	Splunk APIs
	Creating and deleting an index
	Creating input
	Uploading files
	Saved searches
	Splunk searches
	Splunk with R for analytics
	The setup
	Using R with Splunk
	Splunk with Tableau for visualization
	The setup
	Using Tableau with Splunk
	Summary
	12. What Next? Splunk 6.4
	Storage optimization
	Machine learning
	Management and admin
	Indexer and search head enhancement
	Visualizations
	Multi-search management
	Enhanced alert actions
	Summary
	Index

